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Abstract

Magnesium (Mg) is an essential macronutrient for plant growth and development. Physio-

logical and transcriptome analyses were conducted to elucidate the adaptive mechanisms

to long-term Mg deficiency (MD) in banana seedlings at the 6-leaf stage. Banana seedlings

were irrigated with a Mg-free nutrient solution for 42 days, and a mock control was treated

with an optimum Mg supply. Leaf edge chlorosis was observed on the 9th leaf, which gradu-

ally turned yellow from the edge to the interior region. Accordingly, the total chlorophyll con-

tent was reduced by 47.1%, 47.4%, and 53.8% in the interior, center and edge regions,

respectively, and the net photosynthetic rate was significantly decreased in the 9th leaf.

Transcriptome analysis revealed that MD induced 9,314, 7,425 and 5,716 differentially

expressed genes (DEGs) in the interior, center and edge regions, respectively. Of these,

the chlorophyll metabolism pathway was preferentially enriched according to Kyoto Encyclo-

pedia of Genes and Genomes (KEGG) analysis. The expression levels of the five candidate

genes in leaves were consistent with what is expected during chlorophyll metabolism. Our

results suggest that changes in the expression of genes related to chlorophyll synthesis and

decomposition result in the yellowing of banana seedling leaves, and these results are help-

ful for understanding the banana response mechanism to long-term MD.

Introduction

Crops absorb magnesium ions (Mg2+) from the soil mainly through their roots, which are usu-

ally affected by various factors, such as soil texture, cation exchangeable capacity and climatic

factors [1]. The unique chemical property of Mg2+ results in a bond with negatively charged

root cell walls, promoting ion exchange with the soil [2]. However, soil saturated with cations

would lead to Mg deficiency (MD), particularly in acidic soils in high rainfall areas [3]. MD

has a major negative consequence on crop production, leading to a detrimental effect on yields

and poor food and feed quality [4]. Thus, maintaining Mg contents for agricultural production
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is very important. In plants, approximately 5–35% of Mg is detected in chloroplasts, and Mg is

the central element of the tetrapyrrole ring in chlorophyll [5, 6]. Mg usually accounts for

~0.15%-0.35% of the dry composition of vegetative organs but reaches ~6%-20% in chloro-

phyll [7]. MD has become a serious problem as a result of heavy rainfall and the inappropriate

use of nitrogen, phosphorus, and potassium fertilizers [8, 9].

A substantial pool of total cellular Mg is required to synthesize chlorophyll in photosyn-

thetic tissues, while the rest is used for ribosome bridging during translation and for chelation

with nucleotides, nucleic acids and other phosphate-containing compounds [10]. As the cen-

tral atom of chlorophyll, Mg is essential for photosynthesis in green plants. Chlorophyll acts in

pigment-protein complexes to capture light and transfer the electrons in PSI and PSII [11, 12].

The first step for chlorophyll synthesis is the insertion of Mg2+ into protoporphyrin IX cata-

lyzed by Mg-chelatase (MgCh) [13]. Mg-chelatase is a key enzyme at the branch point in the

synthetic pathway of heme and chlorophyll, which is composed of the ChlI, ChlH, and ChlD
submits in plants [14–16]. A series of genes encoding the enzymes involved in the Mg branch

of the chlorophyll biosynthesis pathway, viz., CHLH, CHL1, CHLD, CHLM, CRD1, DVR,

POR A/B/C and CHLG, have been identified using in vitro and in vivo approaches [17].

The typical chlorosis symptom of MD appears in the leaf intervein and usually appears first

on the lower and older leaves owing to the mobile nature of Mg [18, 19]. At the early stage of

MD in plants, photoassimilates accumulate in source leaves before photosynthesis is sup-

pressed, resulting in an excessive accumulation of carbohydrates and enhanced production of

reactive oxygen species (ROS) [6]. Later, excessive sucrose regulates the chlorophyll A/B bind-

ing protein 2 (CAB2) gene in a feedback mode, leading to a decreased chlorophyll concentra-

tion [20]. In Arabidopsis, AtSGR1 and AtSGR2, which encode the enzyme Mg-dechelatase, are

responsible for the breakdown of chlorophyll [21]. Under MD conditions, the expression of

OsSGR is negatively regulated by ROS, affecting chlorophyll degradation in rice leaves [22].

miRNAs are also involved in plant MD tolerance [23]. As a result, MD affects dry matter pro-

duction and carbohydrate partitioning in sugar bean, Arabidopsis, barley and Citrus sinensis
[20, 24–26].

