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Abstract: Breast cancer is the most common cancer among women worldwide. MicroRNAs (miRNAs
or miRs) play an important role in tumorigenesis, and thus, they have been identified as potential
targets for translational research with diagnostic, prognostic, and therapeutic markers. This study
aimed to identify differentially expressed (DE) miRNAs in breast cancer using the Cancer Genome
Atlas. The miRNA profiles of 755 breast cancer tissues and 86 adjacent non-cancerous breast tissues
were analyzed using Multi Experiment Viewer; miRNA–mRNA network analyses and constructed
KEGG pathways with the predicted target genes were performed. The clinical relevance of miRNAs
was investigated using area under the receiver operating characteristic curve (AUC) analysis, sen-
sitivity, and specificity. The analysis identified 28 DE miRNAs in breast cancer tissues, including
nine upregulated and 19 downregulated miRNAs, compared to non-cancerous breast tissues (p <
0.001). The AUC for each DE miRNA, miR-10b, miR-21, miR-96, miR-99a, miR-100, miR-125b-1,
miR-125b-2, miR-139, miR-141, miR-145, miR-182, miR-183, miR-195, miR-200a, miR-337, miR-429,
and let-7c, exceeded 0.9, indicating excellent diagnostic performance in breast cancer. Moreover,
1381 potential target genes were predicted using the prediction database tool, miRNet. These genes
are related to PD-L1 expression and PD-1 checkpoint in cancer, MAPK signaling, apoptosis, and
TNF pathways; hence, they regulate the development, progression, and immune escape of cancer.
Thus, these 28 miRNAs can serve as prospective biomarkers for the diagnosis of breast cancer. Taken
together, these results provide insight into the pathogenic mechanisms and potential therapies for
breast cancer.
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1. Introduction

Breast cancer is the third most common malignancy among women, with annual
morbidity increasing worldwide [1]. According to the World Health Organization, 2.1 mil-
lion new cases and 627,000 deaths were estimated for breast cancer in 2018. Moreover,
breast cancer accounts for approximately 15% of all cancer-related deaths in women [2].
Breast cancer is a heterogeneous disease classified into four subtypes by gene expression
profiling, including luminal A (ER/PR+, HER2−, Ki67+ < 20%), luminal B (ER/PR+ < 20%,
HER2−, Ki67+≥ 20%), HER2 (ER/PR−, HER2 overexpression), and basal-like (ER−, PR−,
HER2−) [3,4].

Early detection and improved treatment can aid in better survival and outcomes in
patients with breast cancer. Mammography for breast cancer is a widely used screening
tool. However, the extensive use of mammography has been hindered by the cost and
expertise required for mammography. On the other hand, alternative methods, such as
ultrasound screening, are highly operator-dependent. In addition, tumor serum markers,
such as carbohydrate antigen 15–3 (CA-15–3) and carcinoembryonic antigen (CEA), are
nonspecific and have limited sensitivity and specificity [5,6].

Even though well-characterized subtypes and early detection have reduced the burden
of treatment for patients, more specific molecular targets are needed to increase the survival
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rate for each patient. One of the molecular targets with growing interest is microRNA
(miRNA or miR). It has been used to assess the diagnosis, prognosis, and therapy response
in breast cancer [7–10]; miRNAs are small, naturally occurring, non-coding RNAs (18–
25 nucleotides) that regulate gene expression, mainly by binding to the 3′ untranslated
region of target mRNAs. They lead to the silencing of respective gene expression either
by direct degradation of mRNA or inhibition of protein translation [11,12]; miRNAs
are involved in a wide range of cancer biology processes, including regulation of target
mRNA expression, which promotes tumor growth, apoptosis, progression, metastasis,
and immune evasion [13–16]. Many studies have reported that miRNAs play key roles in
the occurrence and progression of breast cancer [17–20]; this has prompted translational
studies on miRNAs for breast cancer to be actively conducted [21].

