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Abstract

Fast and accurate identification of biting midges is crucial in the study of Culicoides-borne

diseases. In this work, we propose a two-stage method for automatically analyzing Culi-

coides (Diptera: Ceratopogonidae) species. First, an image preprocessing task composed

of median and Wiener filters followed by equalization and morphological operations is used

to improve the quality of the wing image in order to allow an adequate segmentation of parti-

cles of interest. Then, the segmentation of the zones of interest inside the biting midge wing

is made using the watershed transform. The proposed method is able to produce optimal

feature vectors that help to identify Culicoides species. A database containing wing images

of C. obsoletus, C. pusillus, C. foxi, and C. insignis species was used to test its performance.

Feature relevance analysis indicated that the mean of hydraulic radius and eccentricity were

relevant for the decision boundary between C. obsoletus and C. pusillus species. In con-

trast, the number of particles and the mean of the hydraulic radius was relevant for deciding

between C. foxi and C. insignis species. Meanwhile, for distinguishing among the four spe-

cies, the number of particles and zones, and the mean of circularity were the most relevant

features. The linear discriminant analysis classifier was the best model for the three experi-

mental classification scenarios previously described, achieving averaged areas under the

receiver operating characteristic curve of 0.98, 0.90, and 0.96, respectively.

Introduction

Biting midges of the genus Culicoides Latreille, 1809 (Diptera: Ceratopognidae) are hematoph-

agous insects that are widely distributed around the world, and they are known to transmit

multiple diseases of veterinary and medical importance [1]. More than 50 arboviruses have
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been isolated from Culicoides, most of them belonging to the Bunyaviridae (20 viruses), Reovir-
idae (19 viruses), and Rhabdoviridae (11 viruses) [2] familiies. In animals, they are involved in

the transmission of bluetongue virus (BTV), Akabane virus (AKAV), bovine ephemeral fever

virus (BEFV), epizootic haemorrhagic disease virus (EHDV), Schmallenberg virus (SBV), and

african horse sickness virus (AHSV). The circulation of BTV is of special interest in countries

like Ecuador, where the presence of these viruses and their possible vectors have only been par-

tially studied [3]. Several species of Culicoides also transmit protozoan parasites (Haemoproteus
spp. and Leucocytozoon spp.), and helminth parasites (Onchocerca). In humans, Culicoides
paraensis serve as vectors of the Oropuche virus (OROV) [4]. Infections in humans caused by

OROV are characterized as an acute febrile illness with typical clinical symptoms such as fever,

headache, muscle and joint pain, or skin rash, which may develop into meningitis and/or

encephalitis [5]. Culicoides paraensis is one of the most frequent and widespread ceratopogo-

nid midges in the South American continent. The Culicoides paraensis group includes six

closely related/similar species. (C. diversus, C. filiductus, C. neoparaensis, C. paraensis, C. peru-
vianus, and C. quasiparaensis). Moreover, the wings pattern of C. peruvianus shows a signifi-

cant intraspecific variation that can even exceed interspecific variation [6].

Entomological surveillance of known vectors species can help in understanding their popu-

lation structure, distribution, size and means of dispersion. These factors are of great impor-

tance in determining Culicoides success in transmitting diseases, as well as in establishing

control and prevention measures [4]. Therefore, a timely and accurate identification of biting

midges is crucial in the study of Culicoides-borne diseases. Approximately 1400 species of Culi-
coides have been described and grouped in subgenera (31 or 32), species groups (38 subgenera

unplaced), miscellaneaous unplaced species [7, 8], and species complexes [1]. The identifica-

tion of Culicoides at any taxonomic level within the genus relies mainly on morphological and

morphometrical parameters, mainly based on features related to the wing [9, 10]. An interac-

tive identification key protocol for Culicoides has been previously developed to define the mor-

phological descriptors required for accurate identification [11], where six taxonomists have

validated the key, and its success rate ranged from 35.1% to 81.1% depending on Culicoides
species concerned and users’ levels of expertise in Culicoides identification. Despite the results

by our group and by others in the field, the current morphometric process for the identifica-

tion of Culicoides relies on manual detection and identification of critical landmarks, which is

a laborious process depending on the ability and expertise of a limited number of entomolo-

gists, and which can suffer from bias from one expert to another (for instance the number and

position of landmarks varied from 10 to 14 in previously reported analysis) [12–16].

To alleviate this problem, several automated approaches have been proposed in the litera-

ture for classifying other genera of insects using the analysis of their wing’s morphology, such

as the specific amount of points in the wings called landmarks [17], or by studying the wing’s

veins and their canonical variate [18]. For example, Lorenz et al. [17] used 32 wing shape fea-

tures in conjunction with a multilayer perceptron classifier to distinguish among 17 species of

the genera Anopheles, reaching accuracy rates ranging from 85.70% to 100%. Sontiguna et al.

[19] employed wing morphometric analysis features and discriminant function analysis to

classify 12 species of flesh flies, achieving accuracy between 81.3% and 100%. Wilke et al. [18]

also employed geometric morphometric analysis to classify mosquitoes from three of the most

important epidemiologically genera using morphological spaces produced by canonical variate

analysis, and their method obtained 96% and 84% accuracy for two different datasets. Yang

et al. [20] focused on the wing outline employing elliptic Fourier descriptors and used support

vector machines as classifier stage, reaching accuracy ranged from 90% to 98% for different

species. Wing pigmentation patterns can be used also in some vector species as the principal

criteria for identification, since adults have a remarkable distribution and color of wing spots.
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Haarlem and Vos [21] employed a conjunction of different algorithms (such as BGR, SURF

and Bag-Of-Words) achieving accuracy of about 77% for different species. In general, wing

geometric morphometrics is a promising approach to the identification of entomologically

relevant insects due to its many advantages regarding accuracy, repeatability, rapidity, and

affordability [22]. In the case of Culicoides, wing pigmentation patterns could be used in cer-

tain species as the principal criteria for identification, since adults also have a remarkable dis-

tribution and color of wing spots [12–15].

In this regard, in previous works [23, 24], we have demonstrated that the analysis of wing

spots (pale or dark spots shown as particles or bright areas within the wing image) could also

be used to differentiate Culicoides species by an automated system. The initial study of Guer-

rón et al. [23] focused primarily on the detection of the particles (bright areas) in the wings.