Banana is one of the world’s major food crops in the tropical and subtropical regions,

where soil acidification has been a serious growing problem [27, 28]. As a result, MD has been

a major risk factor for banana production. The impact of MD on the allocation of carbohy-

drates to different organs of the banana plant has been reported [29]. In contrast to model spe-

cies such as Arabidopsis, rice, maize and soybean, the molecular mechanism of banana leaf

chlorosis is unclear [21, 22, 30, 31]. Therefore, in the present study, an attempt was made to

decipher the molecular mechanism of MD-induced banana leaf chlorosis through physiologi-

cal and transcriptomic characterizations of banana (BaXi Jiao, Musa acuminata, AAA, cultivar

Cavendish) seedling leaves exposed to long-term MD.

Materials and methods

Plant material and growth conditions

Banana (BaXi Jiao, M. acuminata, AAA, cultivar Cavendish) seedlings were purchased from

the Danzhou Rapid Propagation of Banana Breeding Base (Hainan, China), cultivated in pot-

ting soil (Pindstrup, Denmark) until the 6-leaf stage and then used for MD treatment.

For MD treatment, all seedlings were transplanted to sand after rinsing the roots with dou-

ble distilled water and then seedlings of uniform growth were randomly divided into two

groups, viz., the MD and mock control groups. The modified Hoagland’s nutrient solution

contained 4 mM Ca(NO3)2�4H2O, 2 mM NH4H2PO4, 4 mM KCl, 60 μM Fe-EDTA, 25 μM

H3BO3, 2 μM MnSO4�H2O, 2 μM ZnSO4�7H2O, 0.5 μM CuSO4�5H2O, and 0.05 μM H2MoO4.

PLOS ONE Transcriptome analysis of banana magnesium deficiency

PLOS ONE | https://doi.org/10.1371/journal.pone.0270610 June 24, 2022 2 / 15

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0270610


For the mock control group, normal Hoagland’s nutrient solution containing 1 mM

MgSO4�7H2O and 6 mM KNO3 was used, while 1 mM K2SO4, 4 mM KNO3 and 1 mM

NH4NO3 were used to maintain the same K, S and N supply in the MD group. The two kinds

of Hoagland’s nutrient solutions were supplied every 2 days. For each group, at least 15 plant-

lets were used, and 3 biological replicates were set. All seedlings were grown in the greenhouse

of Hainan University. After 42 days of treatment, the 9th leaves and the roots were collected,

immediately frozen in liquid nitrogen and then stored at -80˚C for RNA extraction. The 9th-

leaf samples were divided into the edge (LM_E), center (LM_C) and interior (LM_I) regions.

Photosynthesis and chlorophyll content measurement

After 42 days of treatment, photosynthetic parameters were measured in the 9th leaf of the

banana seedlings at 9:00–11:00 a.m. on a sunny day. All measurements were carried out using

a CIRAS-3 portable photosynthesis system (PP Systems, USA). The photosynthetic photon

flux density provided by a red/blue LED light source was amounted to 1200 μmol m-2s-1, the

ambient CO2 concentration was adjusted to 390 μmol mol-1 by CO2 injection and the leaf tem-

perature was maintained at 27˚C.

The relative chlorophyll content of each leaf was measured using a chlorophyll meter

(SPAD-502 Plus; Konica Minolta), and the SPAD value of the 9th leaf in each plant was

recorded from 31 to 60 days after treatment. The measurements were taken from at least three

biological replicates per treatment, and the values were averaged.

Biomass and Mg content analysis in leaves after long-term MD

After harvest, the plants were washed with deionized water to remove any residual ions. The

roots, stems and leaves were heated at 105˚C for 15–20 min, and then dried at 80˚C until they

reached a constant weight. The dry weight was measured and recorded.

