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Breast Cancer
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Prolactin coordinates with the ovarian steroids to orchestrate mammary development and
lactation, culminating in nourishment and an increasingly appreciated array of other
benefits for neonates. Its central activities in mammary epithelial growth and
differentiation suggest that it plays a role(s) in breast cancer, but it has been challenging
to identify its contributions, essential for incorporation into prevention and treatment
approaches. Large prospective epidemiologic studies have linked higher prolactin
exposure to increased risk, particularly for ER+ breast cancer in postmenopausal
women. However, it has been more difficult to determine its actions and clinical
consequences in established tumors. Here we review experimental data implicating
multiple mechanisms by which prolactin may increase the risk of breast cancer. We
then consider the evidence for role(s) of prolactin and its downstream signaling cascades
in disease progression and treatment responses, and discuss how new approaches are
beginning to illuminate the biology behind the seemingly conflicting epidemiologic and
experimental studies of prolactin actions across diverse breast cancers.

Keywords: prolactin (PRL), breast cancer, mammary cancer, luminal breast cancer, HER2+ breast cancer, STAT 5
transcription factor, triple negative breast cancer
1 INTRODUCTION

Factors that regulate cell-specific proliferation and differentiation repeatedly have been shown to be
significant actors in oncogenesis and potential therapeutic targets in established cancers. Prolactin
(PRL) cooperates with the ovarian steroids, estrogen and progesterone, to orchestrate the cycles of
mammary development and differentiation that lead to successful lactation, providing nourishment
for the offspring. PRL-initiated signals that expand alveolar cells during pregnancy and coordinate
their differentiation at the time of birth have been mechanistically defined [ (1–4) and references
therein]. The essential actions of PRL in these physiological processes have suggested roles in breast
Abbreviations: APC, adenomatous polyposis coli; COL1A1, collagen type I alpha 1; DCIS, ductal carcinoma in situ; ECM,
extracellular matrix; ER, estrogen receptor alpha; FAK, focal adhesion kinase; GH, growth hormone; JAK2, janus kinase 2;
MHT, menopausal hormone therapy; MMP, matrix metalloprotease; MMTV, mouse mammary tumor virus; NOD, non-obese
diabetic; NR4A, nuclear receptor subfamily 4 group A member 1; NRL, neu-related lipocalin; NSG, NOD SCID gamma; OHT,
hydroxytamoxifen; PDX, patient-derived xenograft; PGE2, prostaglandin E2; PRL, prolactin; PRLR, prolactin receptor;
PTGS2, prostaglandin-endoperoxide synthase 2; RCAS, replication-competent ASLV long terminal repeat (LTR) with a splice
acceptor; SCID, severe combined immunodeficiency; STAT, signal transducer and activator of transcription; TNBC, triple
negative breast cancer.
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cancer [ (5–14) and references therein], by analogy to the
recognized roles of the two other major hormones that
regulate mammary development and function, estrogen and
progesterone. Yet understanding its activities and consequences
across diverse clinical breast cancers in order to develop
prevention or treatment strategies has been elusive.

While control of PRL expression by pituitary lactotrophs
during pregnancy and lactation is well understood [reviewed in
(15)], its expression outside of pregnancy has received less
attention. Pituitary PRL secretion is influenced by many
factors, and circulating levels in nonpregnant women vary
considerably (16–18). In addition to physiological stimuli,
estrogen-progestin menopausal hormone therapy (MHT) raises
circulating PRL (18), and anti-psychotics that antagonize
dopamine induce hyperprolactinemia (19, 20). Further, PRL
also can be expressed by non-lactotrophs, including within the
mammary gland (21–23), and by breast cancer cells themselves
(24–27). COX-2 (PTGS2) can induce PRL expression in
fibroblasts, including at potential metastatic sites, mediated by
PGE2 induction of NR4A (28). Moreover, in contrast to growth
hormone (GH) in nonprimates, hGH is also a potent PRL
receptor agonist (29, 30). Like PRL, it can be produced locally
by breast cancer cells (26), and hGH and PRL receptors can
heterodimerize (31). Thus, PRL receptors (PRLR) in the breast
may be exposed to agonists from local and circulating systemic
sources, even in the absence of pregnancy.

Here we review the epidemiologic evidence linking PRL to
oncogenesis in the breast, and recent experimental studies
implicating multiple underlying mechanisms. We then address
the more controversial role(s) for PRL in established breast
cancers. PRLR is highly expressed in many breast cancers
across all different subtypes, and epidemiologic analyses and
experimental studies are revealing that PRL can elicit both pro-
differentiation and pro-aggression outcomes. We discuss how
new approaches are illuminating the factors that determine the
responses to PRL, including intrinsic tumor cell properties and
the microenvironment, and point to directions for future studies
that will integrate our understanding of this hormone in breast
cancer progression and therapeutic responses.
2 PRL ACTIONS IN DEVELOPMENT OF
BREAST CANCER