The method proposed therein is based on the use of a Gaussian filter for noise removal, the

determination of a threshold to obtain a binary image, and the use of several morphological

operations to get the particles within the biting midges wings. An improved version was pre-

sented in [24] by Benalcázar et al., where the watershed transformation was added to obtain

the number of zones of the wings. Several morphological features as the number of particles,

centroid size, biggest particle, elongation, compactness, circularity, hydraulic radius, ellipse

ratio, and rectangle radio were also computed from the resulting images. However, in those

studies, although we demonstrate that the image processing algorithm improves wing images

and that the morphological features obtained have been shown to be different for the Culi-
coides species used as examples (C. tetrathyris, C. glabellus, and C. glabrior), no classification

analysis was performed in either study.

In accordance to the previous considerations, the method proposed in this paper is focused

on the marks (brighter areas) of the wings. Our current approach has been improved concern-

ing such early versions of the Culicoides wing image processing methods, regarding the pre-

possessing and particle detection steps. The algorithms employed herein increase the quality of

the image to detect all the marks within the wing’s images and to preserve their original shape

and size. One of the principal advantages is the use of Otsu’s method [25], to determine the

threshold to binarize the image. The application of the watershed transformation is also

improved by the correct use of masks, to provide therefore better information about the zones

in which the wing can be divided, and to have the right information about the wing contour.

The use of better algorithms allows us to compute better features and to put them into test

with several machine learning classifiers (MLCs).

Hence, in this study we describe a new approach for automated species stratification classi-

fication of Culicoides based on image processing of wing spots and machine learning tech-

niques. We focus on these techniques to segment the spots in the wing image, which will be

subsequently used to form a feature vector containing seven mathematical descriptors per

image. An experimental dataset containing wing images from three BTV transmitting species

including C. pusillus (French Guyana), C. obsoletus (France), C. insignis (Ecuador), and a non-

transmitting species C. foxi (Ecuador), was used to benchmark the proposed approach, using

five well known MLCs.

Materials and methods

Entomological collection

We analyzed a total of 192 wings from females of wild biting midges. Biting midges were col-

lected using CDC-like and UV traps. For the Ecuadorian specimens, traps were set in Cotundo

(00˚51’05” S, 77˚47’65” W), Napo Province, and in Paraiso Escondido (00˚ 85’ 03” N, 79˚ 17’

49” W), Pichincha province. The preparation and mounting of female specimens was carried
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according to Mosquera [3] and species identification was based on wing patterns described by

Spinelli et al. [26]. C. insignis was identified in Cotundo and C. foxi in Paraiso Escondido. A

Zeiss V20 microscope coupled with an AmScope 18MP USB 3.0 color CMOS C-mount micro-

scope camera (magnification X10) was used for obtaining images of the wings. The other bit-

ing midges species were captured in French Guyana (3˚59056@ N, 53˚00000@ W) for C. pusillus,
and in France (49˚59’69” N, 4˚01’45” E; 43˚58’55” N, 3˚42’58” E) for C. obsoletus. The individ-

uals were stored in 70% ethanol before morphological analysis, specimen identification, and

mounting. Culicoides spp. were separated from other insects according to their wing character-

istics using a stereomicroscope [27] and identified at species level [11, 28]. For these speci-

mens, digital images of the wings were obtained using an Olympus BX53 microscope

equipped with an Olympus SC100 camera (magnification X10) with Stream motion software

(Olympus).

For our study, left and right wings were used without any distinction because: (i) systematic

selection of one side may bias the results in case of differential directional asymmetry among

species [29]; (ii) comparison of wings from catalogs and original descriptions with status (left

or right) are mostly unknown [16]; (iii) distribution and color spots on both wings are similar

[27].

Database

An image database was assembled, with 192 biting midges wing images comprised of 66 image

samples from C. insignis, 42 images samples from C. foxi, 42 images samples from C. pusillus,
and 42 image samples from C. obsoletus. This database was used for both testing and bench-

marking the proposed method.

However, since C. insignis and C. foxi are two cryptic species (i.e. morphologically identical

to each other but belonging to different species), and since C. pusillus presents similar mor-

phological characters with C. obsoletus, we decided to separate the original database in two

image databases, containing similar species. The first one, called fDatabase contained 84 wing

images from C. pusillus (42 images) and C. obsoletus (42 images) species, whereas the second

one, called eDatabase, contained 108 wing sample images from C. insignis (66 images) and C.
foxi (42 image) species. The main idea in this database separation was to test the performance

of the proposed method for automated identification and classification when comparing simi-

lar species that will be more challenging than comparing species with apparent morphological

differences.

Proposed method

The proposed method aims to highlight the main characteristics of the biting midges wings

while preserving their details to maximize the species classification. For this purpose, several

image processing techniques were used to obtain the binary mask of the wing. Then, the deter-

mination of the wing particles and the segmentation of zones provide two images that are used

to calculate a set of seven morphological features. The features are then combined using an all-

versus-all strategy to form multiple subsets of features that feed a 10-fold cross-validation

method along with five MLCs. Finally, the best classification scheme (output) among all mod-

els is determined. The workflow of the entire process, including the proposed method, is

shown in Fig 1.

Image preprocessing. The purpose of the image processing stage is to obtain a binary

mask and a bounding box containing the object of interest within the image, which, in our

case, is the specimen wing. Towards this goal, the original image was first transformed from

the RGB (red, green, blue) color space to a gray space, and therefore redistributing the pixels
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intensity values in the range from 0 to 255. Then, we used a two-step filtering process with the

median and Wiener filters using convolutional masks of (15 × 15) and (25 × 25) respectively,

to remove noise while preserving the contour of the objects within the image. Besides, the

adaptive histogram equalization method was applied between both filters to improve the con-

trast of the image by zones. Afterward, an image complement and a morphological dilate oper-

ation with a kernel composed of a structuring element type of disk and size 100 on the filtered

image was carried out for removing small non-desired objects, such as isolated pixel neighbor-

hoods, veins, or noise captured by the camera that were not removed by the previous step.