For Mg content measurement, leaves were dried at 60˚C for 3 days and then digested with

nitric acid using a microwave digestion system (MILESTONE Ethos UP). After dilution in

deionized water, the metal content in the samples was determined by ICP-MS (Agilent 7000

series).

Transcriptome library construction and analysis of differentially expressed

genes (DEGs)

Fresh samples were ground into powder in liquid nitrogen, and total RNA (at least 1 μg) was

extracted from LM_I, LM_C, LM_E, and control samples using the RNA-prep Pure Plant Plus

Kit (#DP441, TIANGEN, Beijing, China) according to the manufacturer’s instructions. After

pre-processing and rRNA removal, a cDNA library was constructed using the Illumina Nova-

Seq 6000 platform (Majorbio Biology Company, Shanghai, China).

Clean reads were mapped based on the Musa acuminate genome by using the HISAT2 pro-

gram, and the read count for each gene was obtained from mapping results [32]. Gene expres-

sion levels were estimated using the RSEM program [33]. DEGs between the two groups (MD

and Mg sufficiency) were analyzed using the DESeq2 R package (1.24.0). Genes with an

adjusted P value < 0.05 and |log2FC|� 1 filtering condition following DESeq2 analysis were

considered to be differentially expressed between groups. Gene Ontology (GO) enrichment

analysis of the DEGs was conducted using GOATOOLS to determine over- and underrepre-

sented terms [34]. KOBAS was used to test the significance of the enriched DEGs in special

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways [35].
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Real-time quantitative polymerase chain reaction (qRT-PCR)

Five candidate genes related to chlorophyll metabolism were selected, and the primers were

designed by Premier Primer 5.0 software (Premier Biosoft International, Palo Alto, CA, USA).

The primer sequences and reference gene are listed in a supplemental table (S1 Table). cDNA

synthesis was performed with a HiScript II 1st Strand cDNA Synthesis Kit (+gDNA wiper)

(Vazyme, R212-01). Gene expression levels were analyzed by qRT-PCR on an ABI Q7

(Applied Biosystems, USA) using the ChamQ Universal SYBR qPCR Master Mix (Vazyme,

Q711–02). The reaction mixtures, with a final volume of 5 μL, included 2× SYBR Mix, cDNA

(1 μL), 0.2 μL each of forward and reverse primers, and PCR-grade water (3.6 μL). qPCR was

performed under the following conditions: 95˚C for 5 min, followed by 40 cycles at 95˚C for

30s, 55˚C for 30s, and 72˚C for 40s. The qPCR was repeated three times for each gene in each

sample, and experiments were performed in three biological replicates. The expression levels

were calculated using the previous method [36]. The MaRPS2 gene was used as an internal

control.

Results

Long-term MD affected the growth of banana

Mg is essential to plant growth and development, especially for photosynthesis. To investigate

the physiological changes in banana leaves in response to long-term MD stress, banana (BaXi

Jiao, M. acuminata, AAA, cultivar Cavendish) seedlings at the 6-leaf-stage were planted in

quartz sand without a Mg supply for 42 days (Fig 1A). The 9th leaf (L9) was visible etiolated

and showed symptoms of chlorosis (Fig 1A and 1B), which gradually decreased in decreased

in degree from the edge to the inside regions (Fig 1B).

Compared to the control group, the Mg content of L9 decreased significantly (p< 0.01)

under long-term MD in the LM_I, LM_C and LM_E regions (Fig 1C and 1E). Moreover, the

Mg content gradually increased from the 8th leaf (L8) to the 11th leaf (L11) under the MD treat-

ment, but showed the opposite trend in the control group (S1 Fig). However, MD stress had

no significant (p = 0.99, 0.79) effect on the fresh and dried biomass of the 9th leaf (Fig 1D). In

conclusion, long-term MD led to chlorosis symptoms and lower Mg contents in banana

leaves.