2.1 Epidemiological Studies
Multiple epidemiologic studies have examined the relationship
between levels of circulating PRL and development of breast
cancer [meta-analysis and review (32),]. Large prospective
studies have linked higher levels of circulating PRL within the
normal range to increased risk for breast cancers which express
estrogen receptor alpha (ER+) in postmenopausal (16, 33), or
premenopausal women (34). In the study nested within the
Nurses’ Health Study, PRL levels predicted breast cancer risk
independent of estrogen (35). Additional analyses of this cohort
found that the association of circulating PRL in the highest
quartile in postmenopausal women ten years prior to diagnosis
Frontiers in Endocrinology | www.frontiersin.org 2
was strongest for aggressive ER+ breast cancer (36).
Furthermore, epidemiologic studies have linked PRL to
mammographic density (34, 37, 38), a potent independent
contributor to increased breast cancer risk (39, 40).
Incorporation of PRL in risk prediction models improves their
efficacy (34, 41). Conversely, the reduced PRL levels in parous
compared to nulliparous women may play a role in the long term
protection conferred by pregnancy (16, 18, 34, 42).

2.2 Experimental Studies
2.2.1 In Vivo Models
The ability of PRL to stimulate mammary tumorigenesis in
rodent models has been recognized for some time. Many early
studies manipulated pituitary PRL (5–7), especially using
pituitary isografts transplanted to the kidney capsule to
chronically elevate circulating PRL by removing the inhibitory
effects of dopamine (43). This approach reveals effects of PRL in
combination with progesterone; in rodents, PRL also supports
the corpus luteum (44).

More recently, genetically modified mice have permitted
interrogation of mechanisms by which PRL may increase risk
of breast cancer, apart from ovarian steroids. Transgenic PRL
under the control of several promoters leads to mammary
cancers [reviewed in (45)], as does transgenic mammary
STAT5A, the canonical mediator of PRL signals (46). PRL
drives development of mammary cancers in mice with
germline ablation of Stat1 secondary to somatic truncating
mutations in Prlr, resulting in an alternatively spliced protein
resembling the human “intermediate” isoform (47) (see Sections
3.1, 3.4.2). Our group generated the NRL-PRL mouse (48, 49), in
which transgenic rat PRL is expressed by mammary epithelia,
mimicking the local PRL synthesis in breasts of women (23).
Unlike circulating PRL, this locally elevated PRL does not disturb
estrous cycling, enabling study of the interactions of PRL with
ovarian hormones, of particular importance when assessing
models of pre- and post-menopausal breast cancer. Mammary
glands of young adult NRL-PRL females exhibit elevated pERK1/
2 and pAKT, in addition to pSTAT5 (50), reflecting the spectrum
of PRL-initiated signaling cascades (22, 51). These mammary
glands exhibit both ductal abnormalities (mammary
intraepithelial neoplasias, resembling ductal carcinoma in situ,
DCIS), and epithelial hyperplasias (48, 52). With age, nulliparous
females spontaneously develop histologically diverse, metastatic
ER+ carcinomas with long latencies, mirroring the epidemiologic
link between PRL exposure and aggressive ER+ cancer (36).
These tumors can develop without postpubertal ovarian steroids,
similar to the observation that the increased risk conferred by
PRL in women is independent from estrogen (16), although
supplemental 17b-estradiol decreases tumor latency (50). Once
established, tumors are no longer dependent on estrogen for
growth, modeling clinical anti-estrogen resistant luminal B
cancers (53–55). However, the ER remains functional; estrogen
activity modulates tumor gene expression and behavior,
including proliferation and cancer stem cell activity (54, 56).

In order to understand the molecular events underlying PRL-
driven oncogenesis, we performed comprehensive genomic
June 2022 | Volume 13 | Article 910978
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profiling over the course of disease (57). Similar to clinical ER+
breast cancers (58–60), end stage tumors exhibited few
nonsynonymous somatic mutations. However, nearly 80% of
tumors showed alterations in the Ras pathway, including
canonical activating mutations and copy number amplifications
of Kras. Interestingly, many aggressive clinical ER+ breast
cancers exhibit elevated Ras pathway activity as a result of
mutations in the Ras proteins, or reduced expression or
somatic loss of Ras-GAP tumor suppressors (61–64). Many of
the remaining 20% of experimental PRL-induced cancers
exhibited elevated pAKT, but not pERK1/2, consistent with
driver mutations in the phosphatidylinositol-3-kinase pathway,
common in many clinical ER+ cancers (63, 65, 66).
Transcriptomic analyses showed that tumors expressed variable
transgenic PRL compared to preneoplastic tissue, suggesting
divergent PRL influence once tumors are established. These
analyses also revealed marked alterations in cell-intrinsic
processes and the tumor microenvironment, including immune
activity. Consistent with low numbers of intratumoral
lymphocytes, including CD8+ effector T cells, but large
numbers of infiltrating macrophages, tumors contained
strikingly reduced transcripts for many chemokines and
indicators of anti-tumor immunity. This immunosuppressed
environment resembles that of clinical ER+ breast cancers
[reviewed in (67, 68)].