This morphological operation allowed filling the holes inside the wing, hence providing the

final binary mask needed for a subsequent bounding box calculation throughout the use of the

Otsu’s method [25], which determines the optimum conversion threshold by minimizing the

intra-class variance between two assumed pixel classes. However, preparing the binary mask

for detecting the critical particles inside the wing sometimes represents a hard task in image

processing due to the strong connections of non-desired objects that overlap the desired ones

(in our case, the particles). Thus, the closing and opening morphological mathematics opera-

tions with a disk-based structuring element of size 5 and 7, respectively, were also applied to

retain the shape and size of key particles without overlapping (see Fig 1, step 1).

Wing particles detection and zones segmentation. The wing particle detection is based

on the application of the Moore-Neighbor tracing algorithm [30] modified by Jacob’s stopping

criteria on the binary wing images (see Fig 1, step 2). This algorithm determines the existence

Fig 1. Schematic of the entire research workflow, including the proposed method (central and lower blocks).

https://doi.org/10.1371/journal.pone.0241798.g001

PLOS ONE Automatic classification of Culicoides species using wing morphology

PLOS ONE | https://doi.org/10.1371/journal.pone.0241798 November 4, 2020 5 / 23

https://doi.org/10.1371/journal.pone.0241798.g001
https://doi.org/10.1371/journal.pone.0241798


of the particle by analyzing whether or not there are intensity value changes in the neighbor-

hood of the 8-connected pixels of the current pixel (pixel under analysis). Also, it considers

any intensity change as the stopping criterion.

That means, the modified Moore-neighborhood of a pixel p is a set of pixels {p1, p2, p3, p4,

p5, p6, p7}, which shares its vertex or edge with the current pixel p, as shown in Fig 2. If the

center pixel p is black, the algorithm will search for a white pixel (pixels of the particle, e.g., the

cells highlighted in yellow in Fig 2) in its neighborhood until it achieves success. Otherwise, it

will continue the process without stopping.

On the other hand, zones segmentation is based on the application of the watershed trans-

form [31]. This method finds the basins or ridges in the image by treating it as a surface where

light and dark pixels represent elevations and depressions, respectively. In this setting, the

wing zones are related to the depression region (basins), while the gaps among the wing parti-

cles are linked to the elevation zones (ridges). A wing surface representation of the four species

under analysis from the watershed perspective is shown in Fig 3.

For better understanding of the application of the watershed transform in this work, lets

consider a set {m1, m2, . . ., mk}, denoting the (x, y) coordinates of the points in the regional

minima of the wing gradient image g(x, y) and k the number of detected particles. Hence, P
(mk) is the set of points of the kth− particle, forming a connected component with the mini-

mum point mk. Additionally, let T[n] be the set of points of g(x, y), lying below the geometrical

plane g(x, y) = n; where n is an integer flood increment, which varies in the interval of [min + 1

� n�max + 1]. The min and max are the minimum and maximum intensity values of g(x, y),

which can be determined from the histogram of g(x, y).

The algorithm slowly floods the surface of g(x, y) into a water bath at each step n and con-

trols the number of points below the flood depth (points in T[n]). Thus, the set of points

Pn(mk) of the particle with the minimum mk at stage n may be viewed as a binary image given

Fig 2. Example of the application of the Moore-neighbor algorithm for particle detection.

https://doi.org/10.1371/journal.pone.0241798.g002
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by:

PnðmkÞ ¼ PðmkÞ
T

T½n�

where the value of the pixel at location (x, y) is constrained to:

Pn mkð Þ ¼

(
1 if ðx; yÞ 2 PðmkÞ and ðx; yÞ 2 T½n�

0 otherwise

Eventually, the flooding process will reach the stage n = max + 1, and the union of all

flooded basins (particles) is defined by:

P½maxþ 1� ¼
[k

i¼1

CðmiÞ

The standard algorithm does not allow mixing basins. Thereby it builds dams at the points

of the first contact. These dams are considered the watershed lines and also the boundaries of

image objects. In our case, we allow the algorithm to mix particle regions (basins with similar

flood depth), maximizing the area of segmented zones (see Fig 1, step 2).

Feature calculation. A total of seven morphological features were used to classify the four

biting midges species considered in this work (see Fig 1, step 3). Six features were computed

from the binary image that contains the segmented particles of interest, including the number

of particles (F1), and the mean values of the elongation (F3), solidity (F4), circularity (F5),

hydraulic radius (F6), and eccentricity (F7). One feature, the total number of zones (F2), was

computed from the binary image containing the segmented zones of interest. All values were

normalized using the min-max method to bring them into the range from 0 to 1. The descrip-

tion and formulation of each of the computed features are shown in Table 1.

MLC models. The separation between Culicoides classes on each dataset, for example,

between C. pusillus and C. obsoletus or between C. insignis and C. foxi species can be viewed as

a binary supervised learning problem that can be solved by training any MLCs with several

input-output valid pairs of both biting midges species.

Fig 3. Zone segmentation for C. pusillus (top left), C. obsoletus (top right), C. foxi (bottom left) and C. insignis
(bottom right).

https://doi.org/10.1371/journal.pone.0241798.g003
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In this work, we considered the use of five MLCs belonging to the entropy and distance-

based categories to find a decision boundary between biting midges classes (see Fig 1, step 4).

According to the number of samples per species, the selected MLCs could provide reasonable

classification performance without incurring the statistical assumption of not having the mini-

mum required instances per sample or any overfitting during the models training process such

as on artificial neural networks. A brief description of the employed classification algorithms

are presented below:

• The naive Bayes (NB) classifier is based on probabilistic models with strong (naive) indepen-

dence assumptions [32]. After training the NB classifier by estimating the class priors and

the probability distribution of features, any test sample will follow the decision rule that pro-

vides the most probable value of the maximum a posteriori of the model.

• The support vector machine (SVM) classifier is based on the definition of an optimal hyper-

plane that linearly separates the training data [33]. This classifier aims to minimize the

empirical risk and maximize the geometric maximum margin of the data points from the

corresponding linear decision boundary.

• The k-nearest neighbors (kNN) classifier is a lazy learning (non-parametric) technique that

invests a little effort into building the classifier and most of the work is performed at the time

of classification [34]. It assigns a test sample to the predominating class in the voting scheme,

which computed the euclidean distance between the test sample and each of the k = k1 + k2 +

� � � + kn neighbors (being n the number of neighbors to be considered for voting).

