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ABSTRACT

Chronic rhinosinusitis with nasal polyps (CRSwNP), a type 2-based upper airway disease, 
is mainly characterized by high asthma comorbidity and recurrence after surgery. It has 
been shown that type 2 cytokines, including interleukin (IL)-4, IL-5, and IL-13 released 
from T helper 2 (Th2) cells as well as group 2 innate lymphoid cells (ILC2s), contribute to 
chronic inflammation of CRSwNP. This review summarizes recent progresses made in our 
understanding of ILC2 activity, particularly ILC2 accumulation at airway inflammation 
sites, cooperation with Th2 cells in aggravating the CRSwNP inflammatory process and 
interactions with regulatory T cells (Tregs) in resisting Tregs-mediated suppressive function 
in allergic inflammation. A better understanding of the biology of ILC2s should lay a good 
foundation in elucidating the pathogenesis of CRSwNP, and subsequently may lead to the 
development of new therapeutic strategies for the management of CRSwNP.
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INTRODUCTION

Chronic rhinosinusitis with nasal polyps (CRSwNP) is chronic inflammation of the sinus 
mucosa, with a prevalence of approximately 1.1% to 4.3% worldwide.1,2 The principal 
manifestation of CRSwNP is T helper 2 (Th2) cell inflammation with marked eosinophilic 
infiltration, which is often accompanied by asthma comorbidity and recurrence after 
surgery.3-5 Except classic Th2 cells, group 2 innate lymphoid cells (ILC2s) compose a 
heterogeneous population of innate immune cells, which play a key role in the generation 
and maintenance of immunity especially on the mucosal surface; they have also been shown 
to produce large amounts of type 2 cytokines in response to interleukin (IL)-33.6,7 Similar to 
CD4+ Th cells, ILCs are divided into 3 different groups (ILC1/2/3) based on their function, 
cytokine profiles and expressed transcription factors. In particular, ILC1s express T-bet for 
their development and function, and secrete interferon (IFN)-γ; ILC2s require GATA3 and 
RORα for their development and predominantly release type 2 cytokines such as IL-4, IL-5, 
IL-9 and IL-13; and ILC3s depend on RORγt for their differentiation and produce IL-17 and/or 
IL-22 cytokines. Critically, an increase in ILC2s has been demonstrated in the local mucosa 
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of CRSwNP patients, with even higher numbers being present in CRSwNP patients with 
comorbid asthma.6,8,9 Thus, a further understanding of the role of ILC2s in the pathogenesis 
of CRSwNP would certainly help in better management of chronic inflammation in CRSwNP. 
To this end, this review summarizes recent progresses made in evaluating activation, 
migration and function of ILC2s in CRSwNP.

ACTIVATION AND FUNCTION OF ILC2s

Epithelial cell-derived cytokines IL-25, IL-33 and thymic stromal lymphopoietin (TSLP) have 
been shown to activate ILC2s, which further aggravate type 2 inflammation.10-13 The induction 
of IL-25, IL-33 and TSLP in CRSwNP is mainly dependent on various allergenic stimuli (e.g., 
house dust mite [HDM], Alternaria alternata and papain) and microbial infections (Staphylococcus 
aureus and virus). Not surprisingly, the expression of epithelial cell-derived cytokines has a 
close link with disease severity or eosinophil infiltration in CRSwNP.14-17 Additionally, locally 
elevated cysteinyl leukotrienes (cysLTs) and prostaglandin D2 (PGD2) in CRSwNP tissue have 
also been shown to act as potent stimulators for the activation of ILC2s (Fig. 1).18-21

