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A decline in estrogen levels during menopause is associated with the 
loss of muscle mass and function, and it can accelerate sarcopenia. 
However, with the growing number of postmenopausal women due to 
the increase in life expectancy, the effects of estrogen on skeletal mus-
cle are not completely understood. This article reviews the relationship 
between estrogen deficiency and skeletal muscle, its potential mecha-
nisms, including those involving mitochondria, and the effects of exer-
cise on estrogen deficiency-induced skeletal muscle impairment. In 
particular, mitochondrial dysfunction induced by estrogen deficiency 

accelerates sarcopenia via mitochondrial dynamics, mitophagy, and 
mitochondrial-mediated apoptosis. It is well known that exercise train-
ing is essential for health, including for the improvement of sarcopenia. 
This review highlights the importance of exercise training (aerobic and 
resistance exercise) as a therapeutic intervention against estrogen de-
ficiency-induced sarcopenia.
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INTRODUCTION

The global population of older women (≥65 years) is increasing 
with an increase in life expectancy to 100 years. Menopause typi-
cally occurs between 49 and 52 years of age (Maltais et al., 2009), 
during which menstrual periods stop permanently. Thus, elderly 
women spend more than one-third of their lives in the postmeno-
pausal stage, which is characterized by low levels of estrogen. Es-
trogen is known to play a crucial role in human physiology, in-
cluding in glucose and lipid metabolism, bone metabolism, re-
productive function, and neurological functions (Yonezawa et al., 
2012). It is well accepted that the decline in circulating estrogen 
levels or estrogen deficiency is associated with central obesity, car-
diovascular disease, type II diabetes, and osteoporosis (Brown et 
al., 2010; Klein-Nulend et al., 2015; Vogel et al., 2013). On the 
other hand, endogenous estrogen status in postmenopausal wom-
en was related to adiposity (Key et al., 2015), contributing to 
postmenopausal breast cancer.

Sarcopenia is defined as the loss of muscle mass, muscle strength, 
and physical performance (Cruz-Jentoft et al., 2019), which is a 
crucial precursor to frailty, leading to disability and the loss of in-
dependence (Fielding et al., 2011). Sarcopenia begins at the age of 
30 years, and muscle mass decreases approximately 2%–7% every 
10 years, which accelerates after the age of 60 years (Dodds et al., 
2015). Previous studies have shown that a decrease in muscle mass 
is associated with a reduction in muscle strength and function 
(McPhee et al., 2018). Recently, however, the European Working 
Group on Sarcopenia in Older People 2 (EWGSOP2) indicated 
low muscle strength as a major determinant of sarcopenia (Cruz- 
Jentoft et al., 2019). Therefore, it is no longer sufficient to explain 
sarcopenia based on a decrease in muscle mass alone. The criterion 
method for measuring body composition, especially appendicular 
skeletal muscle, include bioelectrical impedance analysis, dual-en-
ergy x-ray absorptiometry (DXA), computed tomography, and 
magnetic resonance imaging (Messina et al., 2018; Vitale et al., 
2021). In addition, muscle strength is usually measured using 
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grip strength and the chair stand test (Cruz-Jentoft et al., 2019). 
Multiple mechanisms are related to the pathogenesis of sarcopenia, 
including motor neuron loss, dysregulation of cytokine secretion, 
increased inflammation, and mitochondrial dysfunction (Kim and 
Choi, 2013).

In postmenopausal women, decreased circulating estrogen levels 
directly or indirectly influence skeletal muscles and also accelerate 
the pathogenesis of sarcopenia (Khadilkar, 2019). After menopause, 
muscle mass declines by 0.6% per year (Rolland et al., 2007). In 
addition, estrogen plays an important role in the mitochondrial 
function (Ventura-Clapier et al., 2019). These effects of estrogen 
can be mediated through estrogen receptors (ERs), which are pres-
ent in all cell types. Decreased estrogen levels and ERs result in 
mitochondrial dysfunction, altered mitochondrial dynamics, and 
diminished mitophagy (Ribas et al., 2016) and they induce mito-
chondria-mediated apoptosis (Boland et al., 2008). Estrogen defi-
ciency may also induce muscle atrophy via mitochondrial dynam-
ics, mitophagy, and mitochondria-mediated apoptosis.