2.2.2 Direct Actions on Mammary Epithelia
Extensive studies of the direct actions of PRL on breast cancer
cells in vitro have demonstrated increased proliferation and cell
turnover [reviewed in (22)], and these effects are also observed in
normal mammary epithelia in the dynamic in vivo environment
in multiple murine models (2, 45, 49). In addition, recent studies
have revealed that PRL powerfully influences the mammary
epithelial hierarchy, both independent of ovarian steroids and
in concert with these hormones (69) (Figure 1).

In the NRL-PRL model, local PRL increased epithelial stem/
progenitor activity and dampened the regulatory networks which
Frontiers in Endocrinology | www.frontiersin.org 3
drive differentiation (69). In ovariectomized young adult females,
transgenic PRL increased luminal progenitors; in combination
with estrogen and progesterone, PRL increased bilineage
progenitors, and raised stem cell activity associated with
augmented canonical Wnt signaling. However, PRL opposed
steroid-driven luminal maturation, associated with reduced
Gata3 and higher Sox9 transcripts (69). A growing literature
supports stem/progenitor cell populations as cancer cells of
origin (70), and mammary luminal progenitors have been
implicated as precursors for multiple subtypes of breast cancer
[reviewed in (71)]. The ability of PRL to expand these epithelial
subpopulations would contribute to increased cancer risk.

2.2.3 Effects on Non-Epithelial Cells
Multiple non-epithelial cells in the mammary environment have
been reported to express PRLR (72, 73). Although few actions of
PRL at stromal targets have been addressed experimentally in the
context of breast cancer, data from physiologic and other
pathologic states suggest the need for additional study. The
critical roles of the immune system in mammary development,
lactation and involution are increasingly appreciated (74–76).
PRL, like the ovarian steroids, can influence mammary immune
cell content and activity, both indirectly by altering epithelial
cytokine secretion (77), as well as directly acting on both innate
and adaptive immune cell subpopulations (78–83). Studies of
lymphocyte activation in vitro showed a bimodal concentration-
dependent response to PRL (84, 85), suggesting the intriguing
possibility that mammary PRL synthesis may influence local
immune activity. Together, these reports suggest that PRL may
modulate inflammation and/or immunotolerance during
tumorigenesis, with potential to contribute to a permissive
environment for development of breast cancer.

PRL-induced synthesis of components of the extracellular
matrix (ECM) by both epithelial and non-epithelial target cells
may complement mitogenic effects of PRL on mammary
epithelium to augment mammographic density, suggesting
another mechanism by which PRL may raise risk (86). In this
FIGURE 1 | Studies of human samples and experimental models have shown that PRL can act on multiple target cells within the mammary environment, including
not only epithelia, but also stromal cells, including immune and fibroblastic cell subpopulations. Although its effects on epithelia are best understood in the context of
breast cancer, its actions on stromal targets which have been defined in other systems would also be predicted to increase the risk for breast cancer. See Section
2.2 for details.
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regard, the ability of PRL to stimulate macrophages to augment
fibrosis in pancreatic cancer is of interest (87). Furthermore, PRL
can modulate angiogenesis. As an intact protein, it can promote
vascularization (88, 89); in contrast, its proteolytic products
(vasoinhibins) impede this process (90). These activities have
suggested roles in normal mammary function as well as breast
cancer (91).

2.2.4 Contributions to Growth of Early Lesions
These actions of PRL on breast epithelia and potentially on other
stromal cells could support development of breast cancers.
Moreover, these activities would fuel early lesions regardless of
the initiating event (Figure 1). Many clinical DCIS lesions
express PRLR (92), and the PRL antagonist, D1-9-G129R-
hPRL, inhibited the mammosphere-forming activity of primary
DCIS samples (93). The rich literature elevating systemic PRL
using pituitary isografts in mouse models demonstrates that PRL
in combination with progesterone can promote carcinogen- and
p53 null-induced tumors [e.g., (6,94)]. Conversely, germline
genetic ablation of Prl or Prlr slowed growth of lesions induced
by viral oncogenes (95, 96). Antipsychotics that act by
antagonizing dopamine, thereby raising circulating PRL,
promoted tumorigenesis in experimental models initiated by
RCAS-caErbB2, RCAS-HrasQ61L and MMTV-Wnt-1 (97). A
recent study found that patients using these drugs had a
significantly increased risk of breast cancer (20). Together,
these observations in patients and murine models indicate a
role(s) for PRL in progression of early lesions.

