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Abstract
Halophytes have high species diversity and play important roles in ecosystems. However, endophytic fungi 
of halophytes in desert ecosystems have been less investigated. In this study, we examined endophytic 
fungi associated with the stem and root of ten halophytic species colonizing the Gurbantonggut desert. 
A total of 36 endophytic fungal taxa were obtained, dominated by Alternaria eichhorniae, Monosporascus 
ibericus, and Pezizomycotina sp.1. The colonization rate and species richness of endophytic fungi varied 
in the ten plant species, with higher rates in roots than in stems. The endophytic fungal community 
composition was significantly affected by plant identity and tissue type. Some endophytic fungi showed 
significant host and tissue preferences. This finding suggests that host identity and tissue type structure 
endophytic fungal community in a desert ecosystem.
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Introduction

Endophytic fungi live within plant organs for some time or throughout their life, with-
out causing apparent harm to their host (Petrini 1991). They are widely distributed and 
significantly contribute to the biodiversity in natural ecosystems (Rodriguez et al. 2009; 
Porras-Alfaro and Bayman 2011; Hardoim et al. 2015; Yao et al. 2019). These fungi are 
beneficial to host plants by improving growth performance (Waller et al. 2005; Kannad-
an and Rudgers 2008; Behie et al. 2012; Khan et al. 2016), providing tolerance against 
abiotic and biotic stresses (Arnold et al. 2003; Waller et al. 2005; Kannadan and Rudg-
ers 2008; Rodriguez et al. 2008; Hartley and Gange 2009; Yuan et al. 2016). Moreo-
ver, endophytic fungi participate in waste decomposition and recycling of nutrients in 
natural ecosystems (Promputtha et al. 2010; Sun et al. 2011; Purahong et al. 2016). 
Therefore, understanding the relationship between the endophytic fungal community 
and host plants is critical to comprehend diversity maintenance and ecosystem function 
(Hoffman and Arnold 2008; Porras-Alfaro and Bayman 2011; Hardoim et al. 2015).

The endophytic fungal colonization rate, diversity, and community composition is 
affected by host species, tissue types, and abiotic factors (e.g., Collado et al. 1999; Arnold 
and Lutzoni 2007; Arfi et al. 2012; Sun et al. 2012a; U’Ren et al. 2012; Lau et al. 2013; 
Li et al. 2016). For example, Sun et al. (2012a) reported that the host species and tis-
sues types conspicuously affect endophytic fungal community in three woody plants in a 
mixed temperate forest in China, where the overall colonization rates of endophytic fungi 
were significantly higher in twigs than in leaves, i.e., twigs harbored more endophytic taxa 
than leaves. Massimo et al. (2015) suggested that the endophytic fungal community com-
position in aboveground tissues (branches, stems, and leaves) of Sonoran Desert trees and 
shrubs were different among host species. However, most previous studies have focused on 
endophytic fungi of the aerial parts of plants, while very few studies investigated the dif-
ference of endophytic fungal community inhabiting the aboveground and belowground 
plants in ecosystems (Herrera et al. 2010; Márquez et al. 2010; Su et al. 2010; Xing and 
Guo 2011; Porras-Alfaro et al. 2014). For example, Su et al. (2010) illustrated that Stipa 
grandis inhabited the Inner Mongolia steppe, the colonization rates of endophytic fungi 
were significantly higher in roots than in leaves, and the endophyte diversity, as well as the 
composition, was also significantly different in roots or leaves. Recent studies showed the 
functional importance of endophytic fungi colonized in roots and boosted research inter-
ests to root endophytic fungi (Hiruma et al. 2016; Almario et al. 2017; Polme et al. 2018; 
Schroeter et al. 2019). The difference in the endophytic fungal community among the 
aboveground and belowground of harsh habitat plants is an important scientific question.

