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ABSTRACT
We classify gapped topological superconducting (TSC) phases of one-dimensional quantum wires with
local magnetic symmetries, in which the time-reversal symmetry T is broken, but its combinations with
certain crystalline symmetries, such as MxT , C2zT , C4zT and C6zT , are preserved. Our results
demonstrate that an equivalent BDI class TSC can be realized in the MxT orC2zT superconducting wire,
which is characterized by a chiral Zc invariant. More interestingly, we also find two types of totally new TSC
phases in the C4zT and C6zT superinducting wires, which are beyond the known AZ class, and are
characterized by a helical Zh invariant and Zh⊕Zc invariants, respectively. In the Zh TSC phase, Z pairs of
Majorana zero modes (MZMs) are protected at each end. In theC6zT case, the MZMs can be either chiral
or helical, and even helical-chiral coexisting.Theminimal models preservingC4zT or C6zT symmetry are
presented to illustrate their novel TSC properties andMZMs.
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INTRODUCTION
Topological superconductors (TSCs) are new kinds
of topological quantum states, which are fully super-
conducting gapped in the bulk but support gapless
excitations called Majorana zero modes (MZMs) at
the boundaries [1–5]. As analogues of the famous
Majorana fermions [6], MZMs are their own an-
tiparticles, and areproposed as thequbits of topolog-
ical quantum computation because of their nonlocal
correlation and non-Abelian statistic nature [7–10].
Hence, searching for TSC materials with MZMs
is now an important topic in condensed matter
physics, and a series of schemes have been proposed
in the last decade, including the proximity effect on
the surface of topological insulators [11–16] and the
recently predicted intrinsic superconducting topo-
logical materials [17–25].

To identify whether a superconductor is topo-
logically nontrivial, we should first ascertain to
what topological classification it belongs. The
topological classification can be highly enriched
by symmetries, including time-reversal symmetry
T , particle-hole symmetry P and especially the
crystalline symmetries [26–35]. The topology for
noninteracting Hamiltonians of the 10 Altland–

Zirnbauer (AZ) classes with or without T and
P has been well classified [26,27]. Particularly,
the Bogoliubov–de Gennes (BdG) Hamiltonians
of the one-dimensional (1D) superconductors,
with T breaking or preserving, belong to the D
and DIII classes, respectively. In both cases we
only have the Z2 classification. In addition to
these local symmetries, crystalline symmetries are
considered for each AZ class to generalize the topo-
logical classification [28–31], and the topological
crystalline superconductors protected by mirror
reflection symmetry [32,33] or rotational symme-
tries [34,35] have been proposed. Furthermore, the
TSC phase protected by the magnetic symmetries
MxT and C2zT has been discussed in [34,36–38].
Nevertheless, the topological classification of
superconductors with general magnetic symmetries
is still an open question, and the corresponding
theoretical analysis is necessary for understanding
and searching for new magnetic TSC materials and
MZMs.

In this paper, we focus on the topological phases
of gapped superconducting wires with local mag-
netic symmetries (LMSs), in which T is bro-
ken, but its combinations with certain crystalline
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Table 1. The topological classification of the 1D gapped superconducting systems
with the LMSs MxT , C 2zT , C 4zT and C 6zT , respectively. 2×AIII form a helical Zh

classification.

T ′ MxT C2zT C4zT C6zT
(n= 2) (n= 2) (n= 4) (n= 6)

T ′n 1 1 −1 1
P2 1 1 1 1
Sn 1 1 −1 1

Invariant Zc Zc Zh Zh⊕Zc

(BDI) (BDI) (2×AIII) (2×AIII⊕ BDI)

symmetries—those leaving each site invariant, in-
cluding MxT , C2zT , C4zT and C6zT —are pre-
served. Our analysis shows that, withMxT orC2zT
symmetry, an effective BDI class TSC can be re-
alized, which is characterized by a chiral Zc topo-
logical invariant and protects an integer number of
MZMs at each end. Remarkably, two totally new
TSC phases are discussed in the superconducting
wire with C4zT or C6zT symmetry. In the C4zT
case, theBdGHamiltonian is characterized by a heli-
cal Zh invariant, which can protect Z pairs of MZMs
at each end.The BdGHamiltonian with C6zT sym-
metry possessesZh⊕Zc invariants, whichmeans that
the helical and chiral MZMs can coexist in a sin-
gle wire system.Theminimal models with the LMSs
C4zT and C6zT are presented separately, in which
the TSC with helical MZMs and the TSC with
helical-chiral coexisting MZMs are discussed. Our
results may facilitate the ongoing search for novel
TSCs.