Chlorophyll content and photosynthesis rate under long-term MD

To explore the physiological process of banana leaves in response to long-term MD, the rela-

tive chlorophyll concentration (SPAD) was measured. The SPAD value of L9 showed a signifi-

cant (p< 0.01) decrease after 60 days of MD treatment, with the differences starting at 40 days

(Fig 2A). Moreover, the SPAD values were recorded from L11 to L6, and decreased signifi-

cantly (p< 0.01) from L9 to L6 in the MD group after 42 days of Mg starvation treatment

(Fig 2B). As Mg is a movable element in plants, it can be transferred from older leaves to youn-

ger leaves. The results showed that L9 was the first young leaf to respond to MD among all the

leaves. Therefore, we chose L9 for subsequent analysis.

The intercellular CO2 concentration was significantly (p = 0.02) increased, and the net pho-

tosynthetic rate of L9 was significantly (p< 0.01) reduced. Moreover, the contents of chloro-

phyll a, chlorophyll b and carotenoids in different regions of L9 leaves were significantly

(p = 0.02, 0.02, 0.01) lower under long-term MD treatment in the interior region than in the

control group (Fig 2E–2G). Similarly, the same trend was observed in L10 leaves (S2A–S2C

Fig).
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RNA sequencing (RNA-seq) and DEG analysis

To further reveal the molecular response mechanism of banana leaves to MD stress, banana L9

under long-term MD for 42 days were subjected to RNA-seq. We constructed four cDNA

libraries, namely LM_E, LM_C, LM_I and Control, which represent the edge, center and inte-

rior regions of L9 in the MD and control samples. After removing the sequencing adaptor

reads and low-quality data, we obtained 41,524,877 reads in the LM_E library, 44,306,550

reads in the LM_C library, 44,682,441 reads in the LM_I library, 36,332,613 reads in the Con-

trol library, and 84.64 Gb of RNA-seq data. More than 93.07% of the reads had a quality score

of Q30 (Table 1).

Principal component analysis (PCA) was used to evaluate the reliability of samples to

explore differences within or between groups. There was a significant difference of 74.54%

between LM_E and the control group, while the intragroup difference was 10.02% (Fig 3A).

Replicate samples are generally considered reliable and suitable for further analysis. Samples

from different groups were clustered together according to the treatment conditions. The con-

trol samples were clearly separated from the others, while the LM_I and LM_C samples were

clustered together.

A total of 20,114 transcripts were detected in all samples. In total, 80, 148, 278 and 595 tran-

scripts were specifically expressed in the LM_E, LM_C, LM_I and control, respectively (Fig

3B). After using the filtering criteria to determine the significance of the differences in gene

expression levels, there were 2,586 coexpressed DEGs in different regions of the L9, while

2,765, 871 and 1,395 DEGs were specifically expressed in LM_I, LM_C and LM_E, respectively

(Fig 3C). Compared with the control group, there were 4,724, 3,894 and 2,135 DEGs were

Fig 1. Phenotypes and Mg contents of banana (Musa acuminata) leaves under long-term MD. (A) The phenotype

of banana seedlings after MD for 42 days. For the control groups, 1 mM Mg2+ Hoagland nutrient solutions were used,

and 0 mM Mg2+ solutions were used for the long-term MD treatment (-Mg). Scale bars = 10 cm. (B) The phenotype of

the 7th– 11th banana seedling leaves between the control and the MD treatment. Scale bars = 10 cm. (C) Mg content in

different parts of the 9th leaves (L9) (n = 3). (D) Fresh weight and dry weight of 9th leaf. FW: fresh weight, DW: dry

weight. Values represent the mean ± standard error (SE) (n = 3). (E) The different parts of the 9th leaf were collected

for RNA-seq. LM_I represents leaf interior, LM_E represents leaf edge and LM_C represents leaf center. Data analysis

was performed by two-tailed t test, � means significantly different.

https://doi.org/10.1371/journal.pone.0270610.g001
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upregulated, and 4,592, 3,533 and 3,583 DEGs downregulated in LM_I, LM_C and LM_E,

respectively (Fig 3D). Among the 2,586 common DEGs, 1,121, 1,029 and 1,119 DEGs were

upregulated, and 1,465, 1,557, 1,467 DEGs were downregulated in LM_I, LM_C and LM_E,

respectively (S3 Fig). The results showed that more common DEGs were downregulated than

upregulated.

