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Purpose: To identify the pathogenic gene mutation in a Chinese family with autosomal dominant congenital nuclear
cataract.
Methods: After obtaining informed consent, detailed ophthalmic examinations were performed and genomic DNAs were
obtained from eleven family members in a three-generation Chinese family with five affected. All exons of candidate
genes associated with congenital nuclear cataract were amplified by polymerase chain reaction (PCR) and the PCR
products were sequenced in both directions. The hydrophobic property of the mutant protein was analyzed with
bioinformatics program ProtScale. The structure homology modeling of the mutant protein was based on Swiss-Model
Serve, and its structure was displayed and compared with native γD-crystallin (CRYGD) using the RasMol software.
Results: By sequencing the encoding regions of the candidate genes, a novel mutation (c.110G>C) was detected in exon
2 of CRYGD, which resulted in the substitution of a highly conserved arginine by proline at codon 36 (p.R36P). The
mutation co-segregated with all patients and was absent in 100 normal Chinese controls. Bioinformatics analysis showed
an obvious increase of the local hydrophilicity of the R36P mutant γD-crystallin. The homology modeling showed that
the structure of the mutant protein was similar with that of native human γD-crystallin.
Conclusions: The study identified a novel mutation (c. 110G>C) in CRYGD associated with autosomal dominant
congenital cataract in a Chinese family. It expands the mutation spectrum of CRYGD in association with congenital
cataract.

Congenital cataracts are one of the common eye disorders
leading to visual impairment or blindness in children
worldwide. Congenital cataract may be inherited or familial,
either as an isolated form or as a part of a syndrome, such as
Nance-Horan syndrome. In isolated inherited congenital
cataract, autosomal dominant (AD), autosomal recessive
(AR), and X-linked inheritance have been reported [1,2].
Along with the development of molecular genetics, more than
20 genes have been identified to be involved in isolated
cataract formation. Many of them encode crystallins [3-13],
such as αA-crystallin (CRYAA), αB-crystallin (CRYAB), βA1/
A3-crystallin (CRYBA1/A3), βA4-crystallin (CRYBA4), βB1-
crystallin (CRYBB1), βB2-crystallin(CRYBB2), βB3--
crystallin(CRYBB3), γC-crystallin(CRYGC), γD-crystallin
(CRYGD), and γS-crystallin (CRYGS).

Among these crystallin genes, the number of reported
mutations in CRYGD and correlative phenotypes in human are
extensive, such as R14C mutation associated with progressive
juvenile-onset punctate cataracts, nuclear cataract and
coralliform cataract [12,14], R58H mutation associated with
aculeiform cataract and coral-like cataract [11,15], R36S
associated with nuclear cataract and crystal cataract [16,17],
P23T associated with lamellar cataract, cerulean cataract,
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coral-like cataract, a flaky, silica-like nuclear cataract,
fasciculiform cataract and coralliform cataract [18-23],
W156X associated with central nuclear cataract [20], P23S
associated with polymorphic congenital cataract [24], G61C
causing autosomal dominant congenital coralliform cataracts
[25], Y56X associated with nuclear cataract [26], R77S
associated with a juvenile autosomal dominant anterior polar
coronary cataract [27], E107A associated with nuclear

Figure 1. Pedigree of inherited nuclear cataract. Squares and circles
symbolize males and females, respectively. Clear and blackened
symbols denote unaffected and affected individuals, respectively.
The arrow indicates the proband.
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congenital cataract [28], R15S co-segregated with coralliform
cataract [29], G165fs associated with nuclear cataract [30],
Y134X associated with microcornea-cataract [31], R140X
related with inherited pediatric cataract [32]. In mice,
mutations in Crygd have been identified and shown to lead to
dominant, congenital cataracts [33]: CrygdLop12, CrygdAey4,
CrygdENU4011, CrygdENU910, and CrygdK10.

In this study, we reported a novel mutation in CRYGD
(p.R36P) which is related with congenital cataract in a
Chinese family.

METHODS
Clinical evaluation and DNA specimens: A three-generation
family with autosomal dominant congenital nuclear cataract
was ascertained (Figure 1). After explanation of the nature and
possible consequences of the study, eleven individuals
participated in the study. The study was performed with
informed consent and following all the guidelines for
experimental investigations required by the Institutional
Review Board of Eye and EENT Hospital of Fudan
University. The ophthalmologic examinations, including
visual function and dilated slit-lamp examination, were
performed by ophthalmologists. Blood samples were
collected and leukocyte genomic DNA was extracted.

Mutation detection: All the exons of candidate genes which
were associated with autosomal dominant congenital nuclear
cataract, including CRYAA, CRYBA1/A3, CRYBB2, CRYBB3,
CRYGC, CRYGD, CRYGS, GJA3, and GJA8, were amplified
by PCR. The primers used are listed in Table 1. The PCR

Figure 2. Slit-lamp photograph of the proband. This photograph
showed a cataract characterized as a central nuclear opacity of the
lens.

products were sequenced in both directions with an ABI
3130XL Genetic Analyzer (Applied Biosystems, Foster City,
CA). The results were analyzed using Chromas (version 2.23)
software and compared with the reference sequences in the
NCBI gene bank.
Bioinformatics analysis: The wild-type and mutant CRYGD
protein sequences were analyzed with PolyPhen to predict
whether the amino acid substitution affects the structure and
function of proteins, with a position-specific independent
counts (PSIC) score difference for two amino acid variants.
The hydrophobic properties of mutant and wild-type CRYGD
were analyzed with ProtScale. The structure homology
modeling of the mutant protein was modeled by Swiss-Model
Serve [34], and its structure was displayed and compared with
native human CRYGD using RasMol software. The structure
of native human CRYGD (1hk0) was obtained from the
PDB database.