TOPOLOGICAL CLASSIFICATION OF
GAPPED SUPERCONDUCTING WIRE
We first introduce the LMSs for a magnetic super-
conducting wire along the z direction. Among the
1D space groups (the so-called rod group) [39], the
local symmetry operators include the mirror reflec-
tionMx and the n-fold rotation Cnz with n= 2, 3, 4,
6. Combined with T , we obtain four types of LMSs,
T ′ = MxT ,C2zT ,C4zT andC6zT , as tabulated in
Table 1. We consider a 1D BdG Hamiltonian pre-
serving T ′. Note that the operation of T ′ does not
change the positions of electrons. Hence, it acts on
the BdGHamiltonian like a time-reversal operator

T ′HBdG(k)T ′−1 = HBdG(−k). (1)

Here, LMS T ′ takes the form T ′ = UK withK be-
ing the complex conjugate operator and U being a
unitary matrix determined by the spatial operation
and spin flipping. We employ the convention that

[T ,P] = 0 and setP = τxK, where the Pauli ma-
trix τ x acts on the particle-hole degree of freedom.
Combining T ′ and P leads to a chiral symmetry
S = T ′P . Both P and S act on the BdG Hamilto-
nian as

PHBdG(k)P−1 = −HBdG(−k), (2)

SHBdG(k)S−1 = −HBdG(k). (3)

The chiral symmetry S has a series of eigen-
value pairs ±s1, ±s2, . . . and it can take a block-
diagonal form as S = diag[S±s1 ,S±s2 , . . .], where
the subscript ±s1 denotes the direct sum of eigen-
vector spaces |s1〉 and | − s1〉. The anticommute re-
lation (3) means that HBdG(k) can be block diago-
nalized according to the eigenvalues of S2. In other
words, HBdG(k) can adopt the form HBdG(k) =
diag[Hs 21 , Hs 22 , . . .]. Hence, the topological classifi-
cation of thewholeHamiltonian is decomposed into
examining the topology of each block and their com-
patibility. For each blockHamiltonian Hs 2 , its topol-
ogy is equivalent to either the BDI or the AIII class,
depending on the chiral symmetry eigenvalue s. To
be specific, when s is a real number, Hs 2 is invari-
ant under T ′ or P , which means that it belongs to
the BDI class and possesses a Z invariant expressed
as v = Ns − N−s, where the N±s are the numbers
of MZMs with chiral symmetry eigenvalue ±s, re-
spectively. Additionally, when s is a complex num-
ber, Hs 2 is transformed into Hs ∗2 under T ′ or P .
Hence, the Hs 2 (Hs ∗2 ) belongs to the AIII class that
is characterized by a Z invariant v =Ns −N−s (v =
Ns ∗ − N−s ∗), which is equal to the number ofMZM
pairs on each wire end.

We next consider the compatibility between
the different MZMs possessing different S eigen-
values. To do this, we introduce a coupling
term m|s1〉〈s2|, which satisfies the chiral sym-
metry, i.e. Sm|s1〉〈s2|S−1 = −m|s1〉〈s2| =
ms1s ∗

2 |s1〉〈s2|. Here m is a perturbation parameter,
and |s1〉 and |s2〉 are the eigenstates of S . Then we
see that m can be nonzero only when s1s ∗

2 = −1,
which means that MZMs within one block having
chiral eigenvalues s and−s can couple to each other
and be eliminated. However, MZMs from different
blocks are noninterfering due to the protection
of S . Therefore, the topological classification of
the whole BdG Hamiltonian is determined by the
summation of the topology for each block. We
summarize the topological classification of 1D
gapped superconductors in Table 1 and analyse
each case in the following.