2.2.5 Cooperation With Other Factors
2.2.5.1 Estrogen, Progesterone
In patients, PRL would act in concert with other hormones and
potentially carcinogenic factors, as well as dysregulation of
multiple pathways as disease progressed. Prior to menopause,
PRL would interact with ovarian steroids; after menopause,
estrogen/progestin MHT would continue this crosstalk. In the
European Prospective Investigation into Cancer and Nutrition
cohort, postmenopausal women with higher circulating PRL who
had used combined estrogen/progestin MHT had the most
significant increase in incidence of ER+ breast cancer (33).
Estrogen in the absence of progestins also would be an actor in
postmenopausal women receiving either estrogen only MHT, or
in untreated women by extraovarian estrogen synthesis (98, 99).
PRL cooperates with estrogen, a well-recognized risk factor for
breast cancer, by multiple mechanisms, including reciprocal
upregulation of the other’s receptors (100, 101), and
downstream crosstalk (102, 103). Supplemental estrogen
accelerates PRL-driven mammary cancers in the NRL-PRL
model (50). Furthermore, PRL induced pAKT and pERK1/2
can activate ERa in the absence of estrogen ligand in vivo as well
as in vitro (104–106). PRL interaction with progesterone has
been best studied in the context of pregnancy and lactation,
where these hormones cooperatively drive expansion of alveolar
cells during pregnancy, but oppose one another to initiate
lactation (3). Outside of pregnancy, they regulate the other’s
receptors, and as observed above, work together to increase
mammary stem cells (69, 107, 108).
Frontiers in Endocrinology | www.frontiersin.org 4
2.2.5.2 Other Oncogenic Factors
Locally elevated transgenic PRL also has revealed potent
collaboration with other oncogenic pathways. Crosses between
NRL-PRL mice and other murine models of mammary cancer,
including elevated TGFa, loss of p53, and mutagen with
increased canonical Wnt signals conferred by an inactivating
mutation in the tumor suppressor APC, dramatically reduced
tumor latency or increased tumor incidence (52, 104, 109–111).
Transgenic PRL not only enhanced carcinogenesis, but also
markedly influenced the resulting cancers in ways that would
impact treatment responses. For example, transgenic local PRL
increased the proportion of claudin low tumors in the absence of
p53 (110), and in the presence of mutated APC, elevated PRL
resulted in tumors with Notch-dependent cancer stem cell
activity, compared to the b-catenin-dependence observed in
tumors with mutant APC alone (111). Further, transgenic PRL
and TGFa in combination sustained activation of the ERK1/2
and AKT signaling cascades (104, 109), reflecting the potent
cooperation of PRL with growth factor-initiated signals (112,
113). This further activates ERa in the absence of estrogen ligand
in vivo (104, 106, 109), one mechanism which underlies
resistance of ER+ breast cancers to anti-estrogens (114, 115)
(Section 3.3 below). In contrast to the positive interactions
between PRL and growth factors in these transgenic murine
and breast cancer models, PRL and EGF have been reported to
oppose one another in “normal” mammary cell lines, such as
HC11 and NMuMG; the phenotype of the target cell is likely to
be critical in dictating the outcome of PRL signals and crosstalk
with other signals (112, 116).
3 ROLE OF PRL IN ESTABLISHED
BREAST CANCERS

In contrast to the strong epidemiologic data supporting a role for
PRL in development of breast cancer, particularly of ER+
tumors, its role in established cancers continues to be actively
debated. Much of the discussion revolves around the extent of
PRLR expression by the tumor parenchyma, including which
breast cancer subtypes and which PRLR isoforms, and
importantly, whether PRL fuels tumor aggression or fosters a
more differentiated phenotype.

3.1 PRL Receptors in Clinical Breast
Cancers
PRLR isoforms with distinct intracellular domains and
consequent differing signaling capacities are generated by
alternative splicing. The full length “long” PRLR isoform is
best studied, but as noted below, expression of the
“intermediate” PRLR isoform in breast cancers is also
recognized. Homo- and hetero-dimerization of these PRLR
isoforms not only influences the repertoire of potential
signaling pathways, but also stability of the receptors [reviewed
in (22, 117)]. These isoforms have further confounded detection
of PRLR across breast cancer subtypes, which is already
complicated by the specificity and sensitivity of historically
June 2022 | Volume 13 | Article 910978
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available antibodies (117, 118). However, multiple recent studies
have reported PRLR protein expression in ER+, HER2+ and
triple negative (TNBC) breast cancers, in sharp contrast to the
epidemiologic link between PRL and development of only ER+
breast cancers. The relative proportion of tumors within each
subtype that expressed PRLR varied with the cohort examined,
antibody utilized [i.e., detecting the extracellular domain shared
by most PRLR isoforms (119–121), intracellular domain of the
full length “long” PRLR (92, 122), or unique intracellular domain
of the “intermediate” PRLR isoform (117)], and other
methodological differences. Given these variables, it is not
surprising that the proportion of PRLR-expressing breast
cancers varied from 25-83%.

Although PRLR expression was independent of ER (92, 119,
120, 122), PRLR levels were highest in ER+ tumors when
analyzed (92, 123). Some of these studies found highest PRLR
expression in more differentiated tumors in patients with longer
metastasis free survival (92, 119). In contrast, Shemanko and her
colleagues found that higher tumor PRLR protein levels
correlated with a shorter time to bone metastasis, consistent
with experimental PRL-induced osteoclast differentiation (120).
Some of these reports included interrogation of relative
transcript abundance and outcomes in various publicly
available databases; with the caveat that transcript levels may
not reflect protein expression, these results also differed (92, 123).