• The linear discriminant analysis (LDA) is a traditional classification model based on the cal-

culation of the optimal data projection [35]. It minimizes the distances between instances of

the same class while it maximizes the distance between instances of different classes. For a

binary classification, observations are classified using the linear function: giðxÞ ¼WT
i x � ci,

where i is the total number of classes, thus i: 1. . .2, WT
i is the transpose of a coefficient vector,

x is a feature vector and ci is a threshold. The model with the smallest value of gi(x) in the

training becomes the best model to classify new instances.

• The random forest (RF) is an ensemble algorithm based on the combination of several

empirical selected tree predictors and an average function for deciding the final instance

classification [36].

Table 1. Summary of computed features.

Feature Description

F1 = P P is the number of segmented particles.

F2 = Z Z is the number of segmented zones.

F3 ¼

PP

i¼1

mi
Mi

P

mi is the minor axis of the ith−ellipse

Mi is the major axis of the ith−ellipse.

F4 ¼

PP

i¼1

Areai
ConvexAreai
P

Areai is the sum of all pixels in the ith−particle

ConvexAreai is the convex hull area of the set of points defining the ith−particle contour.

F5 ¼

PP

i¼1
4p

Areai
Perimeter2i

P

Areai is the sum of all pixels in the ith−particle.

Perimeteri is the sum of all pixels in the ith−particle contour.

F6 ¼

PP

i¼1

Areai
Perimeteri
P

Areai is the sum of all pixels in the ith−particle.

Perimeteri is the sum of all pixels in the ith−particle contour.

F7 ¼

PP

i¼1

di
Mi

P

di is the ith−ellipse foci.

Mi is its major axis length.

https://doi.org/10.1371/journal.pone.0241798.t001
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The implementation of the proposed method was made in Matlab language [37], while the

source code of all employed MLCs is available with the WEKA data mining software, version

3.6 [38].

Experimental setup

This section outlines the experimental evaluation of the proposed method in terms of the

detection and segmentation of particles within a wing, features calculation from segmented

particles, and species classification. Also, we included a further feature relevance analysis to

determine the features that most influence the Culicoides species separation.

Experimental dataset creation. As previously mentioned, two gnats databases were used

as inputs to the proposed method to form two experimental datasets of feature vectors. In this

setting, for each Culicoides wing image, a feature vector (i.e. a vector consisting of multiple ele-

ments) was obtained containing seven morphological features that represent the numerical

description of the wing’s relevant regions. All feature vectors depicting satisfactory cases (i.e.

well-segmented particles) were employed to create two experimental datasets serving to per-

form the feature relevance analysis and the biting midges classification. Thus, the fDataset,

contains feature vector sets from the fDatabase, while the eDataset contains the corresponding

feature vector sets obtained from the eDatabase.

MLC models optimization. The majority of MLCs were used in conjunction with the

10-cross validation method [39] in the training step to optimize the hyper-parameter tuning.

Except for the NB classifier, which does not need to be configured, the SVM classifier used the

regularization parameter (cost) varying from c = 10−3 to 103, with an interval increment of 10

units and a linear kernel function. The kNN classifier included the estimation of the optimal

value of k. It was optimized in the range from k = 1 to 20, and the contribution of each neigh-

bor was weighted using the Euclidean distance to the instance to be classified. The LDA classi-

fier, on the other hand, determined the coefficient vector WT
i with a constant value of ci = 10−6

(small values are preferred), which is the ridge estimator used to guard against overfitting by

penalizing large coefficients. While the RF classifier was optimized using the number of pre-

dictors from 100 to 1000 trees, with an increment of 100 units. Each tree used log2(X) + 1 for

randomly attributes selection, being X the total number of attributes available in the current

dataset.

Validation metrics. Regarding the classification stage, for all the MLCs used, the mean of

the area under the curve of the receiver operating characteristic (AUC) was calculated to vali-

date their performance. In addition, a statistical comparison between classifiers was performed

using a paired-samples t-test with α = 0.05 [40]. This test allowed us to determine if there is a

statistically significant difference between the classification models and, thus, select the most

appropriate MLC to classify the biting midges species.

Additionally, we calculated the mean of the accuracy (ACC) metric to validate the detection

of wing particles, the segmentation of the regions of interest using the proposed method, and

to compare performance with previously developed methods. The error rate metric was also

calculated to support the discussion of the limitation of the proposed method. Here, the error

rate score is the complement of the successful performance in terms of the mean ACC, which

is (100 − ACC)%.

Results and discussion

A total of 192 biting midges wing images from two different databases (fDatabase and eData-

base) were used to feed the proposed method. The obtained results demonstrated quality
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performance in terms of wing particle detection and segmentation, of feature calculation, and

of the Culicoides classification, as described next.

Performance of the proposed method

In most cases, the proposed method achieved successful wing particle detection and region

segmentation on the wing images. It reached mean ACC values of 96% and 84% on the fData-

base and the eDtabase, respectively. Some examples of the satisfactory image processing per-

formance can be seen in Figs 4 and 5 for the fDatabase, and in Figs 6 and 7 for the eDatabase.

From these figures, it is possible to observe the main results related to the internal stages of

the proposed method. The particle detection step (second column) correctly identified the

stains (white areas) existing in the wing image. Similarly, the internal zones of the wing (third

column) were correctly segmented. In both cases, the implemented multi-step image process-

ing algorithm facilitated the tasks and it improved the quality of the wing image to highlight

the stains and boundary details. It provided the binarized image related to the wing that leads

the watershed transform to a successful determination of the basins and ridges. In this way, the

Fig 4. Performance of the proposed method on C. pusillus species samples. From left to right column: original wing

image, particle detection, segmentation of zones of interest through the watershed method, and the final feature vector

output obtained.

https://doi.org/10.1371/journal.pone.0241798.g004

Fig 5. Performance of the proposed method on C. obsoletus species samples. From left to right column: original

wing image, particle detection, segmentation of zones of interest through the watershed method, and the final feature

vector output obtained.

https://doi.org/10.1371/journal.pone.0241798.g005
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better the basins estimation, the better the stains segmentation. Ridges are linked to irrelevant

wing image areas.