(i) MxT and C2zT cases. These two cases are
equivalent to the BDI class with T ′2 = 1 and
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Figure 1. The eigenvalues ofS and their transformations in the C 4zT and C 6zT cases.
Complex conjugating partners s and s∗ are related by the LMSs and always coexist. A
perturbation term can be introduced to couple the chiral states with opposite eigenval-
ues, as illustrated by the red, blue and black double-head arrows.

S2 = 1. The chiral topological invariant v =
N1 − N−1 ∈ Z is given by the winding num-
ber [5,26]

v = 1
2π

∫
dkTr[W †(k)∂kW(k)]

= 1
2π

∫
dk∂kθ(k). (4)

Here W(k) is a unitary matrix that diag-
onalizes the BdG Hamiltonian and θ(k) is
the phase angle of Det[W(k)]. The identity
Tr[ln(W)] = ln(Det[W]) is used to derive
the above equation. These results agree well
with the conclusions reached in previous stud-
ies [34,36–38,40,41].

(ii) C4zT case. The chiral symmetry satisfies S4 =
−1 and has eigenvalues ±e±iπ/4 (see Fig. 1).
We can conclude that the topological invariants
are given by v = Neiπ/4 − N−e iπ/4 (or Ne−iπ/4 −
N−e−iπ/4 ). The TSC phase is hence character-
ized by the helical topological invariant v ∈ Z,
which means that the MZMs always appear in
Kramers pairs. This is obviously different from
the chiral Z invariant in the BDI class, in which
the MZMs can arise one by one as Z increases.
To distinguish the chiral Z and helical Z invari-
ants, we use Zc and Zh in the following. The
Zh TSC phase of the C4zT -preserving wire can
be understood from the following perspective.
The BdG Hamiltonian can be block diagonal-
ized into two sectors according to the eigen-
values±i ofC2z = (C4zT )2 asHi(k)⊕H−i(k).
BothC4zT andP can map these two sectors to
each other. However, their combination, i.e. the
chiral symmetry S , keeps each sector invariant.
As a consequence, each sector belongs to the
AIII class, whose Zc topological invariant can
be calculated by exploiting (4). Yielding to the

C4zT symmetry, the Zc invariants of two sec-
tors must be equal, which finally gives a Zh in-
variant for the whole BdGHamiltonian.That is,
the topological invariant v is given by the wind-
ing number of each C2z eigenvalue sector as de-
fined in (4).

(iii) C6zT case. We have T ′6 = 1 and S6 = 1.
As illustrated in Fig. 1, the chiral symmetry
has eigenvalues ±e±iπ/3, ±1. The topology
is characterized by Zh⊕Zc invariants that are
given by Ne±iπ/3 − N−e±iπ/3 and N1 − N−1,
respectively. Similar to the C4zT case, the
BdG Hamiltonian can be block diagonalized as
H = Hei2π/3 ⊕ He−i2π/3 ⊕ H1 according to the
eigenvalues e±i2π/3, 1 of C3z = (C6zT )2. The
Hei2π/3 and He−i2π/3 sectors both belong to the
AIII class, forming a Zh classification together,
whereas the H1 sector itself forms a Zc classifi-
cation (i.e. BDI class) with P and an effective
Teff = (C6zT )3. Therefore, the topology of the
whole BdGHamiltonian is classified by Zh⊕Zc,
whose topological invariants (vh, vc) are given
by the winding numbers of the Hei2π/3 and H1
sectors, respectively. As a consequence, in a
1D superconducting wire with the LMS C6zT ,
the helical and chiral MZMs can coexist. Such
novel TSC phase stimulate further interests in
the manipulation of such helical-chiral coexist-
ing MZMs [42–44].