In recent years, the development of high-throughput technologies and bioinformatics
analysis has provided new insights into novel cancer biomarkers and therapeutic target
information [22–24]; miRNAs can regulate the expression of multiple genes rather than one
gene, affect the activity of the entire signaling network, and modulate biological processes.
Previous studies have estimated that miRNAs can target more than 5300 human genes,
constituting over 30% of the human genome [25]. Moreover, comprehensive analysis of
miRNAs and target genes can provide new opportunities for the prevention, treatment,
and diagnosis of breast cancer. In this study, datasets of miRNAs in 755 breast tumors and
86 adjacent non-tumor breast tissues from the Cancer Genome Atlas (TCGA) were used to
identify differentially expressed (DE) miRNAs. The diagnostic utility of DE miRNAs was
evaluated in terms of the area under the curve (AUC) of the receiver operating characteristic
(ROC), sensitivity, and specificity. DE miRNAs were also investigated according to cancer
stage and subtype. Furthermore, the target genes predicted by miRNet were further
explored using pathway analysis to determine their potential roles in breast cancer.

2. Materials and Methods
2.1. The Cancer Genome Atlas (TCGA) Data Analysis

Raw data for miRNAs and clinical information of breast cancer were obtained from the
TCGA open source repository (http://firebrowse.org/) on 01/28/2016. To verify clinical
diagnostic values, data for all clinical samples, including age, race, tumor stage, molecular
subtype, and reads per million miRNAs, were included for 755 breast cancer samples
and 86 adjacent non-cancerous breast tissues. Other clinical variables (treatment, surgical
type, etc.) were not analyzed in the current study. Data were divided into different stages,
including early stage (stages 1 and 2), locally advanced stage (stage 3), and metastatic stage
(stage 4). Data from eight samples with unknown stages were excluded from this study.
Clinical information from TCGA data is shown in Table S1 (Supplementary Material).

2.2. miRNA Expression Profiles

To determine miRNA expression profiles and identify DE miRNAs, hierarchical
clustering and volcano plot analyses were performed using Multi Experiment Viewer
(MEV) software version 4.4. Principal component analysis (PCA) was also performed to
assess population clustering and the parameters responsible for the distinction between
the groups. The mean values of DE miRNAs between cancerous and non-cancerous breast
tissues were compared using Student’s t-test, and the false discovery rate-adjusted p-value
(q-value) was calculated.

2.3. Constructin Regulatory Network between miRNAs and Their Targets and Pathway
Enrichment Analysis

The target genes of the selected DE miRNAs were predicted using miRNet (http://www.
mirnet.ca/). The miRNA target gene network was constructed based on mapping analysis [22].

Furthermore, the target genes in the network were analyzed using Cytoscape software
version 3.8.1 with ClueGO for the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis. ClueGO parameters were set as indicated: GO term fusion
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Diagnostics 2021, 11, 107 3 of 15

selected; only display pathways with p < 0.001 with Bonferroni step-down analysis; and
kappa score of 0.4 [23].

2.4. Statistical Analysis

All statistical analyses were performed using GraphPad Prism software version 6
(La Jolla, CA, USA), SPSS Statistics software (version 21.0; IBM, Armonk, NY, USA),
and Multi Experiment Viewer (MEV) software version 4.4. Student’s t-test was used to
compare the expression of miRNAs between cancerous and non-cancerous breast tissues.
Receiver operating characteristic (ROC) curve analysis and the area under the ROC curve
(AUC) were used to assess the diagnostic utility of the selected miRNAs. Analysis of
the association between survival and DE miRNAs was performed using miRpower, a
web tool to validate survival-associated miRNAs [26]. A database was established using
miRNA expression data from the Molecular Taxonomy of Breast Cancer International
Consortium (METABRIC). Survival was estimated using Kaplan methods and evaluated
using a log-rank test. In all analyses, p < 0.05 was considered statistically significant.

