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Abstract: Hypertension is a complex disease explained with diverse factors including environmental
factors and genetic factors. The objectives of this study were to determine the interaction
effects between gene variants and 24 h estimated urinary sodium and potassium excretion and
sodium-potassium excretion ratios on the risk of hypertension. A total of 8839 participants were
included in the genome-wide association study (GWAS) to find genetic factors associated with
hypertension. Tanaka and Kawasaki formulas were applied to estimate 24 h urinary sodium
and potassium excretion. A total of 4414 participants were included in interaction analyses to
identify the interaction effects of gene variants according to 24 h estimated urinary factors on the
risk of hypertension. CSK rs1378942 and CSK-MIR4513 rs3784789 were significantly modified by
urinary sodium-potassium excretion ratio. In addition, MKLN rs1643270 with urinary potassium
excretion, LOC101929750 rs7554672 with urinary sodium and potassium excretion, and TENM4
rs10466739 with urinary sodium-potassium excretion ratio showed significant interaction effects. The
present study results indicated that the mutant alleles of CSK rs1378942 and CSK-MIR4513 rs3784789
had the strongest protective effects against hypertension in the middle group of 24 h estimated
urinary sodium-potassium excretion ratio. Further studies are needed to replicate these analyses in
other populations.

Keywords: CSK; gene-diet interaction; hypertension; blood pressure; sodium; potassium;
sodium-potassium ratio; nutrigenetics

1. Introduction

Hypertension is widely known to cause cardiovascular diseases including myocardial infarction,
congestive heart failure, peripheral vascular disease, stroke, and coronary artery disease [1], which
are strongly related to mortality worldwide [2]. Hence, the prevention of hypertension is a vital
issue for public health. The prevalence of hypertension is 28.9% (31.8% in men, 26.2% in women) in
Korean adults, and is higher in elderly groups over 65 years old (60.5% total, 54.3% in men, 65.0%
in women) [3]. The control of blood pressure to prevent hypertension is not a simple undertaking
because the mechanism of hypertension is complicated and is related to environmental factors and
genetic factors.
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There have been several studies that examined the relationship between single nucleotide
polymorphism (SNP) and blood pressure or hypertension via genome-wide association studies (GWAS)
among Koreans [4–12]. However, the mechanism of blood pressure is not sufficiently explained by
the genetic effect. Sodium intake and sodium-potassium ratio are generally known to have positive
associations with blood pressure and hypertension [13–20], while potassium intake is known to have
a negative association with blood pressure and hypertension [13,21]. The average sodium intake is
3874.1 mg/day in Koreans [3], which is much higher than the 2000 mg/day recommended by the
world health organization (WHO) [22]. Urinary sodium is considered to reflect actual ingested sodium
as a gold standard [23], but there are difficulties in monitoring it due to extended time and cost in
large-scale population studies. The Tanaka equation [24] and the Kawasaki equation [25] are generally
used to estimate 24 h urinary sodium or urinary potassium [26–29] by using spot urinary creatinine,
urinary sodium, or urinary potassium.

The protective effect of low sodium diets differs by ethnicity and by individuals according to
salt sensitivity [30]. Therefore, research to examine the interaction effects between sodium intake and
genetic effects on the risk of hypertension is needed. There was a previous study of this relationship in
Koreans, but the study had a small sample size [12]. Therefore, the objectives of this study were to
investigate the interaction effects of gene variants and 24 h estimated urinary sodium and potassium
excretion and sodium-potassium excretion ratios on the risk of hypertension.

2. Methods

2.1. Study Population

As a part of the Korean genome and epidemiology study (KoGES) cohort, KoGES_Ansan and
Ansung study was initially established to investigate the effects of environmental factors on the
incidence of chronic diseases among Korean adults in 2001. The KoGES_Ansan and Ansung study
primarily included 10,038 participants (5020 in Ansan city and 5018 in Ansung city). Figure 1 shows a
flow chart explaining the selection of study participants. Detailed descriptions of the selection process
for the study population are below:

Sample 1: After excluding participants who had genotyping data of low quality (n = 1196) [31],
duplicate data (n = 2), missing blood pressure data (n = 1), sample 1 included 8839 participants. Sample
1 was analyzed to identify SNPs associated with hypertension.