Activated ILC2s secrete type 2 cytokines, IL-5 and IL-13, and consecutively trigger persistent 
airway inflammation. Amphiregulin (AREG) released from ILC2s is crucial for tissue repair 
and restores epithelial integrity and lung function during periods post infection.22 ILC2s 
have also been shown to produce IL-8 and granulocyte macrophage colony-stimulating 
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Fig. 1. ILC2s in CRSwNP. ILC2s are activated by epithelial-derived cytokines as well as by other biological 
mediators such as lipid mediators. Upon activation, ILC2s are able to initiate allergic inflammation through 
both the innate and adaptive immune responses. Activated ILC2s release IL-5, which mainly contributes to 
eosinophilia; and IL-13, which promote airway hyperresponsiveness, goblet cell hyperplasia, mucus production 
and activation of DC. ILC2s induce B-cell proliferation as well as IgA, IgM, IgE and IgG1 production. Activated 
ILC2s are able to release IL-8 and GM-CSF, which can also induce activation and survival of neutrophils and 
macrophages. ILC2-derived IL-9 acts in an autocrine manner to prolong survival of ILC2s in the lungs and 
stimulates mast cell accumulation in local tissues. Interactions of ILC2 with Th2 cells promote and/or enhance 
type 2 immune responses. 
ILC2, group 2 innate lymphoid cell; CRSwNP, chronic rhinosinusitis with nasal polyps; IL, interleukin; DC, dendritic 
cell; Ig, immunoglobulin; GM-CSF, granulocyte macrophage colony-stimulating factor; Th2, T helper 2.
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factor (GM-CSF) following stimulation with PGD2, IL-2, or IL-33 plus TSLP.13,18 Moreover, 
stimulation by a combination of IL-33 and IL-25 can markedly enhance PGD2-induced 
production of IL-8 and GM-CSF by ILC2s.18 Indeed, as some populations of difficult-to-
treat chronic rhinosinusitis patients have an elevated expression of IL-8 in local tissue, 
and elevated levels of IL-8 in eosinophilic CRSwNP patients are associated with increased 
attraction and activation of neutrophils and high rate of recurrence in these patients,23-25 we 
have speculated that ILC2s may also contribute to the infiltration of neutrophils via secretion 
of IL-8 in this patient group.

MIGRATION OF ILC2s IN ALLERGIC AIRWAY DISEASE

Although ILC2s are known to accumulate in allergic airways, little is known about the 
contribution of local proliferation of ILC2s versus the migration of ILC2s from circulation. 
Generally, ILC2s exist in relatively low numbers in the lungs under normal conditions. Studies 
of mice administered IL-33 and A. alternate have demonstrated that ILC2 precursors (ILC2P) 
migrate from bone marrow to the lung and locate around the large airways and blood vessels 
rather than alveolar capillaries,26-28 suggesting that these cells are recent emigrants. In this case, 
it is important to define the signals that control ILC2 migration to and within tissues.

The migration of ILC2s in different tissues is partially mediated by distinct chemokines. Our 
group has demonstrated that C-X-C motif chemokine ligand 16 (CXCL16) is able to induce 
chemotaxis of murine ILC2s, and that a specific anti-CXCL16 neutralizing antibody significantly 
reduces ILC2s accumulation and inhibits airway hyperresponsiveness in IL-33 and HDM-
induced airway inflammations.29 Other studies have demonstrated that the frequency of lung 
ILC2s is significantly decreased in CXCR6GFP/GFP mice compared to their CXCR6-sufficient 
counterparts in a papain-challenged allergic mouse model.30 Similarly, C-C motif chemokine 
ligand (CCL) 22, a high-affinity ligand at the CC chemokine receptor 4 (CCR4), recruits 
murine ILC2s in the lung tissues compared to wild-type (WT) mice in the context of systemic 
IL-25 abundance, and CCR4-deficient mice display impaired migration of ILC2s to the lung.31 
Although CCL8 may also be chemotactic for human ILC2s like CCL22,32 a recent study has 
demonstrated that use of natural CCR8 agonists to block the binding site of CCL8 in ILC2s of 
mice did not significantly alter the migration of ILC2s compared to CCL8-treated or control 
ILC2s.31 The authors thus suggested that CCL8 was not important for the migration of ILC2 
in mice. CCL25 reportedly induces the migration of mouse nasal-associated lymphoid tissue-
derived ILC2s via activation of CCR9 on ILC2s in vitro.33 However, our study has shown that 
CCL25 could not induce the migration of ILC2s via CCR9 in the lung of mice, owing to different 
levels in chemokine receptors in different tissues regulating ILC2 migration.29