RESULTS
Clinical evaluations: There were five patients in this three-
generation family (Figure 1). Cataract was characterized as
bilateral, white, central nuclear opacities (Figure 2) in the
affected members. There were no other ocular or systemic
abnormalities. The affected individuals I1, II1, and III1 have
had cataract surgery. An autosomal dominant inheritance
mode of the cataract was supported by the presence of affected

Figure 3. Forward sequence chromatogram of exon 2 of CRYGD.
The arrow indicates the G >C transition. Individual II5 is unaffected
(upper panel), III1 is affected (lower panel). The encoded amino acid
at codon 36 (underlined) is indicated, CGC encodes arginine (R),
CCC encodes proline (P).
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individuals in each of the three generations, and male-to-male
transmission.
Mutation detection: By bidirectional sequencing of amplified
exons of the candidate genes, we found a heterozygous
missense mutation, G>C at position 110 in exon 2 of
CRYGD (NM_006891) in affected individuals, but not in
unaffected individuals. This change led to the substitution of
arginine by proline at position 36 (p.R36P; Figure 3). This
mutation was not found in 100 unrelated control individuals.
No other sequence variant was found.
Bioinformatics analysis: PolyPhen analysis showed that the
substitution in CRYGD (p.R36P) had a PSIC score difference
of 2.796, which meant that “this variant is predicted to be
probably damaging.” It is with high confidence supposed to
affect protein function or structure. The change in

Figure 4. Hydrophilicity analysis of the wild-type CRYGD (A) and
mutant CRYGD (B). The 36th amino acid and its neighboring
locations are marked by the circle, there is an obvious increase in the
local hydrophilicity of the R36P mutant CRYGD.

hydrophobicity of the mutant and wide protein is shown in
Figure 4. An obvious increase can be seen in the local
hydrophilicity of R36P mutant CRYGD. The homology
modeling showed that the second structure of the mutant
protein was similar with that of native human CRYGD (Figure
5).

DISCUSSION
In a Chinese family with congenital nuclear cataract, we
identified a novel mutation c.110G>C in CRYGD, leading to
the substitution of arginine by proline (p. R36P). This
mutation co-segregated with the phenotype and was not found
in 100 unrelated control individuals.

CRYGD is one of only two gamma-crystallin genes to be
expressed at high concentrations in the human lens. CRYGD
which encodes a 174-amino acid protein is located on
chromosome 2q33.3. CRYGD is an important structural
protein, its high concentration and conserved conformational
symmetry are associated with high refractive index of the lens,
which keeps the lens transparent.

Most of the mutations of CRYGD which were reported in
different ancestral families with congenital cataract actually
involve an arginine residue in conserved positions, such as
R14C, R15S, R58H, R36S, R77S, and R140X. The R36S
mutation of the processed, initiation-methioine-lacking
protein was first described in a Czech 5-year-old boy with
crystal cataract caused by deposition of crystallized protein
[16]. The same mutation was detected in a Chinese family with
nuclear golden crystal cataract [17]. The X-ray structure of
CRYGD revealed that the protein fold of the p.R36S mutant
protein was almost identical to that of bovine CRYGD, but
this mutation changed the solvent-accessible surface

Figure 5. Structure homology modeling and comparison of mutant
protein and native human CRYGD (1hk0). A: Native human
CRYGD and B: Mutant protein. Red, yellow, and blue indicate α-
helix, β-sheet, and β-turn, respectively, white indicates other
residues. R, P and Q represent Arg36, Pro36, and Gln12,
respectively.
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characteristic, decreased the charge and increased the local
hydrophobicity. Protein crystallography study displayed the
normal crystals cannot form with wild-type protein because
of steric hindrances imposed by the bulky Arg36 side chains
[16]. Pande et al. [35] showed the p.R36S mutation
dramatically lowered the solubility of the protein, the mutant
protein were more prone to crystallization than wild-type
human CRYGD protein. The P23T, P23S, and R58H mutant
protein was also found to be less soluble than wild type human
CRYGD [35,36].

In our study, we detected a novel mutation in the same
codon (p.R36P) to be the basis of congenital nuclear cataract
without crystal manifestation in a Chinese family. The
different mutation of the same condon was also reported in
the CRYGD gene, such as P23T and P23S, which were related
with different cataract [18-24]. For the different clinical
manifestations, it is presumed that modifying factors or
epistatic elements, such as the difference in the gene promoter
site, might regulate CRYGD expression in the lens.

The residue 36 arginine is highly conserved, a highly
polar and hydrophilic residue.In the p.R36P CRYGD mutant,
it was replaced by less polar, hydrophobic residues proline.
The prediction by ProtScale analysis at Expasy showed an
obvious increase of local hydrophobicity around the site of
R36P mutation. The homology modeling showed that the
second structure of the mutant protein was similar with that
of native human CRYGD. It can be presumed that R36P
mutation would result in incorrect solvent-accessible surface
characteristics and lower the solubility of the protein in the
affected individuals, like R36S and other dominantly inherited
mutations reported in CRYGD. The activity of R36P mutation
identified in our study to the CRYGD needs to be further
certificated.

In conclusion, we identified a novel mutation (R36P) in
CRYGD associated with autosomal dominant nuclear cataract
in a Chinese family. This finding expands the mutation
spectrum of CRYGD in association with congenital cataract.
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