MODEL REALIZATION
To illustrate the TSC phase with the LMS C4zT ,
we construct a 1D antiferromagnetic chain along
the z direction, as shown in Fig. 2(a), where each
unit cell contains four subsites and each subsite is
occupied by one spin polarized s orbital. We con-
sider that the intra-cell coupling between the same
spin states is much larger than the spin-orbit cou-
pling, and thus the four orbitals are well split into
two double-degenerate manifolds, as illustrated in
Fig. 2(a). More details of the full model have been
given in the online supplementary material. Here, to
capture the topological phase of the model, we take
the |px, ↑〉 and |py, ↓〉 subspaces to build an effec-
tive tight-bindingmodel.Up to thenearest-neighbor
hopping, it can be written as

H eff
TB =

∑
l

t c †l+1,px ,↑c l ,px ,↑ + t∗c †l+1,py ,↓c l ,py ,↓

+ h.c . + μ
∑
l ,σ

c †lσ c lσ , (5)

where t = |t|eiα is the complex hopping, μ is the
chemical potential and σ acts on the orbital degree
of freedomof the |px,↑〉 and |py,↓〉 states.TheC4zT
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(b)(a)

Figure 2. (a) A C 4zT -preserving superconducting wire aligned along the z direction,
in which the red and blue dots denote the spin up (+z ) and spin down (−z ) polarized
s orbitals, respectively. The intra-cell coupling between the same spin orbitals is much
larger than the spin-orbit coupling, which split the four states into one symmetric (SY)
manifold and one antisymmetric (AS) manifold. Both manifolds are double degenerate.
For simplicity, only the AS manifold is considered in our tight-binding model (5). (b) The
topological phase diagram of (8) as the function of μ and δ, in which 0, ±1 are the
winding numbers, μ is the chemical potential and δ = π/2 + φ − α is the phase
difference between the coefficients of τ y and τ z .

is given by e iπ/4σzσyK. Note that the hopping terms
between opposite spins are prohibited by the C2z
symmetry.The s-wave pairingHamiltonian takes the
form

H
 =
∑
l


c †l+1,px ,↑c
†
l ,py ,↓ + 
∗c †l+1,py ,↓c

†
l ,px ,↑

+ h.c ., (6)

with 
 = |
|eiφ . The pairing terms between the
same spin are also prohibited by the C2z symmetry.

In the Nambu basis
(c k,px ,↑, c †−k,py ,↓, c k,py ,↓, c †−k,px ,↑)

T ,P and T ′ are
given by P = σx ⊗ τxK and T ′ = e iπ/4σzσy ⊗
IK, respectively, which give S = e−iπ/4σz ⊗ τx .
The BdG Hamiltonian anticommutes with S and
takes a block-diagonal form as

HC4zT
BdG (k) =

(
Hi (k)

H−i (k)

)
(7)

with

H±i (k) = |t | cos(k ± α)τz − |
| sin(k ± φ)τy

+ μ

2
τz. (8)

Then the spectrum is given by

E (k) =

±
√[

|t | cos(k ± α) + μ

2

]2
+ |
|2 sin2(k ± φ).

(9)

Note that the two blocks in (7) are Kramers pairs
related by the C4zT symmetry and have the same
winding number. A straightforward way to deter-
mine the topology is to calculate the winding num-
ber v using (4) for the upper or lower blocks. Here
we provide amuch simpler way to obtain v by analo-
gizing the coefficients of the block Hamiltonians
with elliptically polarized lights, whose electric field
is describedbyEx =Axcos (kz−ωt),Ey =Aycos (kz
− ωt + δ). In the following we analyze the wind-
ing number of Hi(k), where the coefficients of the
Pauli matrices are hz − μ/2= |t|cos (k+ α) and hy
= |
|sin (k + φ). When |t||sin δ| > μ/2 (<μ/2),
the parameter curve of hy(k) and hz(k) will (not)
wind around the zero point hz = hy = 0 (we assume
thatμ > 0 for simplicity), and the superconducting
wire is in a topological nontrival (trivial) phase. Fur-
thermore, when δ ∈ (0, π) [δ ∈ (−π , 0)], we have
a left-handed (right-handed) parameter curve, and
the topological phase is characterized by winding
number+1 (− 1).The phase diagram in the δ − μ

parameter space is plotted in Fig. 2(b).We point out
that, when next-nearest-neighbor hopping and pair-
ing are considered, the competition with nearest-
neighbor hopping and pairing gives rise to the
opportunity for TSC phase with higher winding
numbers.

