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Abstract

The timing of major life-history events, such as migration and moult, is set by endogenous circa-

dian and circannual clocks, that have been well characterized at the molecular level. Conversely,

the genetic sources of variation in phenology and in other behavioral traits have been sparsely ad-

dressed. It has been proposed that inter-individual variability in the timing of seasonal events may

arise from allelic polymorphism at phenological candidate genes involved in the signaling cascade

of the endogenous clocks. In this study of a long-distance migratory passerine bird, the willow

warbler Phylloscopus trochilus, we investigated whether allelic variation at 5 polymorphic loci of 4

candidate genes (Adcyap1, Clock, Creb1, and Npas2), predicted 2 major components of the annual

schedule, namely timing of spring migration across the central Mediterranean sea and moult

speed, the latter gauged from ptilochronological analyses of tail feathers moulted in the African

winter quarters. We identified a novel Clock gene locus (Clock region 3) showing polyQ polymorph-

ism, which was however not significantly associated with any phenotypic trait. Npas2 allele size

predicted male (but not female) spring migration date, with males bearing longer alleles migrating

significantly earlier than those bearing shorter alleles. Creb1 allele size significantly predicted male

(but not female) moult speed, longer alleles being associated with faster moult. All other

genotype–phenotype associations were statistically non-significant. These findings provide new

evidence for a role of candidate genes in modulating the phenology of different circannual activ-

ities in long-distance migratory birds, and for the occurrence of sex-specific candidate gene effects.

Key words: Adcyap1, avian migration, candidate genes, clock, phenology, ptilochronology.

The annual schedule of migratory birds is controlled by an endoge-

nous program, which is synchronized with seasonal changes primar-

ily by daily changes in photoperiod (e.g., Gwinner 1986; Gwinner

2003; Sharp 2005; Pulido 2007; Visser et al. 2010). The endogenous

clock that modulates circadian and circannual rhythmicity has been

extensively studied in several organisms, from prokaryotes to verte-

brates, and the genes controlling such mechanisms have been well

characterized (Bell-Pedersen et al. 2005). Conversely, the genetic

basis of phenotypic variation in the timing of seasonal events is

poorly understood, and only a few candidate genes have been rather

firmly linked to phenological variability in wild organisms (e.g., the

Clock gene; Liedvogel et al. 2009; Caprioli et al. 2012; Saino et al.

2015a).

It has been suggested that differences in the timing of life-history

events among individuals could arise from polymorphism at

genes involved in the signaling cascade of the endogenous clock
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(Visser et al. 2010). Studies of among-individual and among-

population phenological variability in vertebrate species have

mainly focused on length polymorphism at 4 candidate genes,

namely Adcyap1, Clock, Creb1, and Npas2 (e.g., Liedvogel et al.

2009; O’Malley et al. 2010, Caprioli et al. 2012; Chakarov et al.

2013; Bourret and Garant 2015). Clock and its paralog Npas2 show

a polymorphic polyglutamine (polyQ) repeat sequence in their

exonic regions (Fidler and Gwinner 2003; Steinmeyer et al. 2009).

Short tandem repeat sequences at 30-UTR have been detected in

Creb1, a transcription factor involved in the light-induced clock en-

trainment (Gau et al. 2002; Tischkau et al. 2003), and Adcyap1,

encoding for PACAP, a neurotransmitter with several biological

functions related to the circadian and circannual rhythmicity

(Simonneaux et al. 1993; Hannibal et al. 1997; Nagy and Csernus

2007; Racz et al. 2008; Schwartz and Andrews 2013).

In birds, allele size variation at Clock and Npas2 has been linked

with differences in the timing of breeding among individuals, longer

alleles being associated with delayed reproduction and in some spe-

cies with shorter incubation periods (Liedvogel et al. 2009; Caprioli

et al. 2012, Bourret and Garant 2015; but see Liedvogel and

Sheldon 2010; Dor et al. 2012). Moreover, timing of migration

(Bazzi et al. 2015; Saino et al. 2015a) and of complete annual moult

(Saino et al. 2013) was delayed among individuals bearing longer

Clock alleles in some long-distance migratory bird species.

Polymorphism at Adcyap1 and Creb1 genes was found to be associ-

ated with juvenile dispersal behavior in buzzards Buteo buteo: indi-

viduals dispersing earlier carried longer Adcyap1 alleles and shorter

Creb1 alleles than those dispersing later (Chakarov et al. 2013).