Halophytes constitute about 1% of the world’s flora, survive and reproduce in sa-
line habitats such as coastal and salinized inland regions (Flowers et al. 1986; Flowers 
and Colmer 2008; Ward 2009). These halophytes contain grasses, shrubs, and trees, 
which constitute important eco-functional vegetation in the desert and coastal areas 
(Rozema and Flowers 2008; Chen et al. 2009; Giri et al. 2011). In China, there are 
3.69×107 ha of saline soil regions and 555 halophyte species, accounting for 21.3% 
of the halophytes in the world (Zhao et al. 2013a). Particularly in arid and semiarid 
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northwest China, saline lands are distributed in the Gobi Desert, which accounts for 
69% of the total saline lands and accommodates more than 60% of the halophyte 
resources of China (Zhao et al. 2013b). Halophytes in the desert areas are exposed 
to multiple environmental stresses, such as low water availability, high salinity, and 
nutrient deprivation (Ward 2009; Liu et al. 2013), and thus are unique niches for en-
dophytes affected by the harsh environment. However, studies of endophytes in saline 
environments of China focused on mangroves parallel to the coast (Xing et al. 2011; 
Xing and Guo 2011; Liu et al. 2012; Li et al. 2016).

Inland halophytes form extensive symbiotic relations with endophytic fungi in 
harsh environments, which benefit their hosts by promoting resistance against high 
salinity stress (Rodriguez et al. 2008; Massimo et al. 2015; Khan et al. 2016). A few 
studies focused on endophytes of halophytes living inland (e.g., Sun et al. 2012b; 
Macia-Vicente et al. 2012). There are even fewer studies of endophytic fungi that have 
been carried out on desert halophytes, and they merely focused on endophytes on roots 
(Sonjak et al. 2009; Macia-Vicente et al. 2012). Moreover, Sun et al. (2012b) aimed at 
the endophytic fungal community in stems and leaves of desert halophytes in Tennger 
Desert region of China. Therefore, further study is required on endophytes of halo-
phytes in the desert region to reveal the community of endophytic fungi under arid 
and salinity stress, with an emphasis on aboveground and belowground parts of plants.

In order to improve our understanding of the endophytic fungi of desert halophytes, 
we selected ten halophyte species in the Gurbantonggut desert, Xinjiang, northwest 
China. The endophytic fungi were isolated from the stems and roots of halophytes and 
identified according to morphological characteristics and molecular data. This study 
aimed to reveal how the colonization rate, diversity, and community composition of 
endophytic fungi differed among halophytes species and tissue types. Besides, it will 
also provide preliminary data of halophyte endophytes for future studies in bioactive 
natural products, ecosystem reconstruction, or agricultural application in desert regions.

Methods

Study site and sampling procedure

The study was carried out at the Fukang Desert Ecosystem Observation and Experi-
ment Station, Chinese Academy of Sciences, located in the southern edge of the Gur-
bantonggut desert in China (44°17'N–44°22'N, 87°55'E–87°56'E, 448–461 m above 
sea level). The site has a continental arid temperate climate, with an annual mean 
temperature of 6.6 °C (a maximum of 44.2 °C in hot, dry summer and a minimum of 
-42.2 °C in freezing winter) (Dai et al. 2015). The annual mean precipitation is about 
160 mm with annual pan evaporation of 2000 mm, resulting in soil with high salinity 
(0.45–2.25%) (Xu et al. 2007).

On 30th July 2015, we selected ten halophyte species Bassia dasyphylla (Fisch. 
et C. A. Mey.) Kuntze, Ceratocarpus arenarius L., Kalidium foliatum (Pall.) Moq., 
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Salsola  nitraria  Pall., Suaeda acuminata (C. A. Mey.) Moq., Su. salsa (L.) Pall. 
(Chenopodiaceae), Eragrostis minor Host (Poaceae), Reaumuria songarica (Pall.) Maxim. 
(Tamaricaceae), Seriphidium santolinum (Schrenk) Poljak (Asteraceae), and Peganum 
harmala (L.) (Zygophyllaceae) at the site. Ten healthy individuals of each plant species 
were uprooted to collect twig and root samples at the location. All sampled individuals 
of the same species were more than 50 m away from each other, in order to reduce the 
spatial autocorrelation and recover representative local endophyte community (Li et al. 
2016, Yao et al. 2019). The collected samples were immediately placed in autoclaved 
paper bags, labeled, and transported to the laboratory in an ice-box. Samples were 
stored at 4 °C and processed within 4 days.