Although overall, TNBCs expressed less PRLR detected with
an antibody to the intracellular domain of the “long” PRLR (92),
a subset of these tumors expressed higher PRLR levels. This
TNBC subset was found to be more differentiated, supporting the
hypothesis that PRL drives a pro-differentiation program in these
cancers (122). (See review by Ali and colleagues elsewhere in this
series). Interestingly, however, Clevenger and colleagues reported
that the “intermediate” isoform of the PRLR, which would not
have been detected with the antibody used in the study above,
was most highly expressed in TNBC (117). Moreover, they found
that cancers with a high ratio of transcripts for the
“intermediate” to the “long” PRLR isoform were associated
with greater likelihood of distant metastases in the TCGA
database. Experimentally, heterodimers of these PRLR isoforms
were more stable, and less able to activate STAT5 (Section 3.4.2
below). Clinical TNBCs are very heterogeneous (124, 125);
together, these reports suggest that different TNBC subsets
may respond quite differently to PRL.

Although many of these studies correlated levels of PRLR
protein or transcripts with prognosis, albeit with conflicting
conclusions, the outcome of PRLR signaling has been directly
addressed only in small Phase I/II studies of patients with
advanced disease. A study of a PRLR neutralizing antibody as
a monotherapy that included 34 breast cancer patients (all
subtypes, but 75% ER+ cancers) found no significant effect on
disease progression (126). In another small Phase II trial (20
breast cancer patients), the dopamine D2 receptor agonist,
cabergoline, was used to inhibit secretion of pituitary PRL; two
of these patients experienced extended disease control (127). The
lack of definitive positive results dampened enthusiasm, although
the small number of patients, the advanced stage of their disease,
Frontiers in Endocrinology | www.frontiersin.org 5
and extensive pretreatment regimens limit interpretation.
However, interest in this area persists. Conjugates of other
therapeutic agents to PRL antagonists or PRLR neutralizing
antibodies are being developed, as discussed further in Section
3.3 below.

3.2 Experimental Studies Using Xenografts
Mouse PRL has little activity at the human PRLR (30), which has
complicated experimental study of breast cancers in vivo.
However, Rui and his colleagues have developed a mouse in
which the mouse Prl gene has been replaced with the human PRL
gene (NSG-Pro), resulting in physiologic regulation of hPRL
expression (128). In these recipients, ER+ patient derived
xenografts (PDXs) displayed a remarkable 15-20 fold higher
transplantation rate than in wildtype NOD SCID gamma (NSG)
mice. Moreover, the NSG-Pro mice facilitated metastatic
dissemination and growth of distant lesions, genetic evolution
and development of anti-estrogen resistance (128). These studies
support an important role for PRL in the biology of ER+ tumors.

Well-characterized breast cancer cell lines modeling different
breast cancer subtypes have been extensively studied in vitro to
understand the outcomes of PRL actions, and to dissect its
signals and mechanisms of interaction with other factors; these
reports will not be further reviewed here. (See reviews by Ali and
Clevenger and their colleagues elsewhere in this series). Some
investigators have examined PRL responses in murine recipients
of transplanted cell lines by providing another source of hPRL,
with conflicting results. Primary tumors of transplanted MDA-
MB-468 breast cancer cells that expressed hPRL grew more
rapidly than tumors that did not in nu/nu (nude) mice (129).
Reduction of the “long” PRLR isoform reduced pulmonary and
hepatic metastatic burden in NOD-SCID recipients of HER2+
BT474 cells, which were supplemented with hPRL (130). In
contrast, hPRL-treatment of NOD/SCID mice bearing
xenografts of MDA-MB-453 breast cancer cells reduced tumor
growth and dissemination (122), and growth of primary HER2+
SKBR3 tumors (131).

In a different approach, Ali and her colleagues used CRISPR/
Cas9 to reduce PRLR expression in the ER+ MCF7 and HER2+
SKBR3 breast cancer cell lines (132). Loss of PRLR in MCF7 cells
reduced ER expression, consistent with regulation of ESR1 by PRL,
and promoted less differentiated, more aggressive tumors upon
transplantation toNOD/SCIDmice. InHER2+ SKBR3 cells, loss of
PRLR increased HER2 expression, and ability to colonize lungs of
NSG recipients. These findings, together with associated in vitro
analyses, indicate beneficial actions of PRLR in these models (132).
(See review by Ali and colleagues elsewhere in this series).

The basis for the disparate responses to PRL in these
xenograft studies is unclear. There are many differences among
these experiments. The transplanted cancer cells, whether PDXs
or different breast cancer cell lines (133, 134), are quite distinct.
Moreover, the design of these studies differs markedly, including
placement of the transplanted cells, the extent that the murine
hosts are immunocompromised, and method of manipulating
PRL activity. Additional studies are necessary to understand how
these findings reflect diverse clinical breast cancers.
June 2022 | Volume 13 | Article 910978
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Few studies have been performed in syngeneic experimental
models. However, the findings are intriguing. In a murine model
of HER2+ cancer (MMTV-neu), the PRL antagonist, G129R-
hPRL, reduced metastases after removal of the primary tumor
(135). In a subsequent study, the effects of G129R-hPRL on HER2
signaling in this model were found to be dependent on cancer
associated fibroblasts (136), supporting the importance of study of
complex systems with multiple cell types. Systemically reducing
expression of the “long” PRLR isoform using a novel method
reduced metastases in the aggressive 4T1 model, and PRL-
supported immunosuppressive Tregs were identified as a major
target (83, 130). These observations underscore the drawbacks of
xenograft models. Most notably, currently available xenograft
recipients are severely immunocompromised, lacking critical
components of the host response. Ongoing efforts to develop
mice with “humanized” immune systems will address this
shortcoming. In addition, subtle differences in the structures of
mouse/human proteins can obscure paracrine/systemic
communication between tumor and stromal cells, e.g., PRL
itself (30).