3. Results
3.1. Patients’ Characteristics

The miRNA sequencing dataset comprising a total of 755 breast cancer and 86 adjacent
non-cancerous breast tissues was obtained from the TCGA breast cancer project. Demo-
graphic data and clinical characteristics of the patients are shown in Table 1. The percentage
of female patients was 98.8 % (746/755). The patients were aged 58.42 ± 13.11 years (range,
26–90 years). The most frequent race of patients was white (71.31%), followed by black or
African American (20.66%), Asian (7.42), and unknown (0.79). There were 567 patients with
early stage cancer (75.10%), 171 with locally advanced stage (22.62%), nine with metastatic
stage (1.19%), and eight with unknown (1.06%). Moreover, 208 patients presented with
luminal A (27.55%), 74 with luminal B (9.80%), 116 with HER2-positive (15.36%), and 357
with triple-negative breast cancer (TNBC) (47.28%) subtypes.

Table 1. Clinical characteristics of breast cancer patients.

Characteristics Breast Cancer (n = 755)

Female, n (%) 746 (98.8)
Age (y, mean ± SD) 58.42 ± 13.11

Race, n (%)
Asian 56 (7.42)

Black or African American 156 (20.66)
White 537 (71.13)

Unknown 6 (0.79)
Pathological stage

Early (stage I and II) 567 (75.10)
Locally advanced (stage III) 171 (22.65)

Metastatic (stage IV) 9 (1.19)
Unknown 8 (1.06)

Molecular subtype
Luminal A 208 (27.55)
Luminal B 74 (9.80)

HER2 positive 116 (15.36)
TNBC 357 (47.28)

3.2. Selection of 28 Potential miRNAs as Diagnostic Biomarkers for Breast Cancer

PCA with data from breast cancer tissues was distinguished from that of non-cancerous
breast tissues. A cluster distinction was generated using PCA (Figure 1a). Furthermore, DE
miRNAs were investigated using the q-value. Subsequently, more potential DE miRNAs
were selected based on the mean difference (>1 or <–1) and –log10 (p) < 5; and 28 DE
miRNAs, including nine upregulated and 19 downregulated miRNAs, were identified
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by volcano plot analysis (Figure 1b). The heat map profiles of the expression of the 28
selected miRNAs in breast cancer tissues and non-cancerous breast tissues are shown in
Figure 2. These miRNAs, including miR-21, miR-96, miR-141, miR-182, miR-183, miR-200a,
miR-200b, miR-200c, and miR-429, which were upregulated, and miR-10b, miR-28, miR-
99a, miR-100, miR-125b-1, miR-125b-2, miR-139, miR-143, miR-145, miR-195, miR-218-2,
miR-337, miR-497, miR-511-1, miR-511-2, miR-676, miR-3199-1, miR-3199-2, and let-7c were
downregulated compared to non-cancerous breast tissues.
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3.3. Diagnostic Utility of Selected miRNAs

To investigate the diagnostic value of the 28 selected miRNAs, the expression levels of
these miRNAs were tested, and were found to be significantly higher or lower in breast
cancer tissues than in adjacent non-cancerous tissues (p < 0.001, Figures 3 and 4). The
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diagnostic performance of the 28 DE miRNAs was determined using ROC curve analysis.
The AUCs of the 28 DE miRNAs are listed in Table 2. The AUCs for the top five miRNAs
exceeded 0.97: miR-139 (0.99, 95% CI = 0.98–1.00), miR-21 (0.98, 95% CI = 0.97–0.99),
miR-96 (0.97, 95% CI = 0.96–0.99), miR-183 (0.97, 95% CI = 0.96–0.99), and miR-10b (0.97,
95% CI = 0.96–0.99), indicating good diagnostic performance in breast cancer patients
(p < 0.0001). To confirm the diagnostic value of the DE miRNAs, the combination of the top
five miRNAs was analyzed. It showed improved sensitivity (96.95%, 95% CI = 95.46–98.06)
and specificity (100%, 95% CI = 95.80–100.00) (Table 2).
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than that in pair-matched non-cancerous breast tissues. Data are reported as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 4. The expression levels of downregulated miRNAs in breast cancer tissues and the pair-matched non-cancerous
tissues. The miRNAs downregulated in breast cancer tissues were (a) miR-10, (b) miR-28, (c) miR-99a, (d) miR-100, (e)
miR-125b-1, (f) miR-125b-2, (g) miR-139, (h) miR-143, (i) miR-145, (j) miR-195, (k) miR-218-1, (l) miR-337, (m) miR-497, (n)
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reported as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.
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Table 2. Comparison of the diagnostic utility of the 28 differentially expressed miRNAs in breast cancer.