Isolation and identification of endophytic fungi

Since most of the plant species involved in the current study (except for E. minor) pos-
sess reduced leaves, which are hard to discern from the stems, we selected only stems to 
isolate endophytes colonized aerial parts of the plants. Roots and stems of individual 
plants were cut into 5 mm long segments (ca. 2 mm in diameter). Eight root segments 
and 8 stem segments were randomly selected from each sample. In total, 1600 seg-
ments (10 plant species × 10 individuals × 2 tissue types × 8 segments) were used for 
endophyte isolation in this study.

Surface sterilization was conducted according to Guo et al. (2000). Segments were 
surface sterilized by consecutive immersion for 1 min in 75% ethanol, 3 min in 3.25% 
sodium hypochlorite, and 30 sec in 75% ethanol. Sets of four segments were then 
evenly placed in a 90 mm Petri dish containing potato dextrose agar (PDA, 2%). 
Benzylpenicillin sodium (50 mg/L, North China Pharmaceutical Group Corporation, 
China) was added to suppress bacterial growth. Petri dishes were sealed, incubated for 
2 months at 25 °C, and examined periodically. When fungal colonies developed, they 
were transferred to a new PDA containing Petri dishes for purification. The purified 
strains were transferred to PDA slants for further study.

Subcultures on PDA were examined periodically, and the sporulated isolates were 
identified based on their morphological characteristics. The non-sporulated cultures 
were designated as mycelia sterilia, which were divided into different “morphotypes” 
according to colony color, texture, and growth rate on PDA (Guo et al. 2000). One 
representative strain of each morphotype or sporulated strain was selected for further 
molecular identification. The living cultures are deposited in China General Microbio-
logical Culture Collection Center (CGMCC) in Beijing, China.

DNA extraction, amplification, sequencing, and identification

Genomic DNA was extracted from fresh cultures following the protocol of Guo et al. 
(2000). Fresh fungal mycelia (ca. 50 mg) were scraped from the surface of the PDA 
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plate and transferred into a 1.5 mL microcentrifuge tube with 700 µL of preheated 
(65 °C) 2 × CTAB extraction buffer (2% CTAB, 100 mM Tris-HCl, 1.4 M NaCl, 20 
mM EDTA, pH 8.0), and 0.2 g of sterilized quartz sand. The mycelium was ground 
using a glass pestle and then incubated in a 65 °C water bath for 30 min with occa-
sional gentle swirling. Five hundred microliters of phenol:chloroform (1:1) were added 
into each tube and mixed thoroughly to form an emulsion. The mixture was spun 
at 12,000 g for 15 min at room temperature in a microcentrifuge, and the aqueous 
phase was transferred into a fresh 1.5 mL tube. The aqueous phase containing DNA 
was re-extracted with chloroform:isoamyl (24:1) until no interface was visible. Thirty 
microliters of 5 M KOAc was added into the aqueous phase followed by 200 µL of iso-
propanol and inverted gently to mix. The genomic DNA was precipitated at 9200 g for 
2 min in a microcentrifuge at 4 °C. The DNA pellet was washed twice with 70% etha-
nol and dried using SpeedVac (AES 1010, Savant, Holbrook, NY, USA) for 10 min or 
until dry. The DNA pellet was then re-suspended in 65 µL ultrapure sterilized water.