3.3 PRL Interactions With Other Treatment
Approaches
Although PRL/PRLR inhibitors have not shown robust promise
as monotherapies, there has been long term interest in their
interaction with other treatment modalities, especially with anti-
estrogens in ER+ breast cancers. As noted in Section 2.2.5, PRL
cooperates with estrogen by multiple mechanisms, which have
been dissected primarily in the well-differentiated ER+ breast
cancer cell line, MCF7 (100–103). Not surprisingly, as for other
aspects of cancer biology, this relationship evolves with disease
progression. In an experimental rat model of hormonally-
responsive ER+ mammary cancer, concomitant inhibition of
PRL and aromatase cooperatively reduced tumor growth (137).
Similarly, in therapy naïve ER+ PDXs transplanted to NSG-Pro
recipients, PRL initially supported anti-estrogen responsiveness,
but with time, the PRL environment facilitated development of
resistance to tamoxifen (128). This was associated with increased
growth factor signals, including ligand independent activation of
ER, a potent outcome of PRL-growth factor crosstalk (See
Section 2.2.5), and activation of the ERBB2 pathway (128).
This relationship between PRL and resistance to anti-estrogens
is reflected in some but not all small clinical studies [reviewed in
(16)]. Interestingly, LAT1/SLC7A5, a transporter for branched
chain amino acids which is regulated by PRL during lactation
(138), is highly expressed by tamoxifen resistant cancers (139–
141). The growing recognition of the importance of tumor
metabolism, and role of PRL in regulation of metabolism
during lactation, points to this area for further study.

The potent crosstalk of PRL with growth factor-initiated
signals observed both in breast cancer cell lines (112, 142), and
anti-estrogen resistant ER+ PDXs (128) has suggested that
targeting PRL signaling in combination with these pathways
may be an efficacious therapeutic strategy. PRL can initiate
phosphorylation of HER2 in SKBR3 and BT474 breast cancer
cells in vitro and in a murine MMTV-neu-derived tumor ex vivo
Frontiers in Endocrinology | www.frontiersin.org 6
(136, 143, 144). In light of the apparent conflict of these in vitro
observations with the results of some but not all xenograft studies
as noted in Section 3.2, this deserves additional investigation.

Several small clinical studies suggested that reduction of PRL
might improve responses to chemotherapies [reviewed in (16,
145)]. The ability of PRL to promote survival of breast cancer
cells in vitro has been appreciated for some time [reviewed in (22,
145)]. In breast cancer cell lines representing different cancer
subtypes, PRL promoted to resistance to chemotherapies,
including doxorubicin, paclitaxel, and cisplatin (93, 146, 147).
Several related mechanisms have been identified, including PRL-
induced expression of anti-apoptotic proteins (148),
transcription of the multidrug resistance transporter ABCG2
(149), and activation of glutathione-S-transferase (147).
Interaction with chemotherapies has not been directly revisited
clinically, but these actions may contribute to the efficacy of
compounds conjugated to anti-PRL agents, as noted below.

The relatively low toxicity of PRL antagonists and PRLR
neutralizing antibodies and widespread PRLR expression across
different breast cancer subtypes have prompted their
development as delivery vehicles for other therapeutic agents,
including cytotoxic compounds (121, 135, 150, 151), anti-HER2
(152), and immunomodulators to attract and/or activate CD8+ T
cells (135, 153). In addition to targeting delivery of other
treatments, testing of these molecules will also provide
information on the efficacy of concomitant inhibition of
PRL signals.

3.4 PRL Initiated Signals
3.4.1 Canonical JAK2-STAT5 Pathway
As described above, most studies have examined the outcome of
the sum of all PRL-initiated signals in different breast cancer
settings. However, it has long been appreciated that PRL can
activate multiple signaling cascades (22, 51), with potentially
different outcomes. The JAK2-STAT5A pathway mediates PRL-
driven proliferation and differentiation that is essential for
successful lactation (2, 154, 155), and binding of STAT5A to
regulatory enhancer regions initiates chromatin remodeling,
coordinating tissue specific gene expression (4, 156). (See
review by Clevenger and colleagues elsewhere in this series).
Transgenic overexpression of STAT5A leads to mammary
carcinomas in the absence of other oncogenes (46). However,
evidence for high STAT5A activity in clinical breast cancers has
been repeatedly associated with more differentiated cancers and
better prognoses [ (154, 157, 158) and references therein].
Consistently, the JAK2-STAT5A pathway also has been linked
to PRL-induced pro-differentiation activities in various
experimental models (53, 56, 159–161) (Figure 2). Of
particular interest for premenopausal breast cancer, PRL-
activated STAT5 suppressed a progestin-induced progenitor
population in T47D breast cancer cells (162).