Furthermore, Creb1 allele size was related to incubation duration in

male tree swallows Tachycineta bicolor, though in combination

with spring temperatures only (Bourret and Garant 2015). Finally,

Adcyap1 allele size was associated with laying date in female tree

swallows; however, the direction of the association varied with lati-

tude, being negative at lower latitudes but becoming positive at

higher latitudes (Bourret and Garant 2015). Although other studies

did not report any significant association between candidate genes

and phenology (e.g., Liedvogel and Sheldon 2010; Dor et al. 2012),

there is evidence that polymorphism at some of such genes is associ-

ated with other behavioral traits that may be indirectly linked to cir-

cannual rhythms and/or photoperiodic response, such as migratory

restlessness and migration distance (Mueller et al. 2011; Peterson

et al. 2013; Bazzi et al. 2016). Moreover, a latitudinal cline in the

frequency of alleles of different length has been reported for Clock

and Adcyap1 in a few species (e.g., 1 out of 2 species in Johnsen

et al. 2007; Bazzi et al. 2016; but see Kuhn et al. 2013): allele size of

both candidate genes increased northwards, hinting at a possible

role of polymorphism in the adaptation to different photoperiodic

regimes or to the timing of breeding season, that is delayed and

shorter at higher latitudes (Gwinner 1986; Berthold 1996; Johnsen

et al. 2007; Bazzi et al. 2016; Bazzi et al. in press).

Taken together, there is evidence that polymorphism at candi-

date genes may underlie variability in the timing of life-history

events through the whole life-cycle of birds and at different life

stages, but the general picture is still patchy. In this study of the wil-

low warbler Phylloscopus trochilus, we aimed at assessing whether

length polymorphism at 5 polymorphic loci of 4 candidate genes

(the previously studied Adcyap1, Clock, Creb1, and Npas2 genes

and a newly identified polymorphic region of Clock gene; see

Materials and Methods) predicted the timing of spring migration

and the speed of winter moult, as assessed by measuring the growth

rate of tail feathers by means of ptilochronological techniques

(Grubb 2006). We assumed that a larger feather growth rate (FGR)

corresponds to a faster moult (De la Hera et al. 2011). The willow

warbler, a small (ca. 10 g) trans-Saharan migratory passerine that

breeds in Eurasia at medium-high latitudes and overwinters in sub-

Saharan Africa, is among the few species performing 2 complete an-

nual moults, one of which occurs during winter, while the birds are

in Africa (Underhill et al. 1992). Birds leave for spring migration in

late February–March and reach the breeding grounds in mid-March

to late May (Cramp 1998), and were sampled during spring migra-

tion across the central Mediterranean sea. According to previous

studies of candidate gene–phenotype associations conducted on

other migratory species (see above), we expected migration date to

be delayed among birds with longer Clock and Npas2 alleles.

Conversely, due to the variable genotype–phenotype associations

reported in previous studies, we had no clear predictions on the allele

size-phenology or FGR association for the other candidate genes.

Materials and Methods

Field methods
Willow warblers were sampled at Ventotene (40�480N–13�250E), a

small island located in the central Mediterranean Sea, ca. 50 km off

the Italian coast, during the period 22 March–27 May 2013; this

sampling period encompassed the entire spring migration of the

study species at Ventotene (Spina et al. 1993; Messineo et al. 2001;

Saino et al. 2010). Birds were trapped using mist-nets following

standard capture protocols and individually marked with metal

rings (Spina et al. 1993; Saino et al. 2010). We used the length of the

primary feather number 8 (according to the centrifugal numeration

of primaries), that is, the third outermost primary feather, as a

highly accurate estimate of wing length (Jenni and Winkler 1989)

(wing length hereafter). Wing length and tarsus length were re-

corded to the nearest 0.5 and 0.1 mm using a pin ruler and a dial

caliper, respectively. Wing length and tail length (but not tarsus

length) can be used as rough proxies of breeding destination among

willow warblers breeding in Fennoscandia (Bensch et al. 1999):

both wing and tail length show a strong increase with breeding lati-

tude (r2>0.58). Since willow warblers migrating through the central

Mediterranean are directed mostly toward Fennoscandia (Jonzén

et al. 2006a, 2006b), we used wing length and tail feather length

(see Ptilochronological analyses; wing and tail feather length were

strongly positively correlated in our sample of birds: males, r¼0.83;

females, r¼0.87) as rough proxies of breeding latitude. Birds usu-

ally rest on Ventotene for a few hours before resuming their travel

toward breeding quarters (Goymann et al. 2010; Tenan and Spina

2010). We considered only first capture dates (i.e., we excluded re-

captures of birds previously ringed at the study site during the same

season). We assumed that the distribution of first capture dates (ex-

pressed in Julian dates, with January 1¼day 1) reflects the phen-

ology of species’s timing of spring migration at Ventotene (see Saino

et al. 2010, 2015a).