It is well known that exercise is essential for health given its as-
sociation with reduction of body fat, increase in muscle mass, and 
improvement in muscle strength, immune function, and the car-
diovascular system. Accordingly, exercise training should be con-
sidered as a therapeutic intervention for estrogen deficiency-relat-
ed sarcopenia. However, most studies have been conducted on the 
effects of hormone replacement therapy (HRT) on skeletal muscle 
function in postmenopausal women or ovariectomized (OVX) ro-
dents. Therefore, in this review, we briefly describe the role of es-
trogen in skeletal muscle and the effects of exercise on estrogen 
deficiency-induced sarcopenia. We hypothesize that decreased es-
trogen levels lead to the deterioration of skeletal muscle, and exer-
cise training ameliorates estrogen deficiency-induced sarcopenia.

SARCOPENIA AND MENOPAUSE

Skeletal muscles can be impaired by aging, loss of nutrition, 
disuse, motor neuron loss, dysregulation of cytokine secretion, and 
changes in hormone levels. The age-related loss of skeletal muscle 
mass and function is called “sarcopenia” (Cruz-Jentoft et al., 2019), 
which leads to adverse health-related outcomes, including frailty, 
cachexia, osteoporosis, metabolic syndromes, and death (Yoo et al., 
2018). Rosenberg understood early sarcopenia in 1989 only as a 
decrease in muscle mass. However, in recent years, it has been de-
fined as the loss of muscle function and muscle mass (Cruz-Jentoft 
et al., 2019). Moreover, the EWGSOP2 updated the definition  
of the criteria for age-related sarcopenia and proposed the loss of 

muscle mass and function (such as strength and performance) as 
an essential feature of sarcopenia (Cruz-Jentoft et al., 2019). Ap-
pendicular skeletal muscle mass (ASM) is usually measured using 
DXA, and the cutoff points of ASM for low muscle mass are  
<20 kg and <15 kg for men and women, respectively. Muscle 
strength and physical performance are usually measured using 
grip strength and gait speed, respectively. The cutoff points for 
diagnosing sarcopenia by grip strength are <16 kg for women 
and <27 kg for men, and gait speed is ≤0.8 m/sec for both men 
and women. An algorithm that can divide the level of sarcopenia 
(i.e., probable sarcopenia, sarcopenia, and severe sarcopenia) using 
the above cutoff points was newly presented by EWGSOP2.

Sarcopenia may be caused by several mechanisms, such as mito-
chondrial dysfunction, activation of inflammation, inadequate nu-
trition, loss of satellite cells, and hormonal changes (Cruz-Jentoft 
et al., 2010). In particular, there is a growing interest in studying 
the relationship between sarcopenia and hormones, especially es-
trogen changes. Life expectancy is increasing, and women spend 
more than 30 years in postmenopausal conditions. Menopause is 
defined as the permanent cessation of menstruation resulting from 
the loss of ovarian activity. Postmenopausal women with a natural 
or unnatural menopausal status, such as those with bilateral OVX, 
have low levels of estrogen, which could lead to a decrease in mus-
cle mass and muscle strength (Carville et al., 2006; van Geel et al., 
2009). The level of total body potassium, a marker of lean body 
mass, has been shown to significantly decrease during the first few 
years of menopause (Aloia et al., 1991). Moreover, a previous study 
suggested that postmenopausal women have an increased risk of 
sarcopenia (Messier et al., 2011); therefore, the decline of estrogen 
during the menopause is thought to be implicated in sarcopenia.

ESTROGEN AND THE SKELETAL MUSCLE

Estrogen is the primary female sex hormone secreted by the 
ovaries. Estrogen is involved in the differentiation, proliferation, 
and physiological functions of reproductive organs, such as the 
uterus, vagina, oviduct, and mammary glands (Ikeda et al., 2019). 
Moreover, estrogen plays an important role in the skeletal muscle, 
cardiovascular, and immune systems, as well as in metabolism 
(Muramatsu and Inoue, 2000; Nilsson and Gustafsson, 2011). Es-
trogen deficiency can affect physiological functions and cause os-
teoporosis, lipid abnormalities, atherosclerosis, and obesity (Du-
mont et al., 2015; Pollanen et al., 2011). It should be noted, how-
ever, these results are in contrast with those of the studies on high 
circulating estrogen levels, a risk factor for postmenopausal breast 
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cancer (Boyapati et al., 2004; Lukanova et al., 2004), showing that 
estrone, estradiol, and free estradiol are associated with increased 
body mass index. The main source of circulating estrogens in post-
menopausal women are derived from androgen aromatization in 
the peripheral tissues such as notably adipose tissue (Feigelson et 
al., 2004).