Adhesion molecules are reportedly also involved in the migration of ILC2s. Evidence suggests 
that β2 integrins (CD18) on ILC2s may be required for A. alternata-induced ILC2 trafficking 
from the circulation into the lung, because blocking β2 integrins significantly decrease the 
number of ILC2s in the lung without affecting their proliferation, apoptosis and function.34 
Additionally, ILC2s have been shown to express S1PR1 and migrate into the lymphatics 
in a sphingosine 1-phosphate (S1P)-dependent manner, via a mechanism similar to that 
previously described for T cells egressing from secondary lymphoid organs and the thymus.35

On the other hand, ILC2s that migrate to inflammation sites further proliferate after 
stimulation with IL-2, IL-4, IL-9, TL1A, leukotriene D4, neuromedin U or inducible T cell 
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co-stimulator (ICOS), and its ligand ICOSL interaction.36-42 Interestingly, ILC2s can produce 
CCL1 protein, which markedly increases after activation, and CCL1 in turn induces ILC2 
proliferation and type 2 cytokines production. Treatment of cultures of WT ILC2s with 
neutralizing anti-CCL1 antibodies significantly inhibits the cell expansion in vitro.31 These 
findings suggest that in order to decrease the aggregation of ILC2s at inflammation sites, 
it is important to consider not only to reduce the migration of ILC2s, but also to inhibit the 
proliferation of ILC2s.

INTERACTIONS BETWEEN ILC2 AND Th2 CELLS

ILC2s are generally regarded as another important resource of type 2 cytokines, which Aare 
also involved in Th2-cell differentiation, proliferation and cytokine production (Fig. 2). 
Investigations using a papain-induced murine model of allergic lung inflammation have shown 
that IL-13 produced by ILC2s facilitates migration of activated dendritic cells (DCs) to lymph 
nodes (LNs) and subsequently promotes Th2-cell differentiation.43 Similarly, in vitro studies 
have demonstrated that IL-4-derived from ILC2s potently drives Th2 differentiation, which 
is much impaired by specific deletion of IL-4 from ILC2s in vivo in a natural Th2-dependent 
model of human helminthiasis.44 Additionally, ILC2s have also been shown to be involved in 
the recruitment of memory Th2 cell in response to allergens. For example, a study involving 
a papain-induced murine model has shown that IL-13 released from ILC2s is essential for 
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Fig. 2. ILC2-Th2 cell interactions. Epithelial-derived cytokines as well as other biological mediators, such as neuropeptides, and lipid mediators can activate 
ILC2s. Activated ILC2s release IL-4, which initiates Th2-cell differentiation. On the other hand, ILC2s also activate DCs to migrate to LNs where they promote Th2 
cell differentiation, and induce CCL17 expression in CD103− DCs, which recruit memory T cells to the site of inflammation. Interactions between MHC II, the co-
stimulatory molecules, CD80/CD86, OX40L, PD-L1 and ICOSL on ILC2s as well as the relevant ligands on Th2 cells contribute to the differentiation and functions 
of Th2 cells. Reciprocally, Th2 cell-derived IL-2, IL-4 and IL-13 promote ILC2 proliferation and expansion. 
ILC2, group 2 innate lymphoid cell; Th2, T helper 2; IL, interleukin; DC, dendritic cell; LN, lymph node; CCL, C-C motif chemokine ligand; MHC II, major 
histocompatibility complex class II; PD-L1, programmed death-ligand 1; TCR, T cell receptor; ICOS, inducible T cell co-stimulator; ICOSL, inducible T cell co-
stimulator ligand; PD-1, programmed cell death protein 1.



rapid release of CCL17 by CD11b+CD103−DCs, which in turn promotes the migration of CCR4+ 
memory Th2 cells to the lungs of the animal following repeated papain challenge.45