We aimed at sampling ca. 100 individuals, evenly distributed

along the whole spring migration season. According to the number

of willow warblers captured during the previous years (2006–2011,

ca. 800 birds/year), we sampled 1 every 8 captured individuals (see

Saino et al. 2010, 2015a). For each individual we collected a small

blood (ca. 10–30 mL, collected in heparinized capillary tubes and

stored at �20�C) or feather (3–4 undertail coverts, stored in 99%

ethanol at room temperature) sample as a source of DNA.

Moreover, the fourth outermost rectrix (hereafter R4) was collected
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and stored in individual bags for ptilochronological analyses. The

total sample size was 124 individuals.

Ptilochronological analyses
Moult speed was indirectly assessed by measuring growth bar width

(GBW) on R4 (see De la Hera et al. 2009). A single feather growth

bar consists of 1 light band and 1 dark band, which correspond to

the portion of the feather grown during a single night–day cycle

(Brodin 1993). Wider growth bars reflect faster feather growth

(Grubb 2006). Although moult speed depends on the number of fea-

thers growing simultaneously, as well as on the individual FGR, it

has been shown that individuals with high FGRs moult many fea-

thers at the same time (Bensch and Grahn 1993). Hence, we can as-

sume that GBW roughly reflects moult speed of all feather tracts (De

la Hera et al. 2011; see also Saino et al. 2012). We measured the

width of 6 bars, 3 on either side of a point located at two-third of

feather length [modified from Grubb (2006) and De la Hera et al.

(2009) according to the number of growth bars clearly recognizable

on willow warblers’ R4]. The total width of bars was measured with

a digital caliper (to the nearest 0.01 mm) on the dorsal surface of the

vane. GBW was expressed as the total width of bars/6. In order to

avoid any bias, all measures were taken by the same observer (SP).

Repeatability of GBW, as assessed on a sample of feathers measured

twice, was very high (n¼20, r¼0.96, P<0.001).

After measuring GBW, feathers were taped to tracing paper

across the shaft, and scanned; tail feather length (to the nearest

0.01 mm) was measured on the resulting images using the “seg-

mented line” tool of ImageJ 1.46r software (rsbweb.nih.gov) (Saino

et al. 2015b). Individuals whose feather tips were broken, for which

feather length could not be measured, were excluded from moult

speed analyses. We obtained GWB from 118 individuals.

Genetic analyses
Genomic DNA was extracted from blood samples by means of alka-

line lysis of 6 mL of blood in 100 mL of a 50 mM NaOH solution at

100�C for 20 min. Extracted DNA was quantified using a spectro-

photometer and diluted to a final concentration of 50–100 ng/mL.

Genomic DNA from feathers was extracted using a commercial

kit (5 PRIME, ArchivePure DNA purification kit, Hilden,

Deutschland). The procedure is described in detail in Saino et al.

(2015a).

Willow warblers are sexually size dimorphic (males are larger

than females) but sexually monochromatic (Cramp 1998), and sex

cannot be determined in the field. Hence, sex was determined using

CHD1 primers (for DNA extracted from blood samples; details on

primers and PCR amplification in Saino et al. 2015a). As PCR amp-

lification performed on DNA extracted from feathers with CHD1

primers did not produce reliable results, we designed a new set of

primers on Passer montanus CHD gene (Sequence ID in GenBank:

gbjGU370350.1j): PassexF 50-GAGAAACTGTGCAAAACAGG-30

and PassexR 50-GAGTCACTATCAGATCCAGARTATC-30. PCR

amplification were performed in a final volume of 15 mL, with 6 mL

DNA solution, 1�PCR buffer (Promega), 1.5 mM of Mg2þ, 0.3 mL

of each primer (stock 10 mM), 1.5 mL of dNTPs (stock 2 mM), and

1 U Taq DNA polymerase (Promega). PCR amplification profile was

as follows: 95�C for 3 min, 35 cycles at 95�C for 45 s, 55�C for 45 s

and 72�C for 50 s, and further extension at 72�C for 5 min. PCR

products were then separated on 2.5% agarose gel and visualized

after ethidium bromide staining. All 124 sampled individuals were

sexed (64 males and 60 females).