Fig 2. Physiological responses to MD stress among banana leaves. (A) SPAD values of L9 recorded from 31 to 60 days in the control and MD

treatments (n = 5). (B) SPAD value variation from L6 to L11 on the 42nd day in the control and MD treatments (n = 24). (C) Internal CO2

concentrations of the MD treatment in L9 (n = 10). (D) Net photosynthetic rate (Pn) of the MD treatment in L9 (n = 10). (E-G) Chlb, Chla and Car

contents in different regions of L9 (n = 3). Chla: chlorophyll a; Chlb: chlorophyll b; Car: carotenoid. Data analysis was performed by two-tailed t test, �
means significantly different.

https://doi.org/10.1371/journal.pone.0270610.g002

Table 1. Raw RNA-seq data from the LM-C, LM-E, LM-I and control groups with three replicates.

Sample Total reads Clean bases Q20(%) Q30(%) GC (%) Total mapped Multiple mapped Uniquely mapped

LM_C_1 46311602 6915761498 98.01 93.94 50.92 42429478(91.62%) 1164275(2.51%) 41265203(89.1%)

LM_C_2 48060744 7166273315 98.1 94.19 51.43 43952369(91.45%) 1152225(2.4%) 42800144(89.05%)

LM_C_3 51397128 7667685034 98.13 94.24 50.63 46968203(91.38%) 1155248(2.25%) 45812955(89.14%)

LM_E_1 53261110 7965589143 97.98 93.77 51.77 48462220(90.99%) 2508962(4.71%) 45953258(86.28%)

LM_E_2 47497660 7086892299 97.91 93.73 51.89 42771916(90.05%) 1904909(4.01%) 40867007(86.04%)

LM_E_3 42797420 6385557826 97.82 93.51 51.29 39004717(91.14%) 1250350(2.92%) 37754367(88.22%)

LM_I_1 53918060 8041841280 98.08 94.11 51.05 49524657(91.85%) 1014849(1.88%) 48509808(89.97%)

LM_I_2 44475834 6632089788 97.87 93.63 51.26 40599797(91.29%) 1094285(2.46%) 39505512(88.82%)

LM_I_3 51931600 7752182683 98.06 94.07 50.78 47388650(91.25%) 1356648(2.61%) 46032002(88.64%)

Control_1 43947144 6553983269 97.64 93.07 51.19 40147786(91.35%) 840703(1.91%) 39307083(89.44%)

Control_2 42193832 6305807458 97.8 93.44 50.71 38159898(90.44%) 1775168(4.21%) 36384730(86.23%)

Control_3 41266852 6170614481 97.86 93.57 50.29 37520564(90.92%) 1240069(3.01%) 36280495(87.92%)

https://doi.org/10.1371/journal.pone.0270610.t001
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GO and KEGG enrichment analyses of DEGs

All DEGs found were classified into the cellular component (CC), molecular function (MF)

and biological process (BP) GO categories. For the MF category, the most significant terms

included ’binding’, ’catalytic activity’, ’transporter activity’ and ’nucleic acid binding transcrip-

tion factor activity’. For BP terms, the most significantly overrepresented terms were ’meta-

bolic process’, ’cellular process’, ’single-organism process’, ’biological regulation’ and

’regulation of biological process’. In addition, ’cell’, ’membrane’, ’cell part’, ’membrane part’

and ’organelle’ were significantly overrepresented terms in the CC category (Fig 4).

In this study, KEGG pathway enrichment analysis of the DEGs revealed 131 pathways that

were enriched, including ’carotenoid biosynthesis’, ’carbon fixation in photosynthetic organ-

isms’, ’glycolysis/gluconeogenesis’, ’carbon metabolism’, and ’porphyrin and chlorophyll

metabolism’ (Fig 5). According to the KEGG pathway analysis, there were 33 DEGs enriched

in the carbon fixation in photosynthetic organisms (ko00710) pathway, including 16 downre-

gulated DEGs and 9 upregulated DEGs. Additionally, 16 DEGs were enriched in the pathway

Fig 3. Expression analysis according to treatment (MD and control). (A) Principal component analysis (PCA) of gene expression. (B) Venn

diagram of different samples from the MD and control treatments. (C) Venn diagram of the number of shared DEGs between different groups.