miRNAs

Expression Levels

AUC Cutoff Sensitivity Specificity p-Value
Cancerous Non-

Cancerous

miR-139 53.78 ± 51.39 442.40 ± 238.40 0.99 (0.98–1.00) <142.40 94.44% (92.55–95.96) 97.67% (91.85–9.72) <0.0001
miR-21 249857 ± 98314 54433 ± 32501 0.98 (0.97–0.99) >89285 96.82% (95.31–97.95) 93.02% (85.43–97.40) <0.0001
miR-96 42.21 ± 33.52 4.48 ± 4.54 0.97 (0.96–0.99) >9.49 92.32% (90.18–94.12) 90.70% (82.49–95.90) <0.0001
miR-183 17528 ± 13739 2123 ± 1687 0.97 (0.96–0.99) >4366 93.11% (91.07–94.81) 95.35% (88.52–98.72) <0.0001
miR-10b 73500 ± 52246 264948 ± 71301 0.97 (0.96–0.99) <155979 93.11% (91.07–94.81) 94.19% (86.95–98.09) <0.0001
miR-145 1419 ± 1189 7747 ± 4123 0.97 (0.95–0.99) <2992 92.05% (89.89–93.88) 93.02% (85.43–97.40) <0.0001
miR-99a 805.30 ± 835.00 3038 ± 1278 0.96 (0.94–0.98) <1506 90.86% (88.58–92.82) 93.02% (85.43–97.40) <0.0001
miR-182 46895 ± 34488 8578 ± 5819 0.95 (0.94–0.97) >14180 90.73% (88.43–92.70) 90.70% (82.49–95.90) <0.0001

let-7c 2606 ± 2826 7948 ± 2638 0.95 (0.92–0.97) <4359 87.28% (84.70–89.58) 93.02% (85.43–97.40) <0.0001
miR-141 1939 ± 1314 424.60 ± 404.00 0.94 (0.92–0.97) >870.90 86.23% (83.56–88.60) 90.70% (82.49–95.90) <0.0001

miR-125b-1 839.10 ± 656.90 2884 ± 1483 0.94 (0.92–0.97) <1322 86.49% (83.84–88.85) 93.02% (85.43–97.40) <0.0001
miR-125b-2 22.13 ± 29.51 63.66 ± 28.27 0.94 (0.92–0.96) <35.60 86.36% (83.70–88.73) 90.70% (82.49–95.90) <0.0001

miR-100 3427 ± 2602 11069 ± 4621 0.94 (0.91–0.97) <5597 86.49% (83.84–88.85) 90.70% (82.49–95.90) <0.0001
miR-200a 1016 ± 626.40 225.6 ± 203.0 0.94 (0.91–0.96) >370.00 90.07% (87.71–92.11) 84.88% (75.54–91.70) <0.0001
miR-429 123.30 ± 98.28 20.86 ± 21.94 0.93 (0.91–0.96) >32.56 90.33% (88.00–92.34) 86.05% (76.89–92.58) <0.0001
miR-195 49.86 ± 40.15 121.5 ± 46.99 0.92 (0.90–0.94) <67.69 80.93% (77.94–83.67) 93.02% (85.43–97.40) <0.0001
miR-337 40.46 ± 41.63 153.30 ± 117.30 0.92 (0.89–0.95) <67.89 85.96% (83.28–88.36) 86.05% (76.89–92.58) <0.0001
miR-200c 12257 ± 7356 4191 ± 3181 0.90 (0.87–0.93) >6359 82.38% (79.48–85.04) 84.88% (75.54–91.70) <0.0001
miR-200b 739.40 ± 491.60 224.3 ± 168.2 0.89 (0.86–0.93) >334.00 83.97% (81.16–86.52) 82.56% (72.87–89.90) <0.0001