The internal transcribed spacer (ITS) region of rDNA was amplified using primer 
pairs ITS4 (White et al. 1990) and ITS1F (Gardes and Bruns 1993). Amplification 
was performed in a 50 µL reaction volume which contained PCR buffer (20 mM KCl, 
10 mM (NH4)2SO4, 2 mM MgCl2, 20 mM Tris-HCl, pH 8.4), 200 µm of each deoxyri-
bonucleotide triphosphate, 15 pmols of each primer, 100 ng template DNA, and 2.5 U 
Taq polymerase (Biocolor BioScience & Technology Company, Shanghai, China). The 
thermal cycling program was as follows: 3 min initial denaturation at 94 °C, followed by 
35 cycles of 30-sec denaturation at 94 °C, 30-sec annealing at 52 °C, 1 min extension at 
72 °C; and a final 10 min extension at 72 °C. A negative control using water instead of 
template DNA was included in the amplification process. Four microliters of PCR prod-
uct from each PCR reaction were examined by electrophoresis at 80 V for 30 min in a 
1% (w/v) agarose gel in 1 × TAE buffer (0.4 M Tris, 50 mM NaOAc, 10 mM EDTA, pH 
7.8) and visualized under ultraviolet (UV) light after staining with ethidium bromide 
(0.5 µg/mL). PCR products were purified using Wizard SV Gel and PCR Clean-Up Sys-
tem (Promega, Madison, USA) and directly sequenced with primer pairs, as mentioned 
above in the ABI 3730-XL DNA sequencer (Applied Biosystems, Inc. USA).

A value of 97% of ITS region identity was used as a DNA barcoding thresh-
old for OTU clustering (O’Brien et al. 2005). The taxonomical assignments for each 
OTU were determined according to the BLAST results against both UNITE+INSD 
(UNITE combined international nucleotide sequence databases) and GenBank public 
sequence databases. A representative sequence of each OTU was selected and searched 
against the UNITE+INSD fungal ITS databases (Kõljalg et al. 2013) using a basic lo-
cal alignment search tool (BLAST) (Altschul et al. 1990). The DOIs of UNITE fungal 
Species Hypothese at 1.5% threshold (Nilsson et al. 2019) were also added to each 
of taxonomical assigments (Table 1). For reliable identification of the fungi, a repre-
sentative sequence of each OTU was searched against the GenBank public sequence 
databases using BLASTN (Sun et al. 2011, Sun et al. 2012a). For further identification 
of these fungi, we select the most reliable sequence as a reference (the sequences origi-
nated from mycologists or taxonomists, yielded from taxonomical or phylogenetical 
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studies, or were part of cultures or speciemens in famous collections, would be given 
higher credits). As for taxonomical levels higher than species, we typically relied on 90, 
85, 80, and 75% sequence identity as a criterion for assigning OTUs with names of 
a genus, family, order, or class, respectively (Tedersoo et al. 2014). Nevertheless, the 
results of sequence-based identification were calibrated with morphological charac-
teristics in our study given the strains within one OTU sporulated. The microscopic 
observation was applied with cultures mounted in sterile water using a compound 
microscope (Zeiss Axio Imager A2, Carl Zeiss Microscopy, Göttingen, Germany). The 
ITS sequences of endophytic fungi obtained in this study have been deposited in Na-
tional Center for Biotechnology Information (NCBI) with GenBank accession no. 
KY114893 to KY114928 (Table 1).

Data analysis

All statistical analyses were carried out in R 3.3.1 (R Development Core Team 2016). 
The colonization rate of endophytic fungi was calculated as the total number of tissue 
segments infected by fungi divided by the total number of tissue segments incubated 
(Sun et al. 2011). The relative abundance was calculated as the number of isolates of 
a taxon divided by the total number of isolates of all taxa, and the fungal richness was 
defined as the number of fungal species in a sample.

One-way analysis of variance (ANOVA) was carried out to test the effect of plant 
species or tissue type (stem and root) on the colonization rate and species richness of 
endophytic fungi. Multiple comparisons were performed using post hoc Tukey’s HSD 
(Honest Significant Difference) tests to examine the significant differences among 
the plant species or tissue types at P < 0.05 level. All data were tested for normality 
and homogeneity of variance before ANOVA. In cases where satisfactory results of 
homogeneity of variance amongst plant species after square root and transformation 
were not observed (e.g., in stems), then nonparametric Kruskal-Wallis test followed by 
pairwise comparisons was applied to examine the significant difference among plant 
species at P < 0.05 level. T-test was applied to examine the significant difference of the 
colonization rate and species richness of endophytic fungi between stems and roots 
for each plant species at P < 0.05 level. Canonical correspondence analysis (CCA) was 
performed to observe the correlation between endophytic fungi and plant species or 
tissue types with the ‘cca’ function in the vegan package (Oksanen et al. 2019). The 
effects of plant species and tissue type on community composition of endophytic fungi 
were tested by permutational multivariate analysis of variance (PermANOVA) using 
the ‘adonis’ command in the vegan package (Oksanen et al. 2019).