A decline in estrogen levels in menopausal women is associated 
with the loss of muscle mass and function; therefore, it has been 
suggested that menopause can accelerate sarcopenia (Messier et al., 
2011). In a human study, van Geel et al. (2009) reported that es-
trogen levels were positively associated with a lean body mass in 
menopausal women. Moreover, several studies have shown that 
estrogen replacement therapy attenuates age-related decline in 
muscle mass and size in postmenopausal women (Ronkainen et al., 
2009; Taaffe et al., 2005). In addition, a decrease in muscle strength 
is also an important indicator of sarcopenia, which results from the 
loss of estrogen. Some studies have shown that loss of muscle strength 
is related to estrogen deficit during menopause (Carville et al., 
2006; Cooper et al., 2008; Kurina et al., 2004). Furthermore, Mo-
ran et al. (2006) suggested that the decrease in estrogen levels re-
sulted in reduced force generation in the soleus muscle of OVX 
mice. In particular, it is well known that the decrease in muscle 
mass with aging is more strongly affected by the type II muscle 
than the type I muscle (Verdijk et al., 2007). Widrick et al. (2003) 
showed that the type II muscle was smaller than the type I muscle 
in menopausal women regardless of HRT use. In addition, the ERs 
in muscles are expressed more specifically in the type II muscle 
(Brown, 2008).

Menopause status is not a major contributor to the loss of mus-
cle mass in healthy women aged 18 to 85 years, although the loss 
of muscle mass is positively correlated with age (Tanko et al., 2002). 
Maltais et al. (2009) demonstrated that low levels of estrogen seem 
to be associated with a decline in muscle mass and strength; how-
ever, the conflicting results of these studies make it difficult to 
confirm this relationship. Therefore, it remains unclear whether 
the loss of estrogen during menopause induces a decline in muscle 
mass, function, and muscle fiber type changes. Further studies are 
needed to identify the mechanisms underlying skeletal muscle loss 
and muscle fiber type changes caused by menopause-induced es-
trogen deficiency.

It is well known that the balance between protein synthesis and 
protein degradation determines the maintenance of muscle quality, 
among which Akt/mammalian target of rapamycin (mTOR) sig-
naling is an important regulator that may impact muscle quantity 
and quality (Shi et al., 2019). Protein synthesis is enhanced by the 

phosphorylation of p70S6K and 4E-binding protein 1, which ac-
tivate mTOR via Akt (Bodine et al., 2001). In addition, Akt is 
reported to decrease the activity of forkhead box protein O (FOXO) 
transcription factors, which are associated with protein degradation 
(Sandri et al., 2004). Previous studies have demonstrated that es-
trogen deficiency in OVX rats induces a decrease in muscle Akt 
phosphorylation, which causes a decrease in muscle mass (Sitnick 
et al., 2006). Dieli-Conwright et al. (2009) suggested that HRT 
suppresses the expression of the transcription factor FOXO3A, a 
skeletal muscle atrophy gene. In addition, estrogen supplementa-
tion alleviates sepsis-induced skeletal muscle atrophy by the ex-
pression of atrogin-1 and MuRF1 downstream of FOXO1 (Zhao 
et al., 2017). These studies demonstrate that estrogen may inhibit 
protein degradation by regulating Akt/mTOR signaling, FOXO, 
and its downstream signals, all of which play an important role in 
delaying skeletal muscle loss.

ESTROGEN AND MITOCHONDRIA IN THE 
SKELETAL MUSCLE

Estrogen has three ERs that mediate its effects. There are two 
different forms of ERs: (a) ERα and ERβ, nuclear ERs that are 
members of the family of ligand-activated transcription factors, 
and (b) G-protein coupled ER, which is a membrane ER activated 
by estradiol. Growing evidence suggests that ERs are present in 
skeletal muscles (Lemoine et al., 2003) and in the nuclei of muscle 
fibers in the form of ERα and ERβ (Wiik et al., 2009). Therefore, 
it is not surprising that estrogen affects mitochondria in skeletal 
muscle.