We assessed polymorphism at Adcyap1, Creb1, and Npas2 genes

and at 2 polymorphic Clock gene regions [region 1 (r1) and region 3

(r3); Clock r1 was the locus investigated by Johnsen et al. (2007)

and by subsequent studies on Clock gene polymorphism, while

Clock r3 was a newly identified polymorphic region; see below] by

means of PCR amplification followed by fragment analysis. Primers

for Adcyap1 PCR amplifications were taken from Saino et al.

(2015a), whereas Clock r1 primers are described in Caprioli et al.

(2012). Finally, Creb1 and Npas2 primers correspond to those

described in Steinmeyer et al. (2009) [with the slight modifications

proposed by Bourret and Garant (2015) for the Creb1 gene].

The Clock r3 locus was identified by aligning all Clock avian

gene sequences available in GenBank (55 genomic sequences

retrieved in November 2015) and searching for polymorphic regions

that vary in number of glutamine residues among species. We identi-

fied a predicted exonic region containing a variable number of

glutamine-coding triplets (3–9) located at ca. 200 bp from Clock r1

toward the NH2 terminus of the protein. Specific Clock r3 primers

(Clock r3.F 50-TCTGCTGCTTTCCCACTACA-30 and Clock r3.R

50-ATCAGTCATCTTGTCAGTTCTGTG-30) were designed ex

novo.

PCR amplification was performed using a commercial kit

(Qiagen, Multiplex PCR Kit) in a final volume of 25 mL with 12.5

mL 2� QIAGEN Multiplex PCR Master Mix, 2.5 mL 10� primer

mix (0.5 mL of each primer) (final concentration 0.2 mM), 2 mL

RNase-free water (for genomic DNA extracted from blood only), 5

mL 5� Q-Solution and 3 mL of DNA solution (5 mL for DNA ex-

tracted from feather samples). PCR amplification profile was: 95�C

for 15 min, 35 cycles at 94�C for 30 s, 56�C for 90 s, 72�C for 60 s,

and a final extension at 60�C for 30 min. PCR products were labeled

with 6-FAM (Clock r1 and Creb1), HEX (Clock r3 and Npas2), or

TAMRA (Adcyap1). Polymorphism at candidate genes was deter-

mined using fragment analysis (Macrogen Inc., Seoul, Republic of

Korea) (see Caprioli et al. 2012; Bazzi et al. 2015; Saino et al.

2015a). The sample size of individuals genotyped for each locus is

shown in Table 1.

Statistical analyses
We tested for deviations from Hardy–Weinberg equilibrium (HWE)

for the 5 loci using the Markov chain method (Guo and Thompson

1992) implemented in GENEPOP (dememorization¼1000,

batches¼100, iterations per batch¼1000). We quantified the ex-

tent of genetic differentiation between the sexes at the 5 loci separ-

ately as well as for the combination of all loci by estimating FST

between males and females using Fstat 2.9.3 software (Goudet

2001).

To investigate the association between candidate genes allele size

(mean of the long and short allele, mean allele size hereafter) and

Table 1. List of candidate genes, sample size (n), number of alleles

observed at each locus (K), range of allele length (size range, in

bp), mean allele size (in bp, with associated standard error, in

brackets), and observed heterozygosity (Ho)

Candidate gene n K Size range Mean allele size (SE) Ho

Adcyap1 112 10 160–176 170.21 (0.22) 0.83

Clock r1 121 5 114–126 120.03 (0.14) 0.47

Clock r3 97 2 108–111 108.29 (0.06) 0.15

Creb1 92 4 271–277 274.01 (0.10) 0.50

Npas2 93 5 166–178 172.37 (0.11) 0.38
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migration date, while controlling for variation in migration timing

due to sex, we ran a linear model of migration date (1¼ January 1)

as a function of sex (0¼ females, 1¼males) and Adcyap1, Clock r1,

Clock r3, Creb1, and Npas2 allele size as covariates. Within individ-

uals, the mean allele sizes of the different microsatellites were not

significantly correlated (jrj always<0.12). Hence, the simultaneous

inclusion of the mean allele size of all loci in a single model is feas-

ible, and aims at testing the phenotypic associations of each locus

while controlling for any concomitant effect of the other loci. Since

any possible association between candidate genes’ allele size and mi-

gration date may arise from a latitudinal cline of allele size, we

included wing length as a further covariate, representing a rough

proxy of breeding latitude (wing length increases with latitude

across Europe in several passerine bird species besides the willow

willow warbler; Cramp 1998; Bensch et al. 1999; Peir�o 2003; Evans

et al. 2009; Tarka et al. 2010).