The host-fungus association preferences were evaluated based on a d’ interaction 
specialization index (Blüthgen et al. 2007) using the ‘dfun’ function in the bipartite 
package (Dormann et al. 2009) according to Toju et al. (2016). Briefly, a binarized 
sample × fungal taxon matrix (i.e., presence/absence) was converted into a ‘species-
level’ matrix, in which rows depicted plant species, columns represented endophytic 

http://www.ncbi.nlm.nih.gov/nuccore/KY114928
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fungal taxa, and cell entries were the number of samples from which respective com-
binations of plants and fungi were observed. To perform a randomization analysis of 
the d’ index, plant species labels in the sample × fungal taxon matrix were shuffled, and 
then, the randomized species-level matrices were obtained (1000 permutations). The 
d’ value of each plant species or each fungal taxon was standardized as follows: stand-
ardized d’ = [d’observed - Mean (d’randomized)] /SD (d’randomized), where the d’observed was the d’ 
estimate of the original data, and Mean (d’randomized) and SD (d’randomized) were the mean 
and standard deviation of the d’ scores of randomized data matrices. Also, we evaluated 
the observed frequency (counts) of each plant-fungus association in the species-level 
matrix, and quantified with the two-dimensional preferences (2DP) in a pair of a plant 
species (i) and a fungal taxon (j) based on the species-level original and randomized 
matrices used in the d’ analysis: 2DP (i, j) = [Nobserved (i, j) - Mean (Nrandomized (i, j))] /
SD (Nrandomized (i, j)), where Nobserved (i, j) denoted the number of samples from which a 
focal combination of a plant and a fungus was observed in the original data, and the 
Mean (Nranodomized (i, j)) and SD (Nrandomized (i, j)) were the mean and standard deviation 
of the number of samples for the focal plant-fungus pair across randomized matrices. 
The P values were adjusted based on the false discovery rate (FDR) (Benjamini and 
Hochberg 1995).

Results

Colonization rate of endophytic fungi

A total of 1046 fungal strains were recovered from 1600 tissue segments from ten halo-
phyte species. The colonization rate of endophytic fungi ranged from 7.5 ± 3.33% to 
83.75 ± 8.95% in stems, from 33.75 ± 11.19% to 97.5 ± 1.67% in roots, and from 
38.75 ± 2.46% to 85.63 ± 2.28% overall for the entire plant among the ten halophyte 
species (Fig. 1). One-way ANOVA showed that the colonization rate of endophytic 
fungi was significantly affected by plant identity (F = 5.847, P < 0.001) and tissue type 
(F = 8.184, P < 0.001). In the entire plant, the colonization rate of endophytic fungi 
was significantly higher in Sa. nitraria than in other plants (except for Su. acuminata 
and Se. santolinum) and was significantly higher in Su. acuminata than in E. minor 
(Fig. 1). In the stem, the colonization rate of endophytic fungi was significantly higher 
in Sa. nitraria and Su. acuminata than in the other halophyte species (except for P. 
harmala). For P. harmala, the colonization rate of endophytic fungi was significantly 
higher than in B. dasyphylla and R. songarica (Fig. 1). In the root, the colonization rate 
of endophytic fungi was significantly higher in Se. santolinum, R. songarica, and Sa. 
nitraria than in E. minor and P. harmala, and was significantly higher in B. dasyphylla, 
C. arenarius, and Su. salsa than in P. harmala (Fig. 1). Furthermore, the colonization 
rate of endophytic fungi was significantly higher in roots than in stems in B. dasyphylla, 
C. arenarius, K. foliatum, Su. salsa, R. songarica, and Se. santolinum, but no significant 
difference was observed in the other four halophyte species (Fig. 1).
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Figure 1. Colonization rate of endophytic fungi in stem, root, and total (stem + root) tissues of the ten 
halophyte species. Data are means ± SE (n = 10). Columns without shared lowercase, uppercase, and italic 
letters denote the significant difference in the stem, root, and total tissues among the halophyte species, 
respectively. Asterisks above bars indicate significant difference between stem and root tissues for each 
plant species (** P < 0.01, *** P < 0.001).