It also should be pointed out that there are wing morphological changes among considered

biting midges species that are possible to track when analyzing the wing particle detection

resultant images (second column in Figs 4 to 7). The most noticeable aspect is related to the

number of particles presented on each species. For example, the C. pusillus and C. obsoletus
species provided a lesser number of particles when compared to the C. insignis and C. foxi spe-

cies. Also, the particle size and shape offered singular variation among species. Particles in the

C. pusillus and C. obsoletus samples are bigger and tend to a rounded shape with regular con-

tour. Meanwhile, particles for the C. insignis and C. foxi samples are smaller with irregular con-

tour and shapes. Similarly, when analyzing the zone segmentation in the resultant images

(third column in Figs 4 to 7), it is possible to observe the same morphological difference

among biting midges species. Samples of C. pusillus and C. obsoletus showed a lower number

of zones with larger size respect to the C. insignis and C. foxi species. This effect was expected,

since the number of zones have a strong connection to the number of particles inside the wing.

Fig 6. Performance of the proposed method on C. foxi species samples. From left to right column: original wing

image, particle detection, segmentation of zones of interest through the watershed method, and the final feature vector

output obtained.

https://doi.org/10.1371/journal.pone.0241798.g006

Fig 7. Performance of the proposed method on C. insignis species samples. From left to right column: original wing

image, particle detection, segmentation of zones of interest through the watershed method, and the final feature vector

output obtained.

https://doi.org/10.1371/journal.pone.0241798.g007

PLOS ONE Automatic classification of Culicoides species using wing morphology

PLOS ONE | https://doi.org/10.1371/journal.pone.0241798 November 4, 2020 11 / 23

https://doi.org/10.1371/journal.pone.0241798.g006
https://doi.org/10.1371/journal.pone.0241798.g007
https://doi.org/10.1371/journal.pone.0241798


Limitations. Despite the good obtained results, there was an overall error value of 4% and

16% for the fDatabase and eDatabase, respectively. These error rates are due to the failure in

the wing particle determination and segmentation step of the proposed method. Fig 8 shows

an example of the effect of a wrong wing detection, where the bounding box within the wing

image is out of the region of interest, and thus, the watershed method spreads out of the box,

leading to reduced performance. This situation is related to the wing image acquisition proto-

col used in the laboratory, for example, an improper illumination condition when capturing

the image (Fig 8 first row), the wing size (magnified by the lens), making the wing border to

touch the outer limit of the region of interest (Fig 8 second row), and the intensity of the pixels

located in the wing contour similar to the image background (Fig 8 third row), which could

affect the performance of the proposed method.

Feature calculation performance. Regarding feature calculation, the wing morphological

changes were also expressed in terms of numerical values computed from the segmented parti-

cles and zones within the wing (fourth column in Figs 4–7). The mean of the number of parti-

cles (F1 feature) are very similar for the C. pusillus and C. obsoletus species, reaching values of

0.34 and 0.39, respectively. Similarly, the mean of the number of zones (F2 feature) exhibited

almost the same behavior between both species, attaining values of 0.57 and 0.55 for the C.
pusillus and C. obsoletus, respectively. It should be pointed out that both F1 and F2 features are

related.

Other features, such as the mean of the elongation (F3) obtained from the particles of C.
pusillus samples, tend to be less elliptical than those from C. obsoletus samples. These results

are corroborated by the reached values of elongation of 0.66 for the C. pusillus versus the 0.35

for the C. obsoletus. The mean of the solidity (F4) feature, on the other hand, is related to the

shape of the particles, and the attained values of 0.64 against 0.38 explains the reason why par-

ticles of the C. pusillus species exhibited more regular shape contours to the C. obsoletus spe-

cies. The mean of the circularity (F5) feature achieved values of 0.68 and 0.36 for the C. pusillus
and C. obsoletus species, respectively, which means that the shape of the particles of the C.
pusillus species are more circular than particles from the C. obsoletus species. These results are

very similar to those obtained with the mean of the elongation feature (F3). However, the F3 is

focused on the relationship between the major and minor elliptical axis, while the F5 involves

the area, perimeter, and radial based quadrants. The mean of the hydraulic radius (F6) feature

is a function used to describe the shape of the particle as if it were a circle and how efficient its

perimeter is in relation to the area contained by it. The obtained values for this feature were

0.30 and 0.70 for the C. pusillus and C. obsoletus species, respectively. The mean of the

Fig 8. Examples of unsuccessful performance of the proposed method on different species samples. From left to

right column: original wing image, particle detection, segmentation of zones of interest through the watershed method,

and the final feature vector output obtained.

https://doi.org/10.1371/journal.pone.0241798.g008
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eccentricity (F7) feature defines how far from being circular the particle is, values close to zero

means the particle shape is more circular and vice-versa. In this setting, the values of 0.41 and

0.76 were obtained for the C. pusillus and C. obsoletus species, respectively. These results dem-

onstrated that the wings of C. obsoletus contained particles far from being circular.

Meanwhile, when comparing the feature values between the C. foxi (Fig 6) and C. insignis
(Fig 7) species belonging to eDatabase, this reveals that the C. foxi species has a higher number

of particles (F1) than the C. insignis, with a mean value of 0.73 and 0.51, respectively. Taking

into account that the number of particles (F1) feature is related to the number of zones (F2) fea-

ture (third column in Figs 6 and 7), it is to be expected that the C. foxi species will show more

zones with a mean value of 0.74 versus the mean value of 0.64 for the C. insignis species. In

contrast with the species from the fDatabase, for the species in the eDatabase, the first two fea-

tures seem to be more relevant for distinguishing between the species analyzed.

Regarding the morphology variation of the wing particles (second column in Figs 6 and 7),

the analysis of the mean of the elongation (F3) feature shows that the particles of the C. foxi
species tend to be more elliptical than the ones of the C. insignis, with values of 0.43 and 0.56,

respectively. The mean value of the solidity (F4) feature for C. foxi species is 0.62 and for the C.
insignis is 0.55, which means that the particles of the C. foxi wing samples have a slightly more

regular shape than those ones of C. insignis. The mean of the circularity (F5) feature reveals

that the particles of C. insignis wings have a shape more similar to a circle than the particles of

C. foxi wings, with values of 0.54 and 0.44, respectively. The mean of the hydraulic radius (F6)

feature, on the other hand, points out that C. insignis species have particles with a greater area

ratio inside the perimeter than C. foxi, with values of 0.42 and 0.36, respectively. Finally, the

mean of the eccentricity (F7) feature exhibits that the particles of the C. foxi are less similar to a

circle than the particles of C. insignis, with values of 0.53 and 0.45, respectively.