Sample 2: After excluding participants from sample 1 who had no information for spot urinary
samples (n = 4422) and weight (n = 3), sample 2 included 4414 participants. Sample 2 was analyzed to
clarify the association between urinary factors and blood pressure or hypertension, and to investigate
interaction effects between urinary factors and tagging SNPs on the risk of hypertension.
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2.2. Anthropometric Measurement and Collection of Urinary Samples

Information about the participants’ socio-demographic status, medical history, diet, and lifestyles
was collected through interviewer-administered questionnaires. Height (cm) was measured by using a
stadiometer and weight (kg) was measured by using an audiometer. Waist circumference (cm) was
measured three times by using a tapeline and the average values were used. Body mass index (BMI,
kg/m2) was calculated by using weight and height.

Measurement of blood pressure (BP, mmHg) was performed three times with a stethoscope using
the Korotkoff method in a supine position. We calculated the average value of systolic BP (SBP) and
diastolic BP (DBP). If participants had a systolic BP ≥140 mmHg, a diastolic BP ≥90 mmHg, or took
medicine for BP, then we defined them as cases with hypertension (1005 cases and 3412 controls).

Urinary specimens were self-collected by the participants in urine cups, then were transferred
to conical tubes and sent to a central laboratory. Spot urine tests for sodium and potassium were
quantified through biochemical assays in the central laboratory (Seoul Clinical Laboratories, Seoul,
Korea). Twenty-four hour estimated urinary excretion of sodium and potassium were calculated using
spot urinary sodium and potassium by using the Tanaka formula [24] and the Kawasaki formula [25],
which were often used in other studies [26–29]. We calculated the 24 h estimated sodium-potassium
excretion ratio by using 24 h estimated urinary sodium and potassium excretion.

2.3. Genotyping and Imputation of SNPs

Comprehensive genotyping, quality controls, and imputation of SNPs have been described in a
previous study [31]. Genomic DNA samples were isolated from the blood specimen of participants
in the KoGES_Ansan and Ansung study and genotyped using Affymetrix Genome-Wide Human
SNP array 5.0 (Affymetrix, Inc., Santa Clara, CA, USA). A total of 500,568 SNPs were genotyped by
using Bayesian Robust Linear Modeling Mahalanobis (BRLMM) distance algorithm [32]. SNPs with
missing genotype call rates >5%, minor allele frequency (MAF) <0.01, and Hardy-Weinberg equilibrium
p < 1 × 10−6 were eliminated before association analyses. Quality control was conducted by duplicate
genotyping for about 1%–2.5% of samples. Imputation of missing genotypes was accomplished with
IMPUTE program [33,34] using the Japanese individuals in Tokyo and Chinese individuals in Beijing
component of HapMap as the reference [31].

2.4. Statistical Analysis

A GWAS was performed with 1,291,657 SNPs that satisfied <5% Hardy-Weinberg exact test and
<5% minor allele frequency using the PLINK program. To investigate the association between the
prevalence of hypertension and each SNP, the logistic multivariable regression model was applied
after adjusting for age, sex, BMI, and the recruitment area of participants in the additive genetic model.
A total of 178 SNPs were associated with hypertension (p-value < 5 × 10−5), and 22 tagging SNPs for
21 gene symbols (24 genes) were selected to analyze the interaction by using the linkage disequilibrium
(LD) of SNPs [35].

Subjects were categorized into tertiles according to the amount of 24 h estimated urinary excretion.
The general linear model (GLM) and the Cochran-Mantel-Haenzel analysis were applied to determine
potential confounders. Variables with significantly different means or those that showed significant
linear trends among the tertile groups were adjusted in the model as covariates. The associations of
the 24 h estimated urinary factor with the risk of hypertension were examined. Multivariable logistic
regression analysis was applied to calculate the odds ratios (ORs) and 95% confidence intervals (CIs)
for the risk of hypertension. The interaction was evaluated by comparing models with and without
interaction terms through the likelihood ratio test. All statistical analyses were conducted using SAS
version 9.4 (SAS Institute, Inc., Cary, NC, USA), and PLINK [36].
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3. Results

A total of 178 SNPs were associated with the risk of hypertension. Among them, 22 SNPs were
selected as tagging SNPs based on high linkage disequilibrium (LD). Table 1 shows the descriptions of
the 22 tagging SNPs including chromosome, position, locus, gene symbol, location, minor allele, minor
allele frequency, risk allele frequency, OR, test statistic, and p-value.

Table 1. Description of tagging SNPs including interaction analysis in sample 1.