Menopause and ovariectomy induce alterations in muscle biolo-
gy and function. Skeletal muscle in OVX mice showed a decrease 
in the use of fatty acid substrates, reduced mitochondrial content, 
and decreased expression of peroxisome proliferator-activated re-
ceptor gamma coactivator 1-alpha, which could be reversed by 
treatment with the major circulating estrogen 17β-estradiol (E2) 
(Cavalcanti-de-Albuquerque et al., 2014). Nagai et al. (2016) re-
ported that OVX mice showed reduced resistance to fatigue, which 
is known to depend on mitochondrial mass. In addition, muscle- 
specific ERα knockout mice showed decreased muscle mass, in-
duced obesity, insulin resistance, muscle mitochondrial dysfunc-
tion, impaired mitochondrial dynamics, and diminished mitopha-
gy (Ribas et al., 2016). Furthermore, previous studies have demon-
strated that E2 plays a major role in the inhibition of mitochon-
dria-mediated apoptosis (Boland et al., 2008; Vasconsuelo et al., 
2011).
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Since estrogen deficiency in skeletal muscles induces the reduc-
tion of both mitochondrial biogenesis and dysfunction, it is as-
sumed that mitochondrial dynamics, mitophagy, and mitochon-
dria-mediated apoptosis would also be impaired by estrogen defi-
ciency. A recent study suggested that the protein levels of mito-
chondrial dynamics (fusion) markers, including Mfn1, Mfn2, and 
Opa1, were decreased in the white gastrocnemius muscle of OVX 
rats (Capllonch-Amer et al., 2014). In addition, the protein level 
of cytochrome c, a mitochondria-mediated apoptosis marker, has 
been shown to be high in skeletal muscles of mice with E2 defi-
ciency (Karvinen et al., 2021). However, the underlying mecha-
nisms of ovariectomy-induced mitochondrial dysfunction should 
be elucidated through additional research.

EFFECTS OF EXERCISE ON THE SKELETAL 
MUSCLE IN ESTROGEN DEFICIENCY

HRT is widely used as a therapeutic intervention to treat meno-
pause; however, there are many risks associated with this therapy 
in humans, such as in endometrial and breast cancer patients (Ol-
son et al., 2007; Stefanick et al., 2006). Conversely, exercise train-

ing is well characterized as an important contributor to muscle 
mass and strength and is considered to have a therapeutic effect 
on age-related sarcopenia. Recent systemic reviews and meta-anal-
yses have found that exercise training has positive effects on mus-
cle strength and physical performance in older adults (Bao et al., 
2020; Escriche-Escuder et al., 2021; Wu et al., 2020). Furthermore, 
Chen et al. (2017) demonstrated that aerobic, resistance, and com-
bined exercise training improved skeletal muscle mass in the el-
derly populations with sarcopenic obesity after training interven-
tions. Taken together, regular exercise training may improve qual-
ity of life after menopause, with changes in the skeletal muscle 
(Elavsky and McAuley, 2005). Therefore, physical exercise, includ-
ing aerobic and resistance exercise training, is recommended as a 
nonpharmacological intervention for menopausal treatment. Nu-
merous human and rodent studies have demonstrated the benefi-
cial effects of exercise training on estrogen deficiency-induced 
skeletal muscle impairment (Tables 1, 2).

Effect of aerobic exercise training on skeletal muscle in 
estrogen deficiency

It is well known that exercise training improves body composi-

Table 1. Effects of aerobic and resistance exercise training in menopausal women

Participants Age (yr) Type of exercise Exercise protocol Results References

Menopausal female 41–60 Resistance High intensity training, 60 min/day, 6 mo ↑ Muscle strength 
↑ Rectus femoris CSA

Bemben et al. (2000) 

Menopausal female 57–75 Resistance 85% 1RM, 10 repetitions, 3 sets, 3 days/wk, 24 wk ↑ Muscle strength Bocalini et al. (2009) 
Menopausal female 45–70 Resistance 60%–80% 1RM, 8–12 repetitions, 2–3 exercise, 16 wk ↑ Muscle mass and strength Orsatti et al. (2008) 
Menopausal female 51–54 Aerobic High intensity training, 1 hr/day, 3 days/wk, 3 mo ↑ Muscle mass Mandrup et al. (2017) 
Menopausal female 45–55 Resistance Weight lifting, 5–8 repetitions, 1–3 sets, 2–3 days/week, 12 wk ↑ Muscle mass Razzak et al. (2019) 

↑, increase; CSA, cross-sectional area; RM, repetition mass; HR, heart rate.