The cognate interactions between ILC2s and CD4+ T cells via major histocompatibility 
complex class II (MHC II)-antigen (Ag) presentation and co-stimulatory signals modulate 
Th2-cell proliferation and differentiation in a cell contact-dependent manner. MHC II 
molecules expressed on ILC2s interact with antigen-specific Th2 cells to instigate cross-
talk between the cells, resulting in cyclic release of cytokines IL-2, IL-4 and IL-13 by Th2 
cells to promote ILC2 proliferation as well as the release of cytokines from ILC2s to induce 
proliferation of Th2 cells.46-48 Furthermore, addition of anti-MHC II antibody to the co-culture 
or depletion of MHC II in ILC2s diminishes the proliferation of T cells.46-48 Similarly, CD80 
and CD86 expressed on ILC2s are also involved in IL-2 secretion and T-cell proliferation 
through interaction with CD28 on T cells.46 Animal studies have demonstrated that OX40L, 
a tumor necrosis factor (TNF) receptor superfamily ligand expressed by activated ILC2s, is 
also important in allergic airway inflammation as it modulates proliferation and survival of 
Th2 cells by binding to OX40 on the T cells.49-51 Similarly, ILC2s expressing ICOSL are known 
to enhance survival, proliferation and cytokine secretion of Th2 cells.52-54 Another study has 
shown that programmed death-ligand 1 (PD-L1) expressed on ILC2s can lead to increased 
expression of GATA3 and production of IL-13 by Th2 cells both in vitro and in vivo through 
interaction with PD-1 on the T cells, which paves the way for a robust adaptive anti-helminth 
Th2 cell-mediated response.55 Furthermore, the finding that CRSwNP patients exhibit greater 
infiltration of ILC2s and Th2 cells in the local mucosa compared to healthy controls11,56-59 
suggests that the synergism between ILC2s and Th2 cells may lead to a vicious circle, which 
further aggravates type 2 inflammation characteristics in CRSwNP.

INTERACTIONS BETWEEN ILC2 AND REGULATORY T 
CELLS (Tregs)
Several studies have indicated that ILC2s can also regulate the function of Tregs (Fig. 3). IL-4 
secretion by ILC2s inhibits Treg cell differentiation and impair the suppressive function of 
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Tregs, thereby promoting the development of food allergy.60 Additionally, when the ligand 
TL1A, a member of the TNF superfamily, binds to its receptor, death receptor3 (DR3), 
expressed on human and murine ILC2s, the proliferation of ILC2s, and the synthesis of type 
2 cytokines from ILC2s are increased.61,62 Interestingly, TL1A has been shown to also act 
on Tregs to increase proliferation and enhance the suppressive activity of Tregs in allergic 
inflammatory skin disease.63 These data suggest that there may be competitive binding of 
TLA1 between Treg and ILC2s. In contrast, ICOSL expressed by ILC2s can promote Treg 
accumulation, and OX40L expressed on ILC2s can cause an increase in the recruitment of 
Tregs during type 2 inflammation.49,64 Moreover, IL-9 produced by ILC2s has been shown 
to enhance the suppressive function of Tregs in an antigen-induced arthritis model.38 ILC2s 
are also the major source of AREG, an epidermal growth factor like growth factor, which 
enhances suppressive function of Tregs on binding to epidermal growth factor receptor.22,65

On the other hand, Tregs are also able to inhibit the activation of ILC2s. Previous studies 
have demonstrated that human and murine induced Tregs (iTregs) can both generate 
suppressive effects by secretion of IL-10 and transforming growth factor (TGF)-β, which 
inhibit the production of IL-5 and IL-13 by ILC2s in a ICOS-ICOSL-dependent cell-to-
cell contact manner in vivo and in vitro.66,67 Moreover, administration of the lipid mediator 
maresin-1 has been shown to inhibit activation of ILC2s and to promote the generation of 
Tregs, which in turn dampens type 2 immune reaction in a murine model of OVA-challenged 
airway inflammation.68 Indeed, taken together with the finding that Tregs are reduced in the 
peripheral blood and the sinus mucosa of CRSwNP patients, compared to controls,69-72 these 
data suggest that decreased activity of ILC2s may enhance the inhibitory function of Tregs 
and thus moderate development of type 2 inflammation in CRSwNP.