Endophytic fungal richness

In total, 36 fungal taxa were isolated and identified based on morphological characters 
and ITS sequences (Table 1). The richness of endophytic fungi ranged from 0.5 ± 0.22 
to 2.2 ± 0.2 in stems, from 1.2 ± 0.29 to 4 ± 0.3 in roots and from 1.2 ± 0.29 to 4 
± 0.3 (means ± SE) in overall among the ten halophyte species (Fig. 2). The richness 
of endophytic fungi was significantly affected by plant species (ANOVA, F = 4.635, 
P < 0.001) and tissue type (Kruskal-Wallis test, x2 = 34.993, P < 0.001). In the stem, 
the fungal richness was significantly higher in Sa. nitraria than in B. dasyphylla and R. 
songarica, and significantly higher in E. minor than in R. songarica (Fig. 2). In the root, 
the fungal richness was significantly higher in Sa. nitraria than in B. dasyphylla, K. fo-
liatum, Se. santolinum and P. harmala, and significantly higher in C. arenarius than in P. 
harmala (Fig. 2). Furthermore, the fungal richness was significantly higher in roots than 
in stems in ten plant species, except for E. minor, Se. santolinum and P. harmala (Fig. 2).
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Figure 2. Endophytic fungal richness in stem, root and total (stem + root) tissues of the ten halophyte 
species. Data are means ± SE (n = 10). Columns without shared lowercase, uppercase, and italic letters 
denote significant difference in the stem, root, and total tissues among the plant species, respectively. 
Asterisks above bars indicate the significant difference between stem and root tissues for each halophyte 
species (* P<0.05, ** P < 0.01, *** P < 0.001).

Endophytic fungal community composition

Of the 36 endophytic fungi, 32 were recovered from roots, 27 from stems, and 23 were 
common in both roots and stems (Fig. 3). Among seven abundant endophytic fungi 
(relative abundance > 15% in certain plant species), Alternaria eichhorniae was the most 
abundant stem endophyte and was recovered from C. arenarius, K. foliatum, P. harmala, 
Sa. nitraria, Su. acuminata, and Su. salsa (Fig. 4B, D, E, G, I, J). In addition, Monosporas-
cus ibericus was exclusively recovered from roots of B. dasyphylla, K. foliatum, Su. acumi-
nata, and Su. salsa (Fig. 4A, D, I, J). In C. arenarius, Pezizomycotina sp.1 was exclusively 
recovered from roots, and in Se. santolinum Pezizomycotina sp.1 was mostly recovered 
from roots (Fig. 4B, H). Sarocladium kiliense and Aspergillus fumigatiaffinis were only 
found on the roots of R. songarica (Fig. 4F). Bipolaris prieskaensis was mostly isolated 
from roots, and Preussia sp.2 was mostly distributed in stems in E. minor (Fig. 4C).
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Figure 3. Relative abundance of endophytic fungi in the stem and root tissues of the ten halophyte species.

The CCA results indicated that the endophytic fungal community composition 
was significantly different between stems and roots of the ten halophyte species (Fig. 
5A), and significantly different among some plants, such as R. songarica, B. dasyphylla, 
P. harmala and E. minor (Fig. 5B). The PermANOVA results also showed that the en-
dophytic fungal community composition was significantly affected by tissue type (R2 = 
0.212, P = 0.001) and plant species (R2 = 0.082, P = 0.001).