We then tested whether candidate genes’ mean allele size pre-

dicted GBW. Since GBW and tail feather length were strongly corre-

lated (r¼0.51, P<0.001), to control for the effect of tail feather

length on GBW we computed the residuals of a linear regression of

GBW on tail feather length (FGR). Then, similarly to migration

date, we ran a linear model of FGR as a function of sex and

Adcyap1, Clock r1, Clock r3, Creb1, and Npas2 mean allele size,

while including wing length as a further covariate.

Both for migration date and FGR, we tested for sex-specific

phenotypic effects of candidate genes by including in the models all

the 2-way interactions between each locus and sex. Statistically sig-

nificant interaction terms were retained in final models and were in-

terpreted by checking sex-specific slopes of genotype–phenotype

associations. We relied on 81 individuals genotyped at all loci for

migration date, and 78 for FGR.

Finally, we tested for associations between morphology (wing

and tail feather length) and mean allele sizes of candidate genes by

running linear models of wing or tail feather length as a function of

the mean size of the alleles (all loci included simultaneously). To ac-

count for marked sex differences in morphology [males are signifi-

cantly larger than females; see Cramp (1998) and Results], these

models were run separately for each sex.

All linear models were also run by including the long (instead of

the mean) allele sizes of all loci as predictors: this was done because

previous studies highlighted a possible dominance of the longer al-

leles in shaping phenology and other phenotypic traits of migratory

birds for Clock and for other candidate genes (see Liedvogel et al.

2009; Saino et al. 2015a; Bazzi et al. 2016). Within individuals, the

long allele sizes of the different microsatellites were not significantly

correlated (jrj always<0.10): hence, the simultaneous inclusion of

the long allele sizes of all loci in a single model was feasible.

Results

Migration phenology and morphology
The willow warbler is a highly protandrous species, with mean mi-

gration date of males [99.7 (11.0 SD), n¼64] being much earlier

than that of females [117.0 (12.5 SD), n¼60; t122¼8.26,

P<0.001; see also Saino et al. 2010]. Males were significantly

larger than females for all biometrics [wing length, males: 53.3 mm

(1.9 SD), females: 49.6 mm (1.9 SD); tail feather length, males:

56.5 mm (1.8 SD), females: 52.5 (2.2 SD); tarsus length, males:

19.7 mm (0.7 SD), females: 18.6 mm (0.6 SD); all t>9.39, all

P<0.001] (see also Cramp 1998).

Wing and tail feather length of males did not significantly vary

with migration date [wing length, estimate: �0.022 (0.022 SE) mm/

day, t62¼0.99, P¼0.36; tail feather length, estimate: �0.001

(0.021 SE) mm/day, t62¼0.03, P¼0.98]. On the other hand, wing

and tail length of females significantly declined with migration date

[wing length, estimate: �0.049 (0.019 SE) mm/day, t58¼2.60,

P¼0.012; tail feather length, estimate: �0.057 (0.022) mm/day,

t58¼2.61, P¼0.011]. Tarsus length did not significantly vary with

migration date in both sexes (males, estimate: �0.012 (0.008 SE)

mm/day, t61¼1.60, P¼0.12; females, estimate: �0.009 (0.006 SE)

mm/day, t58¼1.51, P¼0.14).

Candidate genes variation
We successfully genotyped 93–112 individuals, depending on locus

(Table 1). Polymorphism broadly varied among candidate genes: the

Clock r3 locus showed very low variability, with 2 alleles only, 1 of

which (108 bp) had an allelic frequency of 90.2% (Table 1). On the

other hand, the Adcyap1 locus was highly variable (Table 1). The

other candidate genes showed intermediate levels of observed het-

erozygosity (Table 1). The Creb1 locus significantly deviated from

the HWE (P<0.001), while this was not the case for the other loci

(P>0.21). Allele frequencies of males and females were similar for

all loci, as indicated by the small FST values (Adcyap1: FST¼0.001,

P¼0.20; Clock r1: FST¼�0.002, P¼0.75; Clock r3: FST¼�0.009,

P¼0.70; Creb1: FST¼0.015, P¼0.30; Npas2: FST¼�0.005,

P¼0.70; all loci pooled: FST¼0.008, P¼0.25).

Candidate genes, timing of migration, and morphology
The linear model analysis showed that the mean allele size of the dif-

ferent loci did not significantly affect migration date, with the excep-

tion of Npas2, that significantly predicted migration date in a

different way according to sex (Npas2� sex interaction, Table 2):

male birds bearing longer Npas2 alleles had a significantly earlier

migration date, whereas this was not the case for females (Table 2,

Figure 1). A similar linear model run using long allele sizes showed

no statistically significant sex-specific effect of any locus (all

P>0.10), and no significant association between long allele size of

any locus and migration date (model with interactions removed, all

P>0.16; details not shown for brevity).