ILC2 PLASTICITY

Recently, plasticity and heterogeneity of ILC2s has been noted in airway disease. Pro-
inflammatory cytokines of the IL-1 family, IL-1β and IL-18, potently induce proliferation 
and type 2 cytokine production from ILC2s. In the presence of IL-12, IL-1β and IL-18 can 
reduce the expression of GATA3 on ILC2s and induce the transition of ILC2s into IFN-γ-
producing ILC1s.73-75 Furthermore, it has been shown that notch signalling and cysLTs as 
well as a combination of cytokines IL-1β, IL-23 and TGF-β can promote the differentiation of 
ILC2s into an IL-17-producing ILC3-like phenotype.76,77 During influenza virus and S. aureus 
infections, ILC2s in murine lungs exhibit phenotypic plasticity, which is characterized by 
down-regulated GATA3 expression and low ability to produce type 2 cytokines.75 In chronic 
rhinosinusitis (CRS) patients, CD117+IL-1RI+ ILC2s are exclusively present in CRSwNP 
associated with production of type 2 cytokines, whereas CD117−IL-1RI− ILC2s are mainly 
found in the nasal mucosa of CRSsNP patients, with lower eosinophilia in the local tissues. 
Although the function of CD117−IL-1RI− ILC2s is presently not clear, the presence of these 
different subsets of ILC2s in CRS suggests that the local environment may possibly influence 
the stability of ILC2s in chronic airway disease.

CORTICOSTEROID SENSITIVITY OF ILC2s

The finding that the protein level of TSLP is elevated in CRSwNP may be of significance, as 
TSLP may play a key role in the induction of corticosteroid resistance of ILC2s.78-81 Treatment 
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with corticosteroids has been shown to suppress airway inflammation, and attenuate 
proliferation and type 2 cytokine production by ILC2s isolated from the blood of asthmatic 
subjects.79 However, in the presence of airway inflammation, TSLP plays a pivotal role in 
inducing corticosteroid resistance of LC2 in a MEK and STAT5-dependent manner, and 
reverses the corticosteroid-induced inhibition of ILC2 activity.79 Indeed, BAL ILC2s from 
asthmatic patients with elevated TSLP have also been found to be steroid resistant, and this 
steroid resistance could be reversed by clinically available inhibitors of MEK and STAT5.79 
Similarly, studies of OVA-induced asthma models have demonstrated that the ILC2s of mice 
challenged with a combination of OVA and IL-33 develop corticosteroid resistance and fail 
to exhibit corticosteroid-induced suppression in accumulation of ILC2s, expression of type 
2 cytokines, and mucus production.80 On the other hand, corticosteroid treatment has 
also been shown to reduce the frequency of ILC2s in CRSwNP tissues.82,83 Moreover, in the 
presence of dexamethasone, both ILC2s and Th2 cells from mild asthmatics show attenuated 
generation of type 2 cytokines stimulated by IL-33, supporting the concept of susceptibility of 
these cells to steroids.84,85 Thus, the potential role of ILC2s as the source of type 2 cytokines 
and their involvement in CRSwNP makes ILC2s an attractive cell type for therapeutic 
intervention, beyond their susceptibility to steroids.

SUMMARY AND OUTLOOK

Since the detailed description of ILC2s in 2010, this cell type has been studied with great 
interest and excitement. There is accumulating evidence that ILC2s are essential for the 
initiation, maintenance and propagation of diseases involving type 2 airway inflammation, 
including allergic rhinitis, CRSwNP and asthma. In particular, ILC2s can produce large 
amounts of type 2 cytokines, including IL-4, IL-5, IL-13 and IL-9; and contribute to 
eosinophilic CRSwNP. As type 2 CRSwNP is usually accompanied by asthma comorbidity 
and recurrence after surgery, we have speculated that ILC2 may be one of the key cells that 
mediates disease refractoriness; however, this needs to be confirmed in future studies. 
This in turn should provide valuable information on the design of novel ILC2-targeting 
therapies for the management of these diseases. However, several questions still remain to 
be addressed. First, it is unclear how and when these cells evolve from serving a balanced 
homeostatic/reparative function to promoting an allergic pathology. Secondly, it is also 
unclear whether ILC2s inhibit the function of Tregs in CRSwNP. Thirdly, factors controlling 
the timing and extent of ILC2 tissue migration are not clear. Finally, we are just beginning to 
understand the cellular and molecular interactions of these cells with other cell types, and the 
dynamics of these cells within the NP tissue under inflammatory conditions. Although great 
effort are required to further elucidate the role of ILC2s in CRSwNP, it is likely that this will 
also lead to the development of novel therapies for the management of CRSwNP, and possibly 
other airway inflammatory diseases in the future.
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