Feature relevance

We applied an all-versus-all strategy on the features space to find the most relevant features for

separating the biting midges classes in the fDataset, eDataset, and both datasets together. The

procedure was carried out by feeding the selected MLCs with all the feature combinations. For

the selection criteria of relevance, we follow two general rules: (1) from each classifier, the

model that produces the highest AUC score was selected to determine the best subset of fea-

tures; else (2) if there is a model that did not provide AUC-based statistical difference with

respect to the best model selected in the previous step, the minimal subset (optimal) of features

was preferred. Due to the few amount of computed features, this strategy was easily performed,

and the obtained results are shown in Table 2.

For the fDataset, the best subset of features varied from three to five descriptors across the

employed MLCs. The selected optimal subset of features was composed of only two descrip-

tors, the mean of the hydraulic radius (F6) and eccentricity (F7). From Table 2, it is possible to

read that there was almost a total consensus among all MLCs on deciding the optimal subset.

This result is explained by the particularity of the features and the mean shape of the wing par-

ticles. The F6 measures the efficiency of hydraulic channel flow by considering the cross-sec-

tional area and perimeter. In this work, this feature considered the mean of the area and

perimeter of the wing particles. As the C. pusillus samples provided a greater mean area and

perimeter of particles respect to the C. obsoletus samples, the difference values in this feature

helps to separate both species. On the other hand, the F7 feature measures how closely a conic

section resembles a circle. Although this feature provides values greater than 0.5, i.e., the aver-

age shape of the wing particles is elliptical for both species, the conical shape of particles in the
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C. pusillus samples were less elliptical than the C. obsoletus samples. This score difference sup-

ports the discrimination of C. pusillus and C. obsoletus species.

An example of computed feature vectors of both species is shown in Figs 4 and 5, fourth

column. Also, a visual representation of how well the optimal subset of features separated both

biting midges classes is shown in Fig 9a. As shown in this figure, the two species are in two

cluster areas that can be easily separated using a straight line.

For the eDataset, unlike the fDataset, the best subset of features varied from one to four

descriptors across the used MLCs. However, the selected optimal subset of features was formed

by two descriptors, namely, the number of particles (F1) and the mean of the hydraulic radius

(F6). From Table 2, it is possible to read that all MLCs included the F1 feature in the final sub-

set, but only the LDA classifier considered the F6 feature, obtaining the highest AUC classifica-

tion performance. Since there are morphological differences in terms of particles from species

to species, the F1 feature appeared as an important descriptor to separate the C. foxi and C.
insignis classes. Like in the case of the fDataset, the F6 feature discriminates both biting midges

species, according to the mean of the area and perimeter of the wing particles.

An example of computed feature vectors of both species is shown in Figs 6 and 7, fourth

column. Besides, a visual representation of how well the optimal subset of features separated

the classes is presented in Fig 9b. From this figure, it should be noted that there is not a clear

boundary between both species. Thus, the separation becomes more difficult using linear

classifiers.

Concerning the classification of the four species in both datasets (fDataset plus eDataset),

the best subset of features varied from three to seven descriptors among all MLCs, but the

selected optimal subset of features involved the number of particles (F1), number of zones (F2),

and the mean of the circularity (F5) features. From Table 2, it is possible to read that all MLCs

considered the F1 and F2 features as relevant descriptors in the final subset. The F5 feature was

selected by its frequency of participation in the best classification schemes, e.g., the LDA and

NB classifiers decided for the F5 feature while the kNN considered the F4 feature. The union of

Table 2. Summary of the statistical comparison based on the AUC performance between the best and optimal feature subset per classifier.

Dataset Best model Best feature subset AUC±SD Optimal model Optimal feature subset AUC±SD t-test

(α = 0.05)

fDataset NB F2, F5, F6, F7 0.99 ± 0.03 NB F6, F7 0.98 ± 0.05 p = 0.06

SVM (c = 1000) F1, F2, F5, F6, F7 0.99 ± 0.04 SVM (c = 100) F3, F5, F6, F7 0.97 ± 0.06 p = 0.08

kNN (k = 1) F1, F3, F4, F6, F7 1 ± 0.01 kNN (k = 15) F6, F7 0.98 ± 0.05 p = 0.42

LDA F3, F4, F6, F7 1 ± 0.01 LDA F6, F7 0.98 ± 0.05 p = 0.05

RF (i = 100) F4, F6, F7 0.98 ± 0.04 RF (i = 100) F6, F7 0.96 ± 0.05 p = 0.07

5�eDataset NB F1, F5 0.87 ± 0.12 NB F1 0.86 ± 0.13 p = 0.08

SVM (c = 10) F1, F4 0.83 ± 0.13 SVM (c = 10) F1, F4 0.83 ± 0.13 p = 1.00

kNN (k = 15) F1 0.87 ± 0.13 kNN (k = 15) F1 0.87 ± 0.13 p = 1.00

LDA F1, F4, F5, F6 0.91 ± 0.11 LDA F1, F6 0.90 ± 0.12 p = 0.37

RF (i = 200) F1, F3 0.87 ± 0.13 RF (i = 200) F1, F3 0.87 ± 0.13 p = 1.00

Both� NB F1, F2, F5 0.96 ± 0.03 NB F1, F2, F5 0.96 ± 0.03 p = 1.00

SVM (c = 10) F1, F2, F3, F4, F5, F6, F7 0.92 ± 0.05 SVM (c = 10) F1, F2, F4 0.90 ± 0.06 p = 0.07

kNN (k = 15) F1, F2, F4 0.96 ± 0.03 kNN (k = 15) F1, F2, F4 0.96 ± 0.03 p = 1.00

LDA F1, F4, F5, F6 0.97 ± 0.03 LDA F1, F2, F5 0.96 ± 0.03 p = 0.06

RF (i = 100) F1, F2, F3, F6, F7 0.96 ± 0.03 RF (i = 100) F1, F2, F3 0.95 ± 0.04 p = 0.05

�fdataset plus eDataset; c-Cost; k-number of neighbors; i-number of trees; SD-standard deviation; F-feature.

https://doi.org/10.1371/journal.pone.0241798.t002
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both datasets represents a more complicated feature space than the single fDataset or eDataset

spaces. Thus, features such as the F1 and F2 oriented to the particles within the wings are prone

to gain more relevance due to the particular wing morphology of each species (different

amount of particles per species). On the other hand, the relevance of the F5 feature is given by

the wide variation in the mean of the circularity of the particles across the four species under

analysis, which is well appreciated to separate these classes.