SNP CHR Position Locus Gene
Symbol Location MA MAF RAF OR 1 STAT p

rs10924160 1 243519469 1q44 KIF26B intron C 0.345 0.345 1.180 4.146 3.39 × 10−5

rs7554672 1 219339781 1q41 LOC101929750 intron A 0.411 0.589 0.826 −4.799 1.60 × 10−6

rs7419838 2 38894349 2p22.1 DHX57 intron A 0.117 0.883 0.766 −4.160 3.19 × 10−5

rs1997377 2 38805170 2P22.1 GALM intron T 0.111 0.889 0.750 −4.316 1.59 × 10−5

rs1562855 2 38861972 2p22.1 GEMIN6 intron C 0.142 0.858 0.781 −4.314 1.60 × 10−5

rs11917719 3 24186676 3p24.2 THRB intron T 0.157 0.843 0.796 −4.082 4.47 × 10−5

rs513130 5 72456095 5q13.2 TMEM171 intron T 0.405 0.595 0.838 −4.334 1.46 × 10−5

rs6457792 6 34872421 6p21.31 UHRF1BP1 intron G 0.097 0.097 1.305 4.293 1.76 × 10−5

rs10260451 7 142918347 7q35 EPHA1-AS1 intron A 0.177 0.823 0.799 −4.070 4.70 × 10−5

rs1643270 7 130826034 7q32.3 MKLN1 intron C 0.479 0.479 1.197 4.569 4.90 × 10−6

rs3800688 7 130843015 7q32.3 PODXL intron G 0.419 0.419 1.197 4.600 4.23 × 10−6

rs16927774 8 62771785 8q12.3 ASPH Intron C 0.213 0.787 0.820 −4.091 4.30 × 10−5

rs911782 10 123996033 10q26.13 TACC2 intron T 0.141 0.141 1.242 4.067 4.75 × 10−5

rs10466739 11 78290369 11q14.1 TENM4 intron C 0.198 0.198 1.221 4.286 1.82 × 10−5

rs11105368 12 88598572 12q21.33 ATP2B1 Intron C 0.376 0.624 0.810 −5.247 1.55 × 10−7

rs1378942 15 72864420 15q24.1 CSK Intron A 0.172 0.828 0.793 −4.380 1.19 × 10−5

rs3784789 15 72869605 15q24.1 CSK,
MIR4513

Intron,
upstream G 0.169 0.831 0.799 −4.167 3.08 × 10−5

rs11866964 16 48217182 16q12.1 ZNF423 intron A 0.231 0.769 0.826 −4.102 4.10 × 10−5

rs1858821 22 30006454 22q12.2 LIMK2 downstream T 0.145 0.855 0.788 −4.221 2.44 × 10−5

rs4141404 22 30005185 22q12.2 LIMK2 3′ UTR A 0.145 0.855 0.788 −4.221 2.44 × 10−5

rs2040533 22 30009110 22q12.2 PIK3IP1 missense,
3′ UTR G 0.146 0.854 0.788 −4.211 2.54 × 10−5

rs2413035 22 29930460 22q12.2 RNF185 intron T 0.149 0.851 0.791 −4.075 4.61 × 10−5

SNP, single nucleotide polymorphism; CHR, chromosome; MA, minor allele; MAF, minor allele frequency; RAF,
risk allele frequency; OR, odds ratio; STAT, test statistic; UTR, untranslated region. 1 Odds ratios and p-values were
calculated in multivariable logistic regression models, which were adjusted for age, sex, body mass index (BMI),
and recruitment area.

Table 2 presents the general characteristics of the participants according to 24 h estimated urinary
factors determined with the Tanaka formula. The groups with the highest 24HUNa (24 h urinary
Na) and 24HUK (24 h urinary K) were older; had higher BMI and daily energy intake; had more
chronic diseases (prevalence of kidney disease, obesity, or diabetes); included more non-smokers and
former smokers; and had lower household income compared with the lowest group. Furthermore, the
proportion of women was higher in the group with the highest 24HUK. On the other hand, the group
with the highest 24HUNa-K ratio (24 h urinary Na-K ratio) was younger, and had lower BMI and daily
energy intake, fewer chronic diseases, and included more current smokers and individuals with higher
household incomes compared with the lowest group.

Table 2. General characteristics according to 24 h estimated urinary factors obtained with the Tanaka
formula in sample 2.