miR-3119-2 0.56 ± 0.59 1.84 ± 1.04 0.89 (0.85–0.93) <1.03 85.03% (82.29–87.50) 87.21% (78.27–93.44) <0.0001
miR-511-2 4.31 ± 5.41 15.64 ± 10.54 0.89 (0.85–0.92) <6.64 81.72% (78.78–84.42) 86.05% (76.89–92.58) <0.0001
miR-497 29.01 ± 22.06 70.12 ± 32.43 0.89 (0.85–0.92) <41.53 81.19% (78.22–83.92) 84.88% (75.54–91.70) <0.0001
miR-28 4175 ± 2047 6809 ± 1514 0.88 (0.85–0.91) <5414 81.46% (78.50–84.17) 84.88% (75.54–91.70) <0.0001

miR-511-1 4.33 ± 5.58 15.05 ± 10.74 0.88 (0.84–0.91) <6.70 81.99% (79.06–84.66) 80.23% (70.25–88.04) <0.0001
miR-143 48562 ± 42798 98159 ± 46495 0.86 (0.83–0.89) <64538 80.40% (77.38–83.17) 82.56% (72.87–89.90) <0.0001

miR-218-2 41.07 ± 30.26 75.87 ± 34.19 0.85 (0.81–0.89) <51.24 76.03% (72.82–79.03) 82.56% (72.87–89.90) <0.0001
miR-676 0.82 ± 0.94 1.96 ± 1.03 0.84 (0.80–0.88) <1.11 77.09% (73.92–80.04) 80.23% (70.25–88.04) <0.0001

miR-3199-1 0.47 ± 0.53 1.52 ± 0.95 0.83 (0.77–0.88) <0.74 77.35% (74.20–80.29) 80.23% (70.25–88.04) <0.0001

Combination of top 5 miRNAs Sensitivity Specificity p value

miR-139 + mir-21 + miR-96 + miR-183 + miR-10b 96.95% (95.46–98.06) 100.00%
(95.80–100.00) <0.0001

Subsequently, the expression levels of the DE miRNAs were investigated according to
the cancer stage (Figure 5). Among the DE miRNAs, the expression level of miR-21 was
significantly higher in the metastatic stage (stage 1) and locally advanced (stage 3) stage
compared to the early stages (stages 1 and 2) (p < 0.05); the expression levels of miR-141
and miR-200c were significantly higher in the early stages than in the locally advanced
stage (p < 0.01 and p < 0.05, respectively). The expression levels of miR-28, miR-139, and
miR-143 were significantly lower in the early stages than in the locally advanced stage
(p < 0.001, p < 0.05, and p < 0.01, respectively). Furthermore, the expression levels of the
DE miRNAs were also analyzed by breast cancer subtypes (Figure 6). Among the nine
upregulated miRNAs, the expression level of miR-21 was significantly higher in luminal B
than in luminal A and TNBC (p < 0.05 and p < 0.001, respectively). The expression of miR-183
was significantly upregulated in HER2-positive patients compared to other subtypes (luminal
A, luminal B, and TNBC) (p < 0.001, p < 0.01, and p < 0.01, respectively). The miR-200a
expression level in TNBC was higher than that in luminal A and HER2-positive subtypes
(p < 0.05 and p < 0.05, respectively). For the 19 downregulated miRNAs, the expression levels
of miR-28 and miR-3199-1 in luminal A and luminal B were significantly downregulated
compared to HER2-positive and TNBC. The expression level of miR-511-1 and miR-511-2
in luminal B were downregulated compared to HER2-positive and TNBC (p < 0.05 and
p < 0.001 for both miR-511-1 and miR-511-2). The MiR-139 expression level in luminal A was
significantly higher than that in luminal B, HER2, and TNBC (p < 0.05, p < 0.001, and p < 0.01,
respectively); miR-676 expression in TNBC was significantly higher than that in luminal A,
luminal B, and HER2-positive (p < 0.01, p < 0.001, and p < 0.05, respectively).
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Figure 6. The significant DE miRNAs according to breast cancer subtypes. The upregulated (a) miR-21, (b) miR-183, and
(c) miR-200a were significantly associated with different subtypes (luminal A, luminal B, HER2-positive, and TNBC). The
downregulated (d) miR-28, (e) miR-139, (f) miR-511-1, (g) miR-511-2, (h) miR-676, and (i) miR-3199-1 were significantly
associated with different subtypes. Data are reported as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001.