In the nontrivial TSC phase, the open quantum
wire traps integer pairs ofMZMs at its ends. By using
t= 1,
= 1.3eiπ/3,μ= 0.2, we observe two pairs of
MZMs in total on the open wire spectrum, as shown
in Fig. 3(b), which is in contrast with the gapped
bulk spectrum in Fig. 3(a).TheseMZMs can also be
solved from the continuous low-energy model [45].
Here, we need only consider Hi(k) since the other
block in (7), as well as its zero energy solution, can
be obtained by aC4zT transformation. By assuming
that the wire is placed on the z > 0 side, the low-
energy massive Dirac Hamiltonian close to k= π/2
is given by

Hi =( −i |t |∂z + μ/2 |
|(−i sin δ+cos δ∂z)
|
|(i sin δ−cos δ∂z) i |t |∂z − μ/2

)
.

(10)

Its zero energy solution �1 and the C4zT -related
partner�2 = C4zT �1 are given by

�1 =

⎛
⎜⎜⎝
1
1
0
0

⎞
⎟⎟⎠ exp

[∫
dz

i |
| sin δ − μ/2
|
| cos δ − i |t |

]
,

(11)
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(a) (b)

Figure 3. The bulk spectrum and MZMs in the C 4zT -preserving TSC model. (a) The
gapped bulk spectrum of the C 4zT -preserving TSC phase with t = 1, 
 = 1.3eiπ/3,
μ = 0.2. (b) The corresponding spectrum of (a) with an open boundary on both sides,
in which four MZMs appear at zero energy.

�2 =

⎛
⎜⎜⎝
0
0
1
1

⎞
⎟⎟⎠ exp

[∫
dz

−i |
| sin δ − μ/2
|
| cos δ + i |t |

]
.

(12)

These two states are the eigenstates of the chiral sym-
metryS with eigenvalues e±iπ/4, respectively.There-
fore, they are immune to perturbations preserving
S (and C4zT ). Their combinations give the S pro-
tected MZMs as γ 1 = �1 + �2 and γ 2 = i(�1 −
�2).

The C4zT -preserving BdG Hamiltonian can be
easily generalized to aC6zT invariant quantumwire.
For this purpose, we assume that the chiral symme-
try is expressed as S = (e−iπ/3τz ⊗ τx) ⊕ τx . The
BdGHamiltonian can thenbewritten in threeblocks
HC6zT

BdG = Hei2π/3 (k) ⊕ He−i2π/3 (k) ⊕ H1(k) with

He±i2π/3 (k) = |t | cos(k ± α)τz

− |
| sin(k ± φ)τy + μ

2
τz,

H1(k) = |t ′| cos(k)τz − |
′| sin(k)τy
+ μ

2
τz. (13)

The first two blocks are Kramers pairs and take
the same form as in (8), while the last block is
transformed to itself under C6zT or P . For this
BdG Hamiltonian, the topology is characterized by
Zh⊕Zc numbers, which correspond to the number
of helical and chiral MZMs, respectively. The topo-
logical phase diagramof thehelical partHamiltonian
is the same as in Fig. 2(b). The chiral part is deter-
mined by the winding number ofH1(k), which gives
a nontrivial TSC phase when |t′| > μ/2.

CONCLUSION
Wehave classified theTSCphases of quantumwires
with LMSs. In the case of MxT orC2zT , an equiva-
lent BDI class TSC can be realized [37,38,40].More
importantly, we find two new types of TSC phases
in the superconducting wire with C4zT or C6zT ,
which are beyond the already known AZ classes and
can be characterized by Zh or Zh⊕Zc topological in-
variants, respectively. These results not only enrich
the variety of the 1D TSC, but also provide luxuri-
ant building blocks for the construction of new type
2D and 3D TSCs, by following the general method
proposed in [46]. For example, one can couple the
1D TSCs in the y direction to construct a 2D TSC.
The high symmetry lines ky = 0 and ky = π in mo-
mentum space preserve the 1D LMS. With proper
parameters, the ky = 0 and ky = π lines can be-
long to distinct topological phases, and result in the
gapless propagating Majorana edge states connect-
ing the conducting bands and valence bands.The su-
perconductivity and antiferromagnetism coexisting
SmOFeAs [47,48] with a proper magnetic configu-
ration satisfying C4zT symmetry is a possible mate-
rial to study the 1DTSCphase on its high-symmetry
lines.
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