(D) Upregulated and Downregulated DEGs for LM_I vs. Control, LM_C vs. Control and LM_E vs. Control.

https://doi.org/10.1371/journal.pone.0270610.g003
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of porphyrin and chlorophyll metabolism pathway (ko00860), of which 10 DEGs were down-

regulated and 6 DEGs were upregulated.

DEGs involved in photosynthesis and chlorophyll metabolism

Physiological and transcriptome analyses revealed that MD treatment inhibited the photosyn-

thetic capacity and chlorophyll content in banana leaves. A heatmap of 64 candidate genes dif-

ferentially expressed between treatments (MD and control) was generated to visualize the

expression pattern. A total of 21 genes were associated with photosynthesis-antenna proteins,

while 17 genes were upregulated in LM_E (Fig 6).

To confirm the accuracy of the RNA-seq data, 5 genes (Ma06_g24000 (MaCHLI),
Ma09_g24880 (MaCHLM), Ma10_g13280 (MaCHLG), Ma02_g05320 (MaSGR1) and

Ma07_g18910 (MaSGR2)) related to the chlorophyll metabolism pathway were selected to

investigate their expression profiles using qRT-PCR. The verification results of these genes

showed similar expression patterns in the RNA-seq data (Fig 7B). Three genes (MaCHLI,
MaCHLM and MaCHLG) were downregulated, while 2 genes were upregulated under long-

term MD in different banana leaf regions.

Discussion

Mg2+ is transported from roots to aerial tissues by MGR transporters for photosynthesis [37,

38]. Long-term MD triggers dramatic molecular responses in plants including microtubule-

based movement, signal transduction, protein phosphorylation and regulation of light harvest-

ing, and the photosynthesis antioxidant system [39, 40]. We characterized the decrease in bio-

mass partitioning and carbohydrate distribution of banana leaves under MD [29]. To gain

Fig 4. GO classification performed in the transcriptome sequencing dataset.

https://doi.org/10.1371/journal.pone.0270610.g004

PLOS ONE Transcriptome analysis of banana magnesium deficiency

PLOS ONE | https://doi.org/10.1371/journal.pone.0270610 June 24, 2022 8 / 15

https://doi.org/10.1371/journal.pone.0270610.g004
https://doi.org/10.1371/journal.pone.0270610


insight into the molecular response mechanism involved in long-term MD in different regions

of banana leaves with the gradual inward extension of yellowing symptoms, RNA-seq analysis

was performed to identify key genes and pathways that respond to long-term MD.

For crop plants, the first visual MD symptom is usually interveinal chlorosis in the old

leaves owing to the relatively mobile nature of Mg in plants [41]. However, recent studies have

shown that Mg remobilization is more vigorous in young mature leaves than in old leaves,

which has been verified in sugar beet, Arabidopsis and rice [7, 9, 20]. In our experiment, young

mature leaves also suffered from marginal chlorosis (Fig 1). These results indicate that Mg

transport correlates with leaf vigor. Moreover, MD is known to inhibit the photosynthetic rate

and lead to growth retardation and low production [42, 43]. A reduction in the photosynthetic

pigment content is always accompanied by photosynthetic inhibition, while the molecular

mechanism needs further in-depth study [44]. Here, we showed that the chlorophyll content

of banana seedlings under long-term MD significantly decreased, while the photosynthetic

pigment contents gradually decreased from the interior regions to the edge (Fig 2). The

decrease in the photosynthetic pigment content in response to MD is a common phenomenon

[22, 26, 45]. This observation indicates that long-term MD causes a loss of reaction centers

Fig 5. Bubble diagram demonstrating the enrichment of KEGG pathway terms in each module.

https://doi.org/10.1371/journal.pone.0270610.g005
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connected with the light harvesting complex and photosystem and results in a reduction in the

net photosynthetic rate and chlorophyll content.