3.4. Survival for Selected miRNAs

To investigate the prognostic value of the 28 selected miRNAs, survival data with
miRNA expressions were analyzed using miRpower (Figure S1). The results showed that
high expression of miR-21, miR-141, and miR-200c was significantly associated with poor
survival (p = 0.01, p < 0.001, and p < 0.001, respectively). The low expression of the ten
downregulated miRNAs, namely, miR-10b, miR-99a, miR-100, miR-125b, miR-143, miR-145,
miR-195, miR-218, miR-497, and let-7c, showed a significant correlation with poor survival.

3.5. Identification of Downstream Target Genes of miRNAs in Breast Cancer

To elucidate the underlying biological functions of miRNAs via negative regulation of
the expression of downstream target genes, miRNet was used to predict the target genes of
the 28 DE miRNAs. As shown in Figure 7a, a total of 1381 predicted target genes of miR-21
(yellow), miR-125b (green), miR-200b (blue), and miR-429 (red) were obtained. The list of
predicted target genes is shown in Table S2.
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Figure 7. The miRNA–mRNA interaction network analysis and enriched KEGG pathways for target genes. (a) A significant
miRNA target gene network is constructed by submitting the 28 selected miRNAs to the miRNet database. (b) The network
represents KEGG pathways for target genes of the most significant miRNAs. Representations are generated by ClueGO
for functionally grouped networks of enriched KEGG pathways. The parameters of GlueGo were set as follows: GO
term fusion selected; only display pathways with p < 0.001 with Bonferroni step-down analysis; and kappa score of 0.4.
MAPK: Mitogen-activated protein kinase; HIF-1: Hypoxia-inducible factor; PD-L1: Programmed cell death-ligand 1; PD-1:
Programmed cell death-1; PI3K: Phosphatidylinositol 3-kinase; TNF: Tumor necrosis factor; FoxO: Forkhead box protein O;
EBV: Epstein-barr virus.

Next, the predicted target genes were analyzed using KEGG pathway enrichment
analysis with the ClueGO plug-in of Cytoscape (kappa score = 0.4, p < 0.001 with Bon-
ferroni step-down analysis) (Figure 7b, Table 3). The relationships between pathways
were observed, and predicted target genes were found to be enriched in mitogen-activated
protein kinase (MAPK) signaling, hypoxia-induced factor-1 (HIF-1) signaling, central
carbon metabolism in cancer, programmed cell death-ligand 1 (PD-L1) expression, and
programmed cell death-1 (PD-1) checkpoint pathway in cancer, phosphatidylinositol 3-
kinase (PI3K)-Akt signaling, apoptosis, signaling pathways regulating pluripotency of
stem cells, tumor necrosis factor (TNF) signaling, pathways in cancer, and microRNAs in
cancer pathways. KEGG pathways for the predicted targets are summarized in Table S3.
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Table 3. List of gene ontology terms for predicted targets of differentially expressed miRNAs.