Wing and tail feather length did not significantly covary with the

allele size (both mean and long) in linear models of morphology in

relation to allele sizes of all loci (models run separately for each sex;

4 linear models; all P>0.07).

Candidate genes and moult
FGR did not significantly differ between the sexes [males: �0.01

(0.18 SD), n¼60; females: 0.01 (0.18 SD), n¼58; t116¼0.76;

P¼0.44]. The full linear model including all interaction terms re-

vealed that 2 loci, Clock r1 and Creb1, showed a marginally non-

significant (P¼0.06 in both cases) tendency for sex-specific effects

on FGR (details not shown), while the phenotypic effects of the

other loci were far from significance (all P values>0.26, details not

shown for brevity). We thus decided to retain these 2 interactions in

the final model (Table 3): in both cases, genotype–FGR associations

were statistically significant for 1 sex but not for the other (footnotes

to Table 3). To investigate this further, we increased sample size

(78–88 individuals; different loci had different sample sizes, see

Table 1) by running an additional model where we removed data for

all loci that had a non-significant effect on FGR (i.e., Adcyap1,

Clock r3, and Npas1; see Table 3). The larger sample size yielded a
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statistically significant Creb1� sex interaction (F1,81¼7.98,

P¼0.006), while the Clock r1� sex interaction was not significant

(F1,81¼3.02, P¼0.09). Inspection of sex-specific slopes from this

model indicated that no slope was statistically different from 0 for

Clock r1 (both P>0.12), whereas a significant positive effect of Creb1

on male (but not female) FGR [males: 0.056 (0.022 SE), P¼0.012; fe-

males: �0.056 (0.033), P¼0.10] emerged. Analyses run on data from

all individuals genotyped for Creb1 (n¼89; Figure 2) and Clock r1

(n¼115) confirmed the robustness of this last model (details not

shown). Hence, we conclude that our data support a statistically sig-

nificant sex-specific genotype–FGR association for Creb1 but not for

the other loci, longer Creb1 alleles being associated with faster feather

growth in males but not in females. Models run using long allele sizes

did not highlight any significant genotype–phenotype association (de-

tails not shown). However, a model including data for all birds geno-

typed for Creb1, together with sex and wing length, confirmed a sex-

specific effect of long Creb1 (Creb1� sex, F1,84¼4.30, P¼0.041).

Discussion

We investigated whether allelic variation at 5 candidate genes’ loci

(Adcyap1, Clock r1, Clock r3, Creb1, and Npas2) predicted the tim-

ing of 2 important life-history activities, timing of spring migration

across the central Mediterranean sea, and speed of tail feather moult

in the African winter quarters, in the long-distance migrating willow

warbler. Allelic variation broadly differed between the 5 loci, ranging

from the low values of observed heterozygosity shown by the novel

Clock r3 locus to the high variability of Adcyap1. The Clock r3 locus,

a newly identified region of the Clock gene showing polyQ poly-

morphism (see Materials and Methods), had in fact 2 alleles only, and

a very low variability (Ho was equal to 0.15; Table 1). Although poly-

morphism at this region was not associated with any phenotypic trait,

suggesting that its phenotypic associations are weak, future studies

testing Clock–phenotype associations in avian species might consider

genotyping this region besides the well-studied Clock r1.

We highlighted a novel association between Creb1 allele size and

FGR, a proxy of overall moult speed, faster feather growth being

associated with longer Creb1 alleles in male (but not female) willow

warblers. Npas2 allele size was associated with migration date in

male (but not female) willow warblers, but the relationship was

opposite to our expectations based on previous research, with indi-

viduals bearing shorter Npas2 alleles migrating later through the

study site compared with those bearing longer alleles. Moreover, we

observed that early migrating individuals, especially females, had

longer wings, suggesting that birds from northern populations mi-

grate earlier across the central Mediterranean than those from

southern populations.

The significant associations reported in this study should how-

ever be interpreted cautiously because the results may be affected,

among others, by: 1) age-related variation in migration date and

FGR (age cannot be assessed in spring because the species performs

a complete winter moult, Jenni and Winkler 1994); 2) unknown ori-

gin/destination of populations migrating through Ventotene (wing

and tail feather length are only rough proxies of geographic origin;

see Materials and Methods); and 3) the fact that FGR is only a

rough proxy of overall moult speed (De la Hera et al. 2011).