The highly homologous STAT5B remains a complication in
these studies. In contrast to STAT5A, STAT5B is not associated
with a more favorable prognosis in patients (158), and in vitro,
STAT5B drives aggressive behavior in several models (56, 159,
161). Activities distinct from STAT5A are supported by different
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target genes (56, 158, 163), and divergent regulation by estrogen
activity (56). Additional studies with more specific reagents are
needed to resolve the roles of the STAT5 isoforms in PRL actions
in breast cancer.

3.4.2 Other Signaling Cascades
PRL can also initiate activation of src family kinases, and
multiple additional mediators, including AKT and MAP
kinases (164–168). Interestingly, the alternatively spliced PRLR
isoforms with distinct intracellular domains are less able to
activate the JAK2/STAT5 pathway than the well-studied “long”
PRLR isoform. Indeed, heterodimerization of the “long” PRLR
isoform with the “intermediate” isoform, which was recently
reported to be highly expressed in a subset of TNBC (see Section
3.1), inhibits phosphorylation of STAT5, without impacting
other PRL-activated signaling pathways (117). AKT and MAP
kinase cascades are linked to tumor progression for many
cancers (169–173). Moreover, as noted above, they can activate
ERa in the absence of ligand (105, 106), with implications for
therapeutic responses to anti-estrogens in ER+ breast cancers.
Importantly, they are also potent sites of cooperation with other
oncogenic factors, including growth factors (112, 142). Together,
these observations point to the potentially divergent outcomes of
different arms of PRL signals, and raise the question of
determinants of the repertoire of signaling options for PRL.
Clearly intrinsic differences in tumor cells themselves, including
relative levels of PRLR isoforms and other signaling components
play a role; different breast cancer cell lines, even of the same
breast cancer subtype, exhibit different spectra of PRL activated
Frontiers in Endocrinology | www.frontiersin.org 7
signals in vitro [e.g., (137, 174)]. In addition, as discussed below,
environmental factors also can powerfully modulate the balance
of PRL signals.

3.4.3 Features of the Extracellular Matrix Shift PRL-
Initiated Signals in ER+ Tumor Cells and Alter
Sensitivity To Anti-Estrogens
Accumulating data underscore the importance of the ECM in
normal mammary function and tumor behavior (86, 175). A
mechanically stiff matrix increases signaling through focal
adhesions (176, 177). Aligned collagen fibers oriented
perpendicularly to the tumor boundary have been linked to a
poor prognosis, particularly in ER+ breast cancer (178). We have
demonstrated that ECM structure can strongly influence the
spectrum of PRL signals and PRL-estrogen crosstalk in ER+
breast cancer cells, and reciprocally, that these hormones can
modify ECM structure (Figure 2). When well-characterized ER+
breast cancer cell lines were cultured in stiff ECM in vitro (MCF7
and T47D cells in 3-dimensional collagen cultures and tunable
polyacrylamide substrates), PRL was less able to activate JAK2/
STAT5, but more strongly activated FAK-SRC-ERK1/2,
associated with increased localization of PRLR in focal
adhesions (167, 179). These conditions augmented PRL-driven
invasion and re-orientation of collagen fibers in vitro (167), and
intravasation and metastasis of PRL-initiated ER+ tumors in a
syngeneic model of increased COL1A1 density/stiffness in vivo
(180). Moreover, a stiff/dense matrix enhanced PRL-estrogen
crosstalk to increase invasion, reduce responsiveness to
tamoxifen, and further modify ECM structure in vitro (181);
FIGURE 2 | PRL can initiate multiple signaling cascades in established cancers, which can result in different biological outcomes. Determination of the repertoire of
PRL signals can be modulated by multiple factors, including properties of the ECM. In ER+ cell lines, the stiffness and density of the extracellular matrix (ECM)
strongly influences the balance of these signals: in stiff matrices, PRL signals are shifted away from the canonical JAK2/STAT5A pathway, and toward FAK/SFK/
ERK1/2. This shift permits PRL to drive proliferation, invasion, and resistance to tamoxifen (OHT), and further remodel collagen fibers in the ECM. These experimental
findings support the clinical observations that ER+ cancers with regions of aligned collagen perpendicular to the tumor boundary have a worse prognosis, and that
activated STAT5A is strongly linked to more differentiated cancers and tamoxifen sensitivity. See Section 3.4 for details.
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these findings were supported using the syngeneic ER+ model
above (55). Moreover, progesterone further augmented PRL
induction of MMP3 RNA in stiff matrices (107). These studies
indicate that desmoplasia, a feature of the microenvironment of
many tumors, can alter the repertoire of PRL-initiated signals to
favor pro-tumor pathways and anti-estrogen resistance, thus
illuminating one mechanism underlying the apparent disparate
reports of the outcomes of PRL signals in ER+ breast cancers.
Extension of these studies of the effect of ECM characteristics on
PRL signals to other breast cancer subtypes may further resolve
some of the apparently contradictory reports.
4 SUMMARY AND FUTURE DIRECTIONS