An example of how well the optimal subset of features separated the classes is presented

in Fig 9c. From this figure, it is possible to observe that samples of each dataset tend to be

clustered. However, the limits of the classes are well defined, minimizing the false-positive

classification.

Overall, the AUC-based classification performance analysis of the seven features computed

by the proposed method, when applied to the experimental datasets, highlighted that the rele-

vance of the features points out to the morphology of the wing particles in the fDataset (F6 and

F7), and to a balanced combination between the morphology of the wing particles and the

number of particles in the eDataset (F1 and F6). However, when applied to both datasets, the

Fig 9. Biting midges species separation according to the optimal subset of features in (a) fDataset, (b) eDataset, and (c) both datasets

together.

https://doi.org/10.1371/journal.pone.0241798.g009
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relevance of features indicates an unbalanced combination among the morphology of the wing

particles, and the number of particles and zones (F1, F2 and F5).

Biting midges classification

Table 3 highlights the classification performance obtained by selected MLCs using the optimal

subset of features per dataset. These results served to support the satisfactory performance pro-

vided by the proposed method in terms of feature calculation. As the previous section shows,

the optimal subsets of features allow differentiating the classes by merely plotting the features

and separate them by a line. This precedent suggests that the different MLCs applied have a

high performance separating the species.

The results obtained by the proposed method applied to the fDataset reveals that the kNN

(k = 15), NB, and LDA classifiers achieved the best classification performance, as highlighted

in Table 3. The three classifiers obtained the same satisfactory performance without AUC-

based statistical difference at α = 0.05, attaining a mean of AUC score of 0.98. However, the

kNN exhaustively explored the total space of k values, demanding more iterations and memory

use. The NB is centered on the entropy measure, and its performance is biased to those fea-

tures that provide high variation, making it practical for specific situations. On the other hand,

the LDA is benefited from features that provide samples’ separation linearly, avoiding incur-

ring any bias. Thus, we selected the LDA as the best classifier to differentiate the species in this

dataset. A visual representation of the LDA performance on the optimal feature space is shown

in Fig 10a. As can be seen from this figure, the LDA classifier can distinguish both species with

only a few samples mismatched.

For the eDataset, the proposed method reached the best results with the LDA classifier

using the optimal subset of features, as shown in Table 3, accomplishing a mean of AUC score

of 0.90. This result was statistically superior to the remaining models. The feature space in this

dataset was more challenging than the one in the fDataset. Still, the LDA classifier successfully

decides the area and defines the appropriate boundary for each species, as shown in Fig 10b.

Additionally, the scenario in which all four species are classified together was also studied,

as described in Table 3. From this table, it is possible to read that the kNN (k = 15), NB, and

LDA classifiers obtained the same satisfactory classification performance with the optimal

subset of features, attaining a mean of AUC score of 0.96. These results did not represent a

Table 3. Summary of the statistical comparison based on the AUC performance of the best classifiers per dataset.

Dataset Highest performance model AUC ± SD Other model AUC ± SD t-test (α = 0.05)

fDataset NB 0.98 ± 0.05 SVM (c = 100) 0.97 ± 0.06 p = 0.14

kNN (k = 15) 0.98 ± 0.05 p = 0.09

LDA 0.98 ± 0.05 p = 0.93

RF (i = 100) 0.96 ± 0.05 p< 0.05

eDataset LDA 0.90 ± 0.12 NB 0.86 ± 0.13 p< 0.05

SVM (c = 10) 0.83 ± 0.13 p< 0.05

kNN (k = 15) 0.87 ± 0.13 p< 0.05

RF (i = 200) 0.87 ± 0.13 p< 0.05

Both� NB 0.96 ± 0.03 SVM (c = 10) 0.90 ± 0.06 p< 0.05

kNN (k = 15) 0.96 ± 0.03 p = 0.65

LDA 0.96 ± 0.03 p = 0.38

RF (i = 100) 0.95 ± 0.04 p = 0.09

�fdataset plus eDataset; c-Cost; k-number of neighbors; i-number of trees; SD-standard deviation; bold line means the selected model.

https://doi.org/10.1371/journal.pone.0241798.t003

PLOS ONE Automatic classification of Culicoides species using wing morphology

PLOS ONE | https://doi.org/10.1371/journal.pone.0241798 November 4, 2020 16 / 23

https://doi.org/10.1371/journal.pone.0241798.t003
https://doi.org/10.1371/journal.pone.0241798


statistical difference (α = 0.05) in terms of AUC performance among them. However, likewise,

in previous cases, we selected the LDA as the best classifier to differentiate the four species, as

shown in Fig 10c, where it is possible to notice the separation hyperplanes established by the

LDA classifier.

Further analysis of the results in this scenario is shown in the confusion matrix of Table 4.

As it can be seen, the species from the fDataset obtained the highest true positive rate (98% for

Fig 10. Biting midges species separation according to the LDA classifier using the optimal subset of features in (a) fDataset, (b)

eDataset, and (c) both datasets together.

https://doi.org/10.1371/journal.pone.0241798.g010

Table 4. Confusion matrix obtained by the LDA classifier for the four Culicoides species classification problem.

Predicted Class

C. obsoletus C. pusillus C. foxi C. insignis
True Class C. obsoletus 41 1 0 0

C. pusillus 2 40 0 0

C. foxi 0 0 34 8

C. insignis 1 0 9 56

https://doi.org/10.1371/journal.pone.0241798.t004
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C. obsoletus and 95% for C. pusillus), while the species from the eDataset obtained lower values

(81% for C. foxi and 85% for C. insignis). These results were expected, considering the results

obtained by analyzing these datasets separately.

Comparison with previously developed methods. We carried out a direct comparison

against the image-enhancing methods previously developed by Guerrón et al. [23], and Benal-

cázar et al. [24], based on the wings and particles (inside the wing) segmentation performance.