Table 2. Effects of aerobic and resistance exercise training in ovariectomized animal models

Subject Age Type of exercise Exercise protocol Results References

Ovariectomized rats   7 mo Aerobic Treadmill, 22–24 m/min, 60 min/day, 5 times/wk, 12 wk ↑ Soleus muscle mass Widrick et al. (2007) 
Ovariectomized rats 14 wk Resistance Climbing a vertical ladder, 3 days/wk, 12 wk ↑ Soleus muscle CSA Prestes et al. (2012) 
Ovariectomized rats   9 wk Resistance Ladder climbing, 12 wk ↑ PGC1-a Barbosa et al. (2016) 
Ovariectomized mice 10 wk Aerobic Treadmill, Interval training high intensity (23 m/min,  

3 min), low intensity (16 m/min, 2 min), 5 set,  
30 min/day, 5 days/wk, 6 wk 

↑ Soleus muscle weight
↑ mTOR protein level

Kim et al. (2019) 

Ovariectomized rats 12 wk Aerobic Treadmill, 20 m/min, 60 min/day, 6 days/wk, 6 wk ↑ Muscle weight (soleus, plantaris)
↑ p-Akt protein levels
↓ FOXO1 protein levels

Shi et al. (2019) 

Ovariectomized rats   6 mo Aerobic Swimming, 60 min and 90 min/day, 6 days/wk, 8 wk ↑ Gastrocnemius muscle mass 
↑ mTOR protein levels

Zhong et al. (2019) 

↑, increase; ↓, decrease; p-Akt, phospho-protein kinase B; FOXO1, Forkhead box protein O1; mTOR, mammalian target of rapamycin; PGC1-α, peroxisome proliferator-activated 
receptor gamma coactivator 1-α; CSA, cross-sectional area; HR, heart rate.
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tion, muscle strength, bone mineral density, and cardiorespiratory 
capacity (Elavsky and McAuley, 2009). Aerobic exercise training 
improves aerobic capacity, cardiovascular function, and metabolic 
regulation (Konopka and Harber, 2014). In postmenopausal wom-
en, aerobic exercise training improves metabolic and cardiovascu-
lar disease conditions (Manson et al., 2002). Zhong et al. (2019) 
revealed that swimming significantly increased gastrocnemius 
muscle mass in OVX rat. Moreover, aerobic exercise training for 
12 weeks increased soleus muscle mass by 11% in OVX rats (Wid-
rick et al., 2007). A recent study showed that 6 weeks of treadmill 
exercise training increased the muscle mass of the plantaris and 
soleus muscles in OVX mice (Shi et al., 2019). Collectively, aero-
bic exercise training has positive effects on skeletal muscle mass in 
estrogen-deficient conditions.

Effects of resistance exercise training on the skeletal 
muscle in estrogen deficiency

Resistance exercise training is associated with increased muscle 
strength, muscle mass, and bone mass (Barry and Carson, 2004). 
Several studies have demonstrated that progressive resistance train-
ing can change body composition, reverse sarcopenia, and recover 
the aggravation of muscle structure associated with menopause 
(Bocalini et al., 2009; Fjeldstad et al., 2009; Orsatti et al., 2008). 
Orsatti et al. (2008) revealed that muscle mass was significantly 
increased after 16 weeks of resistance exercise training in postmeno-
pausal women. In addition, Tracy et al. (1999) observed a signifi-
cant increase in the cross-sectional area of the quadriceps muscle 
after 9 weeks of resistance exercise training in postmenopausal 
women (Tracy et al., 1999). Another study in postmenopausal 
women showed that lean body mass increased and fat tissue de-
creased after 12 months of resistance exercise training (Teixeira et 
al., 2003). Thus, resistance exercise training plays an important 
role in the muscular function and quality of life in postmenopaus-
al women.

CONCLUSIONS

Estrogen deficiency accelerates age-related sarcopenia via mito-
chondrial dysfunction. In particular, mitochondrial dynamics, mi-
tophagy, and mitochondria-mediated apoptosis are believed to be 
associated with estrogen deficiency-induced sarcopenia. Resistance 
exercise training as a therapeutic intervention could be an import-
ant strategy for menopausal women to improve the muscle strength 
that determines sarcopenia, while a more structured program for 
aerobic exercise training may be required in some cases. Although 

there have been conflicting results regarding the effects of exercise 
training on the skeletal muscle induced by estrogen deficiency, 
many studies have shown that aerobic and resistance exercise train-
ing has positive effects on skeletal muscle mass, strength, and es-
trogen levels in menopausal women and OVX rodents. Further 
studies are needed to elucidate the optimal exercise protocols (e.g., 
exercise type, intensity, volume, etc.), which improve skeletal mus-
cle mass and function, especially in postmenopausal women, and 
the cellular and molecular mechanisms underlying the beneficial 
effects of exercise training on the skeletal muscle against estrogen 
deficiency-related sarcopenia.
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