Strong epidemiologic data linking higher levels of circulating
PRL to increased risk for ER+ breast cancer are supported by
multiple lines of experimental evidence. Independently from
ovarian steroids, PRL can modulate the epithelial hierarchy
and increase progenitor populations, drive development of
ductal and alveolar abnormalities, and with time, promote
aggressive metastatic ER+ carcinomas. PRL engages in
complex crosstalk with estrogen and progesterone, cooperating
with them by multiple mechanisms, but also opposing steroid-
driven differentiation. Further understanding of these
interactions apart from the hormonal milieu of pregnancy will
provide additional insight into the impact of PRL on increased
breas t cancer r i sk in premenopausa l women and
postmenopausal women treated with estrogen-progesterone
Frontiers in Endocrinology | www.frontiersin.org 8
MHT (107, 162, 182). As disease progresses with dysregulation
of multiple pathways, intrinsic tumor cell properties and the
stromal environment are likely to alter the responses of target
cells to PRL and its interactions with other potential oncogenic
factors. Although not well understood, the literature suggests
that PRL also may act directly on multiple mammary stromal cell
types including immune cell subpopulations and/or modulate
their activity via paracrine signals, which may further increase
risk. The high PRLR expression in clinical DCIS and
preneoplastic structures in preclinical models is reminiscent of
ER expression in many of these lesions [reviewed in (183)], and
suggests a role for PRL at this early stage of the disease process.

In contrast, the role(s) of PRL in the biology of established
clinical breast cancers remains unclear. Although PRLR is highly
expressed by many tumors across breast cancer subtypes, data
from small clinical trials inhibiting PRL action are difficult to
interpret, and studies of xenografts, particularly of breast cancer
cell lines, are conflicting. Responses of phenotypically diverse
heterogeneous cancers are complicated by different levels of
PRLR isoforms with distinct signaling capabilities, selection
and genomic evolution as tumors progress and respond to
initial therapies, and environmental context, including site-
specific responses of the metastatic niche [e.g., bone (120)],
ECM properties and the steroid hormone and growth factor
milieu (Figure 3). The emerging data support complex actions of
PRL in breast cancer biology, resembling the major recognized
hormonal actor in breast cancer, estrogen (184–186). This is
illustrated in ER+ cancers, the breast cancer subtype in which
PRL actions are currently best understood. Experimental
FIGURE 3 | PRLR is expressed on a substantial subset of breast cancers across the major subtypes. The outcome of PRL signals may vary considerably, driving
either differentiation or aggression, depending on tumor cell intrinsic properties (PRLR expression, available downstream signaling cascades) as well as extrinsic
factors (ECM characteristics, hormone/growth factor milieu), as illustrated above. See Section 3 for details.
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evidence shows that PRL can activate STAT5A-driven
differentiation, and maintain ERa expression, thereby
facilitating anti-estrogen responsiveness (56, 128, 132, 159,
161). However, PRL can also drive proliferation and invasion,
and support development of resistance to anti-estrogens (128,
181). Within the heterogeneous TNBCs, evidence indicates
distinct subgroups which exhibit divergent responses to PRL
(117, 122). Conflicting outcomes in a very limited number of
different HER2+ breast cancer cell lines suggest similar
possibilities. Together, these reports paint a more nuanced
picture of PRL action in established cancers, and potential for
very different outcomes depending on context. They underscore
the need for additional study of PRL in diverse clinical breast
cancers, changes with disease progression and therapeutic
pressure, and influences of the metastatic sites.

New technologies will assist in the resolution of these issues.
The NSG-Pro mouse is a powerful tool to interrogate the actions
of PRL in diverse clinical breast cancers in a dynamic in vivo
environment (128). Already providing insights into ER+ cancers,
this model will help resolve some of the conflicting studies
observed with experimental xenografts of a relatively small
number of breast cancer cell lines of other subtypes. It will
enable dissection of the mechanisms underlying observed
differences, and facilitate identification of biomarkers that
predict beneficial or adverse responses to PRL and/or PRL
inhibitors. Pending validation of humanized mice, syngeneic
mouse models continue to be essential to reveal the impact of
PRL as well as other agents on inflammation and suppression of
anti-tumor immunity, a critical step toward employment of the
promise of immunotherapies for hormonally responsive cancers.
Further, as discussed in Section 2.2.3, many other stromal cell
types which sculpt the tumor microenvironment are potential
PRL targets, motivating additional study in the context of breast
cancers. In addition, the paucity of inhibitors to interrogate PRL
Frontiers in Endocrinology | www.frontiersin.org 9
actions in clinical samples and experimental models is now
addressed by small molecule inhibitors (129), the technology to
reduce specific PRLR isoforms in vivo (130), and renewed
interest in PRLR neutralizing antibodies (Sections 3.1, 3.3).
Development of selective inhibitors of the JAK2 and src family
kinase-mediated signals of PRL, taking advantage of our
understanding of the closely related growth hormone receptor,
will advance these studies (142, 187, 188). Together, these
approaches will unravel the complex actions of PRL,
permitting a new understanding of the role of this third
hormone in breast cancer, with implications for prevention
and treatment.
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