Host-fungus association preferences

Host-fungus association preference analysis showed that five out of ten halophyte spe-
cies showed significant preferences to endophytic fungi, especially strong preferences in 
E. minor, R. songarica, and Se. santolinum (Fig. 6A). Among the 36 endophytic fungi, 
13 showed significant preferences for host species, particularly strong preferences were 
observed in Al. eichhorniae, M. ibericus, Pezizomycotina sp.1, Sr. kiliense, Pezizomyco-
tina sp.2, As. fumigatiaffinis, B. prieskaensis, Trichocomaceae sp., and Xylaria hypoxylon 
(Fig. 6A). Furthermore, 26 out of 208 pairs of plants and fungi showed significant 
preferences, such as pairs Pezizomycotina sp.1 and Se. santolinum, Sr. kiliense and R. 
songarica, B. prieskaensis and E. minor, As. fumigatiaffinis and R. songarica (Fig. 6).
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Figure 4. Relative abundance of endophytic fungi in the stem and root of different halophyte species.
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Figure 5. Canonical correspondence analysis (CCA) ordination plot of endophytic fungal communities 
of stem and root tissues (A) and halophyte species (B). Dotted ellipses indicate 95% confidence intervals 
around centroids of tissue type (A) and plant species (B), B. dasyphylla = Bassia dasyphylla, C. arenarius 
= Ceratocarpus arenarius, K. foliatum = Kalidium foliatum, Sa. nitraria = Salsola nitraria, Su. acuminata = 
Suaeda acuminata, Su. salsa = Suaeda salsa, E. minor = Eragrostis minor, R. songarica = Reaumuria songarica, 
Se. santolinum = Seriphidium santolinum, and P. harmala = Peganum harmala.

Discussion

The colonization rate and species richness of endophytic fungi varied among desert 
halophyte species in the current study. Similar results have been reported in previous 
studies in mangrove (Xing et al. 2011; Xing and Guo 2011; Liu et al. 2012; Li et al. 
2016), desert halophytes (Sun et al. 2012b), gypsophilous plants (Porras-Alfaro et al. 
2014), desert trees and shrubs (Massimo et al. 2015), and plants in other ecosystem 
(Su et al. 2010; Sun et al. 2012a). For example, Xing et al. (2011) recovered 39 distinct 
endophytic species in five mangrove species and found the colonization rate of endo-
phytic fungi ranging from 12.5 to 41.7% in roots, from 8.0 to 54.0% in stems, and 
from 12.5 to 25.1% in leaves. Sun et al. (2012b) identified 21 endophyte species from 
eight desert halophytes and found the colonization rates ranging from 35 to 100% in 
stems and leaves. Furthermore, we found that the colonization rate and species rich-
ness of endophytic fungi were generally higher in roots than in stems, which is in con-
trast with studies carried out in Holcus lanatus (Márquez et al. 2010), Stipa grandis (Su 
et al. 2010), and gypsophilous plants (Porras-Alfaro et al. 2014) in arid ecosystem. The 
difference between endophytic colonization and diversity between above- and below-
ground might be attributed to both biotic and abiotic factors. In the study site, humid-
ity is much lower in the air than in the soil, which might result in lower colonization 
rate and species richness of endophytic fungi in stems than in roots, as endophyte 
colonization is positively correlated with humidity (Herrera et al. 2010; Massimo et al. 
2015). Also, the relatively moist and organic-rich soil substrate is capable of supporting 
diverse and abundant fungal propagules for penetration in plant roots in comparison 
to stems (Bridge and Spooner 2001; Massimo et al. 2015).
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Figure 6. Preferences observed in the plant-fungus associations. A Preference scores. The standardized 
d’ estimate of preferences for fungal taxon is shown for each halophyte (column), and the standardized d’ 
estimate of preferences for plant species is indicated for each of the fungal taxon (row). Each cell in the 
matrix indicates a two-dimensional preference (2DP) estimate, which measures to what extent the asso-
ciation of a focal plant-fungus pair was observed more/less frequently than expected by chance. P values 
were shown as false discovery rates (FDRs) in the plant/fungus analysis. B Relationship between 2DP 
and FDR-adjusted P values, 2DP values larger than 2.5 and those smaller than -2.5 represented strong 
preference and avoidance, respectively (PFDR < 0.05). Significance: *, P < 0.05, **, P < 0.01, ***, P < 0.001.