Notwithstanding the possible confounds listed above, sampling

birds during spring migration allowed us to try to make inferences

about proxies of the speed of the complete winter moult by means

of ptilochronological analyses of tail feathers (Grubb 2006; De la

Hera et al. 2011). Studying proxies of moult speed in relation to

Table 2. Linear model of the effect of candidate genes’ mean allele

size (5 loci) on migration date (1¼ January 1)

Variable Estimate (SE) df F P

Sex —a 1, 72 15.49 <0.001b

Wing length �1.718 (0.672) 1, 72 6.54 0.017

Adcyap1 0.502 (0.627) 1, 72 0.64 0.43

Clock r1 �1.529 (0.899) 1, 72 2.90 0.09

Clock r3 �0.171 (2.149) 1, 72 0.01 0.94

Creb1 1.043 (1.853) 1, 72 0.32 0.58

Npas2 — 1, 72 4.45 0.038

Npas2 � sex —c 1, 72 6.09 0.016

Notes: Estimates for covariates included in retained interaction terms are not

shown because they are not meaningful: details about these effects are shown

in the table footnotes.
a Estimated means (SE) at mean values of covariates: males, 116.1 (2.2); fe-

males, 102.2 (2.2).
b Test statistics of estimated means at mean values of the covariates.
c Model-derived estimate (SE): males, �5.714 (1.947), P¼ 0.004; females,

0.517 (1.560), P¼ 0.74.
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Figure 1. Migration date (1¼January 1) in relation to Npas2 mean allele size

in (A) male and (B) female willow warblers. The line represents simple linear

regression with a statistically significant (P<0.05) slope. The correlation coef-

ficient (Pearson’s r) is also shown.
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candidate genes polymorphism could improve our understanding of

the genetic regulation of annual scheduling. Moult requires consider-

able amounts of resources, and overlap between moult and other cir-

cannual activities is largely avoided by most species (Jenni and

Winkler 1994; Hemborg and Lundberg 1998). Hence, in winter

moulting species, such as the willow warbler, moult speed may con-

strain the timing of spring migration (Hedenström et al. 2007;

Møller et al. 2011). Indeed, comparative studies of trans-Saharan mi-

grants with different moult strategies showed that species performing

a complete moult during wintering migrate later than those moulting

in Europe before autumn migration (Rubolini et al. 2005).

We had no a priori expectation on the possible effect of candidate

genes allele size on proxies of moult speed, since the single previous study

investigating the relationship between genotype and moult phenology

focused on the Clock gene only, highlighting that individual barn swal-

lows Hirundo rustica bearing a rare long Clock variant (Q7/Q8) had a

delayed moult of wing feathers compared with the other genotypes (Saino

et al. 2013). Moreover, Chakarov et al. (2013) found that longer Creb1

alleles were associated with delayed juvenile dispersal in buzzards. Hence,

the Creb1 allele size–moult speed association we detected may arise from

a delayed onset of plumage moult among individuals bearing longer

Creb1 alleles. A delayed timing of moult might constrain its duration,

leading to faster feather growth, as demonstrated in small migratory pas-

serines experimentally subjected to shorter moult periods by altering

photoperiod (e.g., Dawson et al. 2000; Hall and Fransson 2000).

Alternatively, we might speculate that Creb1 allele size directly affected

moult speed through its involvement in the melanin synthesis pathway

[see e.g., Kondo and Hearing (2011) for mammals], but the specific mech-

anism linking Creb1 allele size variation to melanin synthesis is unknown.

The delayed migration of males bearing shorter Npas2 alleles was op-

posite to expectations. According to the few studies investigating the asso-

ciation between Npas2 gene polymorphism and phenology (Chakarov

et al. 2013; Bourret and Garant 2015) and the hypothesis that Npas2

could overtake Clock gene functions, representing an alternative or add-

itional source of adaptive polyQ variation for the regulation of timing of

seasonal events (Debruyne 2008; Steinmeyer et al. 2009), we expected

Npas2 allele size to increase with migration date.

A possible explanation for this findings is that different willow

warbler populations that have diverged for Npas2 migrate through

the study site at different times. The negative association between

Npas2 and migration date could thus originate because of geo-

graphic differentiation in Npas2. This possibility is corroborated by

the rather unusual migration pattern of this species at Ventotene,

whereby wing length decreased in the course of the spring migration

season. Wing length generally increases with latitude across Europe

in several passerine species (including the willow warbler; Bensch

et al. 1999) and northern populations usually migrate later than

southern ones (see e.g., Cramp 1998; Rubolini et al. 2005; Conklin

et al. 2010), while the opposite was apparently the case in this study.