The three approaches used Otsu’s method [25] as part of the segmentation stage. Thus, we

applied these approaches to both experimental databases (fDatabase and eDatabase). In this

comparison, the ACC computation was made on two different scenarios. First, on the wing

segmentation in the image sample. If the wing area is isolated (not connected) from non-

desired objects in the background, then the segmentation result is positive. And second on the

particle segmentation inside the wing. If all the particles are determined, and their contours

are closed, the segmentation result is positive. The obtained ACC-based segmentation results

are shown in Table 5.

From this table, it is possible to read that the proposed method was the best for both seg-

mentation aspects (wings and particles) for all species, obtaining total ACC scores of 95.31%

and 94.79%, respectively. It was followed by the method proposed in [24], which obtained

ACC scores of 72.40% and 71.35%. Finally, the approach proposed in [23] provided the worst

performance, attaining a total of ACC score of 2.60% and 7.29%. Besides, it should be noted

that C. obsoletus and C. pusillus species provided an easier scenario for the proposed method.

In contrast, the C. obsoletus and C. foxi species were better scenarios for methods proposed in

[24] and [23]. The C. insignis species was the toughest scenario, as it achieved the lowest per-

formance for each method.

These results are related to the preprocessing scheme used by each method before applying

the segmentation step. The method proposed in [23] only used a Gaussian filter with a size 3

and σ = 0.5 to prepare the image. The use of this filter removes some noises, but it also blurs

the edges and reduces contrast, making the segmentation task harder. The approach described

in [24] enhanced the method proposed in [23] by substituting the Gaussian filter with a (5 × 5)

median filter, improving the denoising part while conserving the edges detail. Then, a histo-

gram equalization operation is also performed to enhance the contrast of the image. These

improvements to the method proposed in [24] could be enough for carrying out the wing seg-

mentation, but they are insufficient for segmenting the particles inside the wing. Either way,

this method performs better than the one described in [23].

On the other hand, in the proposed method, a median filter with a kernel size of (15 × 15)

was included to remove noise. At the same time, the wing and particle contours remain intact

as much as possible. Then, adaptive histogram equalization is applied to enhance the contrast

Table 5. Wings and particles ACC-based segmentation performance for the four species.

Species Guerrón et al. [23] Benalcázar et al. [24] Proposed method

ACC± ACC� ACC± ACC� ACC± ACC�

C. obsoletus 7.14 9.52 90.48 88.10 100 100

C. pusillus 0 0 80.95 66.67 100 100

C. foxi 4.76 11.90 85.71 80.95 95.24 97.62

C. insignis 0 7.58 46.97 57.58 89.39 86.46

Total 2.60 7.29 72.40 71.35 95.31 94.79

±accuracy in wings segmentation;

�accuracy in particles segmentation; All values are in percent.

https://doi.org/10.1371/journal.pone.0241798.t005
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of the image per image zones. Subsequently, a Wiener filter is used with a kernel size of

(25 × 25) to remove any noise that remains after the median filter applied in the previous step

while the wing and particle contours are preserved. This enhanced scheme makes the proposed

method more robust in terms of image preprocessing. Thus, the obtained segmentation results

were somewhat expected.

An example of each method segmentation performance on a random sample from each

species is shown in Fig 11. As can be seen, the limited performance of the method proposed in

[23] for all samples. Only the C. obsoletus sample (first row) was segmented correctly, but the

particles inside the wing in all samples were not. The method proposed in [24] is able to seg-

ment all the wings successfully, however, it fails in segmenting the particles inside the wing of

two samples (see Fig 11, first and second rows). In contrast, the proposed method demon-

strated to be satisfactory for segmenting both the wing and particles on all the test samples.

Moreover, having a proper segmentation of the particles inside the wings can be noticed in

Fig 12, where the watershed performance obtained by the approach of Benalcázar et al. [24]

(second column) and the proposed method (third column), are shown. From this figure, it is

possible to conclude that an unsuccessful wing or particles segmentation makes the watershed

method to overflow, thus, provoking wrong calculation of features that depend on the segmen-

tation process, e.g., the number of zones (F2) is calculated from the particles inside the wing.

In general, these results show the importance of selecting an appropriate preprocessing

scheme to improve the segmentation quality and the further feature calculation and classifica-

tion stages. Although previous works demonstrated good performance in some cases, the

approach proposed in this work yielded better performance and accuracy. Therefore, the

results obtained are promising, indicating that the proposed method could be extended to ana-

lyze other species, and good results could also be expected.

Conclusion

We proposed a two-stage method for analyzing four biting midges species, namely, C. obsole-
tus, C. pusillus, C. foxi and C. insignis. First, the image processing task improved the image

Fig 11. Wing and particles segmentation performance using the Otsu’s method on C.obsoletus (first row), C.
pusillus (second row), C.foxi (third row), and C.insignis (fourth row) samples. From left to right, original wing

image, Guerrón et al. [23], Benalcázar et al. [24], and proposed method results.

https://doi.org/10.1371/journal.pone.0241798.g011

PLOS ONE Automatic classification of Culicoides species using wing morphology

PLOS ONE | https://doi.org/10.1371/journal.pone.0241798 November 4, 2020 19 / 23

https://doi.org/10.1371/journal.pone.0241798.g011
https://doi.org/10.1371/journal.pone.0241798


quality to fulfill a segmentation of particles of interests, and then, the segmentation of the

zones of interests inside the biting midge wing was made by the watershed transform. The pro-

posed method was able to produce optimal features vectors that help to identify the biting

midges species. Feature relevance analysis indicated that the mean of hydraulic radius and

eccentricity were relevant to find the decision boundary between C. obsoletus and C. pusillus
species. The number of particles and the mean of the hydraulic radius for deciding between C.
foxi and C. insignis species, while the number of particles and zones, and the mean of circular-

ity for distinguishing among the four species. The LDA classifier emerged as the best model

for fDataset, eDataset, and both datasets together, reaching mean AUC scores of 0.98, 0.90,

and 0.96, respectively.

Future works include experimentation with larger image datasets, and to include other

species of Culicoides such as species of subgenera Avaritia, Haematomyidium, Hoffmania or

Oecata. Further enrichment of the dataset would allow for an increase in species identification

accuracy, improving our proposed method as a tool for entomological surveillance and distin-

guishing between vector and non-vector species. We also want to explore the use of deep learn-

ing techniques and the implementation of an embedded solution in a mobile device.
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Validation: Noel Pérez, Sonia Zapata, Juan Daniel Mosquera, Denis Augot, José Luis Rojo-
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