GO ID GO Terms No. of Genes p-Value

KEGG:04010 MAPK signaling pathway 53 <0.001
KEGG:04066 HIF-1 signaling pathway 32 <0.001
KEGG:05230 Central carbon metabolism in cancer 20 <0.001
KEGG:05235 PD-L1 expression and PD-1 checkpoint pathway in cancer 24 <0.001
KEGG:04151 PI3K-Akt signaling pathway 56 <0.001
KEGG:04210 Apoptosis 30 <0.001
KEGG:04550 Signaling pathways regulating pluripotency of stem cells 32 <0.001
KEGG:04668 TNF signaling pathway 27 <0.001
KEGG:04722 Neurotrophin signaling pathway 32 <0.001
KEGG:04933 AGE-RACE signaling pathway in diabetic complications 28 <0.001
KEGG:05200 Pathways in cancer 96 <0.001
KEGG:05205 Proteoglycans in cancer 48 <0.001
KEGG:05206 microRNAs in cancer 76 <0.001
KEGG:05211 Renal cell carcinoma 20 <0.001
KEGG:04068 FoxO signaling pathway 36 <0.001
KEGG:05215 Prostate cancer 35 <0.001
KEGG:05161 Hepatitis B 45 <0.001
KEGG:05162 Measles 32 <0.001
KEGG:05169 EBV infection 40 <0.001
KEGG:05220 Chronic myeloid leukemia 27 <0.001
KEGG:05222 Small cell lung cancer 26 <0.001
KEGG:04218 Cellular senescence 36 <0.001
KEGG:05163 Human cytomegalovirus infection 42 <0.001
KEGG:05210 Colorectal cancer 28 <0.001
KEGG:05212 Pancreatic cancer 27 <0.001
KEGG:05220 Chronic myeloid leukemia 27 <0.001
KEGG:05223 Non-small cell lung cancer 21 <0.001
KEGG:05224 Breast cancer 37 <0.001
KEGG:05225 Hepatocellular carcinoma 41 <0.001
KEGG:05226 Gastric canner 39 <0.001

GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.

4. Discussion

Breast cancer is one of the most commonly diagnosed cancers and causes of signifi-
cant cancer-mediated deaths in women worldwide [27]. Moreover, despite the constant
development of diagnostic approaches for cancer, early diagnosis of breast cancer and im-
provement in survival remain difficult. It has been shown that various imaging approaches,
such as mammography, magnetic resonance imaging, positron emission tomography, com-
puted tomography, and single-photon emission computed tomography, can be used for
the diagnosis and monitoring of breast cancer patients in various stages [28–30]. Currently,
numerous studies on new diagnostic approaches for breast cancer using circulating tumor
cells, circulating tumor DNA, exosomes, and microRNAs are underway [31–34].

The miRNAs, a group of small, single-stranded, non-coding RNA molecules, are fre-
quently dysregulated in cancers, including breast cancer [35]. Recent studies have found
that specific miRNAs are associated with breast cancer [36,37]. Studies on the clinical appli-
cations of miRNAs, such as in diagnosis, prognosis, and therapeutic strategies for cancer,
including breast cancer, are also gaining prominence [21]. Here, a systematic analysis of
miRNA expression profiles from TCGA was performed to identify potential miRNAs for
the diagnosis of breast cancer. First, 28 DE miRNAs were screened for expression in breast
cancer tissues compared to adjacent non-cancerous tissues, identifying nine upregulated
and 19 downregulated miRNAs. Of these, miR-21 and miR-139 were found to be the most
significantly upregulated and downregulated miRNAs, respectively, in breast cancer tissues.
Previous studies have shown that miR-21 overexpression in breast cancer is associated with
cell proliferation, progression, metastasis, and poor prognosis [38,39]. It has also been re-
ported that miR-21 promotes invasion and cell proliferation by targeting programmed cell
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death 4 (PDCD4) [38]; miR-139 has been reported to act as a tumor suppressor in several
cancer types, such as prostate cancer, endometrial cancer, and breast cancer [40–42]. In addi-
tion to miR-21 and miR-139, selected DE miRNAs have also been confirmed to function as
one of the major components in cancer biology by other groups. The identified DE miRNAs
have been studied for their tumor-suppressive or oncogenic functions, but their diagnostic
potential in clinical settings has not been fully elucidated.

Therefore, to evaluate the selected DE miRNAs as diagnostic tools for breast cancer,
their performance characteristics of sensitivity, specificity, and AUC were analyzed. The
results showed a sensitivity of 97%–76% and a specificity of 98%–80%. The AUC values
ranged from 0.99 (95% CI = 0.98–1.00) to 0.83 (95% CI = 0.77–0.88) (p < 0.0001). These values
are higher than the previously reported sensitivity of 67%–95% and specificity of >95%
using the current standard diagnostic tools, such as mammography [43,44]. Several studies
have investigated miRNAs for the diagnosis of breast cancer. Hastings et al. reported that
the expression levels of miR-148b, miR-376c, and miR-409-3p were upregulated in benign
breast tissues compared to those in breast cancer tissues [45]. Additionally, Cookson et al.
showed that upregulation of miR-16, miR-21, and miR-451 and downregulation of miR-145
in the plasma of breast cancer patients serves as a screening biomarker [8]. Moreover,
the miRNA profile analysis of miR-1, miR-92a, miR-133a, and miR-133b in breast cancer
suggested their potential diagnostic performance with high AUC values (0.90 to 0.91) [46].
Taken together, the clinical relevance of the 28 selected DE miRNAs was comparable to
that of the other miRNAs.