The willow warbler may not be an exception, as similar results

emerged for 2 other long-distance migratory passerines sampled at

the same study site (Luscinia megarhyonchos and Ficedula hypo-

leuca; Saino et al. 2015a).

Table 3. Linear model of the effect of candidate genes’ mean allele

size (5 loci) on FGR (residuals of a regression of GBW on feather

length; see Materials and Methods)

Variable Estimate (SE) df F P

Sex —a 1, 68 0.13 0.72b

Wing length 0.001 (0.010) 1, 68 0.02 0.90

Adcyap1 0.006 (0.007) 1, 68 0.32 0.58

Clock r1 — 1, 68 0.32 0.57

Clock r3 0.001 (0.027) 1, 68 0.16 0.70

Creb1 — 1, 68 0.73 0.40

Npas2 0.011 (0.017) 1, 68 0.68 0.41

Clock r1 � sex —c 1, 68 4.40 0.040

Creb1 � sex —d 1, 68 3.27 0.075

Notes: Estimates for covariates included in retained interaction terms are not

shown because they are not meaningful: details about these effects are shown

in the table footnotes.
a Estimated means (SE) at mean values of covariates: males, �0.003 (0.031);

females, �0.021 (0.032).
b Test statistics of estimated means at mean values of the covariates.
c Model-derived estimate (SE): males, �0.019 (0.021), P¼ 0.36; females,

0.034 (0.015), P¼ 0.028.
d Model-derived estimate (SE): males, 0.026 (0.043), P¼ 0.62; females,

�0.073 (0.035), P¼0.038.
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Figure 2. FGR (residuals of a regression of GBW on feather length; see

Materials and Methods) versus Creb1 mean allele size in (A) male and (B) fe-

male willow warblers. High FGR values are assumed to reflect faster moult.

The line represents simple linear regression with a statistically significant

(P<0.05) slope. The correlation coefficient (Pearson’s r) is also shown (the re-

sult for females was similar after removing the 2 extreme data points with

FGR<�0.40; details not show for brevity).
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However, wing length did not covary with Npas2 mean or long

allele size in either sex, and the statistically significant relationship

between Npas2 genotype and male migration date was obtained

when controlling for wing length (see Results), which should at least

partly account for intraspecific variation in the latitude of breeding.

Hence, the explanation for a negative association between

Npas2 mean allele size and migration date remains elusive. Clearly,

these findings suggest that candidate gene–phenotype associations

may be complex and broadly vary among species and populations

(e.g., Peterson et al. 2013; Bourret and Garant 2015).

Our results showed that Npas2 and Creb1 genes had sex-specific

phenotypic effects. Sex-specific effects of candidate genes have been

previously highlighted for different life-history events by several

studies (Caprioli et al. 2012; Bourret and Garant 2015; Saino et al.

2015a; Bazzi et al. 2016). Sex-specific effects may originate because

of sex-specific selective pressures on timing of life-history events.

For instance, in proterandrous migratory species, males are sub-

jected to stronger selective pressures for early arrival at the breeding

grounds than females (e.g., Morbey and Ydenberg 2001;

Spottiswoode et al. 2006; Newton 2008; Reudink et al. 2009,

Spottiswoode and Saino 2010). Proximately, sex-specific genotype–

phenotype associations may arise because of sex-specific genetic

architecture. For instance, the autosomal genome is shared by both

sexes, but gene expression and regulation is often sexually di-

morphic, leading to genotype–sex interactions in genotype–pheno-

type association studies (review in Ellegren and Parsch 2007; Ober

et al. 2008). An alternative possibility is that males and females

migrating at Ventotene originated from different breeding popula-

tions and that the observed sex-specific genotype–phenotype associ-

ations may instead originate because of population-specific

candidate gene effects. However, the lack of genetic differentiation

at candidate genes between the sexes (both for single loci and for the

combination of the 5 loci) argues against this possibility.

To conclude, our study provides novel insights into avian migra-

tory phenotype–genotype associations for a broad set of candidate

genes’ loci. Our findings suggest that different candidate genes may

contribute to regulating different life-history events in a sex-specific

fashion, and that candidate gene polymorphism underlies among-

individuals variation in phenology throughout the annual cycle.

Intriguingly, the association between Creb1, a candidate gene which

constitutes a key element for the light entrainment of the endogen-

ous clock, and a proxy for moult speed, a life-history event that

occurs at equatorial latitudes, may suggest that daylength plays a

role in the synchronization of circadian and circannual rhythms of

birds even where daily changes in photoperiod are small.
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