Photosynthetic processes within chloroplasts require substantial amounts of Mg [46]. MD

inhibits photosynthetic capacity and CO2 assimilation, which leads to slow metabolism, thus

affecting plant growth and development [20, 47, 48]. In Arabidopsis, early-term MD altered

the expression of circadian clock genes in roots and triggered abscisic acid-responsive genes,

whereas long-term MD altered the expression of genes involved in the ethylene biosynthetic

pathway, reactive oxygen species detoxification and photoprotection of the photosynthetic

apparatus [39, 49]. Long-term MD altered the expression of genes involved in signal transduc-

tion, the stress response, carbohydrate and energy metabolism, cell transport, cell wall and

cytoskeleton metabolism, and nucleic acid and protein metabolisms in Citrus reticulata [50].

Fig 6. Heatmap generated from the FPKM mean value calculated from three replicates of RNA-seq data. Red represents

upregulated genes, and blue represents downregulated genes.

https://doi.org/10.1371/journal.pone.0270610.g006
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MD also regulated genes involved in lignin biosynthesis pathways, regulation of the cell cycle

and cell wall metabolism, resulting in lignification, enlargement and cracking of the veins in

the lower leaves of Citrus sinensis [51]. In our study, the carotenoid biosynthesis, carbon fixa-

tion in photosynthetic organisms, glycolysis/gluconeogenesis, carbon metabolism, and por-

phyrin and chlorophyll metabolism pathways were the most significantly affected according to

the KEGG pathway analysis (Fig 5). In contrast to previous studies, we found that the pathway

of porphyrin and chlorophyll metabolism pathways were dramatically changed. These results

suggested that DEGs induced by long-term MD are involved in the energy and substance

metabolism, which affects the growth of banana seedlings. Moreover, different plants

responded to MD over varying period time.

According to the RNA-seq data, the majority of altered DEGs were located in the interior

regions, whereas the edge had the least number of altered DEGs in L9 under long-term MD

(Fig 3). These results suggest that the leaves may suffer from programmed cell death from the

edge to the interior regions. In general, the best recognized function of Mg in plants is the for-

mation of chlorophyll pigments, where the red substrate Mg-protoporphyrin IX monomethyl

ester is converted to the green product 3,8-divinyl protochlorophyllide a [52]. MgCh catalyzes

the first step committed to the synthesis of chlorophyll [53]. MgCh consists of three subunits

—CHLH, CHLI, and CHLD—all of which undergo transcriptional and posttranslational mod-

ifications in plants and algae [54, 55]. Previous studies showed that the expression of the chlo-

rophyll synthesis genes CHLI, ChlM and CHLG was downregulated under MD [20, 56–58].

Consistent with the KEGG pathway analysis, we found that 3 genes (MaCHLI, MaCHLM and

MaCHLG) were simultaneously downregulated in different regions of banana (Fig 6). These

results indicate that the chlorophyll biosynthesis capacity is reduced under long-term MD.

Moreover, chlorophyll degradation is an important part of nutrient recycling and redistribu-

tion during plant stress [59]. OsSGR encodes a new chloroplast protein senescence-related

gene and regulates chlorophyll degradation in chloroplasts [60]. The qRT-PCR results demon-

strated that the expression of the two SGR genes was upregulated, leading to chlorophyll deg-

radation of (Fig 7A). As described, long-term MD treatment inhibited chlorophyll synthesis

and promoted chlorophyll degradation, resulting in leaf chlorosis and a decrease in photosyn-

thesis in bananas.

Fig 7. Metabolic network of chlorophyll biosynthesis and degradation in banana leaves. (A) DEGs identified by

RNA-seq are shown in colored blocks. Blue blocks represent downregulated genes, and red blocks represent

upregulated genes. (B) qRT-PCR analysis and RNA-seq data of MaCHLI, MaCHLM, MaCHLG, MaSGR1 and

MaSGR2 expression.

https://doi.org/10.1371/journal.pone.0270610.g007
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Conclusion

This study revealed that at the physiological level and transcription levels, MD affected plant

chlorosis and senescence processes, namely, the photosynthesis rate, CO2 concentration and

chlorophyll content, chlorophyll synthesis and degradation-related pathways. The expression

of genes related to chlorophyll synthesis and degradation in the three leaf parts—edge, center

and interior—was complicated, and involved many plant physiological responses and growth

regulatory mechanisms. The results of this study can provide references for the study the func-

tions of Mg in other crops and lay a foundation for the study of the physiological responses

and molecular mechanisms of MD in banana.
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