Classification into molecular subtypes based on the presence or absence of three
receptors, the ER, PR, and HER2, is considered the gold standard for diagnosis and progno-
sis, providing essential information for accelerating therapeutic decisions (chemotherapy,
hormone therapy, and anti-HER2 therapy) [47,48]. Among the DE miRNAs, the results
revealed an upregulation of miR-200a in TNBC, miR-183 in HER2-positive, and miR-21
in luminal B. Moreover, we observed a downregulation of miR-28, miR-3199-1, miR-511-
1, and miR-511-2 in luminal B. Several studies identified subtype-specific dysregulated
miRNAs in breast cancer. Shin et al. suggested that downregulation of miR-16, miR-21,
miR-199a, miR-185, and miR-143 and upregulation of miR-92a-3p, miR-23b-3p, and miR-
343-3p could be used to discriminate between TNBC and non-TNBC [49]. Other studies
revealed an upregulation of miR-373 in ER-positive [50], miR-342 in luminal B [51], and
miR-18b, miR-103, miR-107, and miR-652 in TNBC [52]. In this context, the possible role
has been suggested of miRNAs’ specific response to breast cancer subtype, emerging as a
potential diagnostic marker.

Several studies have also reported that the expression levels of some miRNAs (miR-21,
miR-23b, and miR-24-3p) are associated with poor prognosis in breast cancer [53–55]. In
this study, the results showed that high expression levels of miR-21, miR-141, and miR-200c
were more closely related to poor survival. Furthermore, low expression levels of miR-10b,
miR-99a, miR-100, miR-125b, miR-143, miR-145, miR-195, miR-218, miR-497, and let-7c had
a significantly shorter survival time than those with high expression.

To establish the functional features of the DE miRNAs, miRNet was used for predicting
target mRNAs, and pathway analysis for the predicted targets using KEGG were performed.
Significant target genes for miR-21, miR-125b, miR-200b, and miR-429 were identified. The
identified target genes are involved in breast cancer, PD-L1 expression and PD-1 checkpoint
pathway in cancer, MAPK signaling, apoptosis, and TNF pathways. In particular, PD-1/PD-
L1 is expressed on the surface of immune cells, such as T-cells, B-cells, and natural killer T
cells, which function as immune checkpoint inhibitors [56–59]. PD-L1 in cancer cells binds
to PD-1 present in T cells, inhibiting T cell function [60]. PD-L1 expression is associated with
the occurrence of larger tumor size, high grade, estrogen receptor-negative, progesterone
receptor-negative, and HER2-positive breast cancer [61]. PD-L1 is also expressed in 20% of
TNBCs [62]. Recent studies have attempted to block the PD-1/PD-L1 pathway to ensure
stronger tumor regression in cellular immunotherapies [63–67]. Thus, these results could
improve the course of further research on immunotherapeutic strategies.
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5. Conclusions

In conclusion, this study provides a comprehensive analysis of DE miRNAs and
their potential targets and diagnostic performance in breast cancer. They may serve as
promising diagnostic biomarkers. Additionally, these dysregulated miRNAs should be
further investigated using tissue samples and blood samples collected from multiple centers
at various stages and subtypes, such as luminal A, luminal B, HER2, and basal breast cancer.
Further studies are also needed for validation for DE miRNA targets and prognostic values
considering survival days, lymph node, surgical type, and adjuvant treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-441
8/11/1/107/s1; Figure S1: Kaplan–Meier survival for low DE miRNAs versus high DE miRNAs
expression level, Table S1: Clinical information from TCGA, Table S2: List of predicted target genes,
Table S3: KEGG pathways for predicted targets.
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