We found that the endophytic fungi community composition is halophyte species-
dependent. Similar results have been reported in some previous studies on halophytes 
and desert plants (Xing et al. 2011; Xing and Guo 2011; Macia-Vicente et al. 2012; 
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Sun et al. 2012b; Porras-Alfaro et al. 2014; Massimo et al. 2015; Li et al. 2016). For 
example, Sun et al. (2012b) indicated that the endophytic fungal community in stems 
and leaves of eight desert plants were different among host species in the Tennger De-
sert region, China. Massimo et al. (2015) suggested the fungal endophyte community 
composition differed among host species in the aboveground tissues of Sonoran Desert 
plants. It has been reported that the host species is a key factor shaping endophyte 
community structures (Hoffman and Arnold 2008; Arfi et al. 2012; Sun et al. 2012a; 
Hardoim et al. 2015). Our host preference analysis indicated that 13 endophytic fun-
gal species show significant host preferences. For example, B. prieskaensis preferred 
colonizing E. minor, and Sa. kiliense and As. fumigatiaffinis preferred R. songarica. Har-
doim et al. (2015) suggested that the selective forces do not act merely on the plant ge-
nome itself, but on its associated microbial community also. Moreover, the endophytic 
fungal composition could be affected by the expected difference in plant chemistry 
(Arnold et al. 2001; Huang et al. 2008). For example, in the present study, P. harmala, 
a medical plant possessing antifungal properties (Hashem 2011), might inhibit fungal 
colonization and thus contained the less diverse endophyte community. Therefore, the 
chemical or physiological traits of plants also affect the endophyte community.

Community composition of endophytic fungi was also affected by plant tissue types 
(root and stem), which corroborate earlier studies carried out in semi-arid and arid eco-
systems (Su et al. 2010; Porras-Alfaro et al. 2014), and highlighted in the review by Har-
doim et al. (2015). Despite the dissimilarity in the availability of fungal inocula between 
above- and under-ground circumstances discussed previously, previous studies suggested 
that the morphology and chemical substance of tissues also influenced the community 
composition of roots and stems (Herrera et al. 2010; Su et al. 2010). According to prefer-
ence analysis, we found specific endophyte taxa consistently showing tissue preference re-
gardless of the host species. For example, M. ibericus was found exclusively in roots from 
all ten desert halophytes in the current study. The taxon was firstly described from healthy 
roots of Atriplex portulacoides, Plantago crassifolia, and an undetermined plant in saline 
habitats of Spain (Collado et al. 2002). Monosporascus spp. are well known as pathogens 
infecting fruit in Cucurbitaceae and vine growing in hot semi-arid climates with soils that 
tend to be saline and alkaline (Collado et al. 2002). Some members of Monosporascus spp. 
have been reported as root endophytes with a much broader host range, i.e., Acleisanthes 
lanceolatus, Bouteloua gracilis, Eustachys petraea, Mentzelia perennis, Nama carnosum, Neri-
syrenia linearifolia, Sartwellia flaveriae, and Tiquilia hispidissima from Mexico, Honduras, 
and New Mexico (Porras-Alfaro et al. 2008; Herrera et al. 2010; Herrera et al. 2013; 
Porras-Alfaro et al. 2014). Our study shows that Al. eichhorniae predominated the endo-
phyte assemblages and preferred to colonize the stems rather than the roots. Alternaria 
fungi as dominant endophytes showing preference in specific tissues but very low speci-
ficity with respect to host species, were mainly isolated from leaves in six halophytes in 
inland salt marsh of Canada (Muhsin and Booth 1987), in eight halophytes in Tennger 
Desert of China (Sun et al. 2012b), and in eight gypsophilous flowering plants in New 
Mexico desert (Porras-Alfaro et al. 2014). These previous studies in halophytes and desert 
gypsophytes indicated that some endophytic fungi show strong tissue preferences.
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Conclusions

The present study revealed high diversity of endophytic fungi associated with desert hal-
ophytes, and their colonization rate and diversity of endophytic fungi vary from plant 
to plant and is higher in roots than in stems. The endophytic fungal community com-
position is affected by plant species and tissue type as some endophytic fungi showed 
strong host and tissue preferences. The current study will provide preliminary data for 
exploration into diverse bioactive natural products originated from halophyte endo-
phytes, and prospects on ecosystem reconstruction or desert agriculture development.
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