Urinary Factors

T1 (n = 1471) T2 (n = 1472) T3 (n = 1471) p-Difference p-Trend

24HUNa (mEq/day) 127.8 ± 16.8 4 163.4 ± 8.3 205.8 ± 29.7
Age (years) 1 51.9 ± 0.2 a,5 52.4 ± 0.2 a 53.5 ± 0.2 b <0.0001 <0.0001

BMI (kg/m2) 2 23.8 ± 0.1 a 24.5 ± 0.1 b 25.3 ± 0.1 c <0.0001 <0.0001
Energy Intake (kcal/day) 2 1984.0 ± 21.7 a 2036.3 ± 21.6 a, b 2105.1 ± 21.8 b 0.0004 <0.0001

Sex, women (%) 3 57.0 6 58.2 59.0 0.580 0.299
Cigarette Smoking, current (%) 2 28.3 23.4 21.9 <0.0001 <0.0001
Alcohol Drinking, current (%) 2 41.4 44.4 42.4 0.178 0.588

Regular Exercise, yes (%) 2 51.6 54.6 57.9 0.003 0.001
Chronic Disease, yes (%) 2 34.7 45.0 54.2 <0.0001 <0.0001
Family History, yes (%) 2 18.3 17.9 18.7 0.887 0.753

Area, Ansan (%) 2 52.4 53.7 48.9 0.026 0.040
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Table 2. Cont.

Urinary Factors

T1 (n = 1471) T2 (n = 1472) T3 (n = 1471) p-Difference p-Trend

Income, ≥2,000,000 KRW (%) 2 31.6 31.2 25.5 <0.0001 <0.0001
24HUK (mEq/day) 33.8 ± 3.4 42.6 ± 2.5 55.6 ± 9.1

Age (years) 50.7 ± 0.2 a 52.4 ± 0.2 b 54.6 ± 0.2 c <0.0001 <0.0001
BMI (kg/m2) 23.8 ± 0.1 a 24.6 ± 0.1 b 25.2 ±0.1 c <0.0001 <0.0001

Energy Intake (kcal/day) 1940.6 ± 21.5 a 2031.5 ± 21.7 b 2158.7 ± 22.0 c <0.0001 <0.0001
Sex, women (%) 53.1 59.7 61.6 <0.0001 <0.0001

Cigarette Smoking, current (%) 26.3 22.7 25.1 0.049 0.396
Alcohol Drinking, current (%) 43.7 41.8 42.2 0.594 0.496

Regular Exercise, yes (%) 48.4 52.3 64.1 <0.0001 <0.0001
Chronic Disease, yes (%) 35.6 45.6 53.0 <0.0001 <0.0001
Family History, yes (%) 17.9 17.8 19.8 0.404 0.226

Area, Ansan (%) 70.1 57.5 25.4 <0.0001 <0.0001
Income, ≥2,000,000 KRW (%) 35.9 30.8 20.0 <0.0001 <0.0001

24HUNa-K Ratio 3.0 ± 0.4 3.8 ± 0.2 4.8 ± 0.5
Age (years) 53.6 ± 0.2 c 52.5 ± 0.2 b 51.7 ± 0.2 a <0.0001 <0.0001

BMI (kg/m2) 24.5 ± 0.1 24.6 ± 0.1 24.5 ± 0.1 0.781 0.815
Energy Intake (kcal/day) 2104.7 ± 21.9 b 2030.4 ± 21.8 a 1992.4 ± 21.5 a 0.001 0.0003

Sex, women (%) 58.7 60.5 55.1 0.009 0.045
Cigarette Smoking, current (%) 27.1 23.2 23.7 0.007 0.008
Alcohol Drinking, current (%) 42.0 41.5 44.5 0.144 0.120

Regular Exercise, yes (%) 59.8 54.1 49.6 <0.0001 <0.0001
Chronic Disease, yes (%) 44.1 45.4 44.4 0.832 0.911
Family History, yes (%) 19.1 18.3 17.4 0.499 0.239

Area, Ansan (%) 31.1 54.5 70.0 <0.0001 <0.0001
Income, ≥2,000,000 KRW (%) 23.9 31.0 33.1 <0.0001 <0.0001

T, tertile; 24HUNa, 24 h urinary Na; BMI, body mass index; KRW, Korean Won; 24HUK, 24 h urinary K;
24HUNa-K Ratio, 24 h urinary Na-K ratio. 1 Adjusted for sex. 2 Adjusted for age and sex. 3 Adjusted for
age and sex. 4 Mean ± standard deviation. 5 LS mean ± standard error for continuous variables. Values with
different superscript letters within a row are significantly different means by Tukey’s multiple comparison test,
p < 0.05. 6 percentiles for categorical variables.

The associations of 24 h estimated urinary factors obtained with the Tanaka and Kawasaki
formulas with the blood pressure are shown in Table 3. The means of SBP and DBP for the group with
the highest 24HUNa were higher than those for the lowest group in all models. The means of SBP
and DBP for the group with the highest 24HUK were higher than those for the lowest group in only
age-sex adjusted models. The means of SBP and DBP for the group with the highest 24HUNa-K ratio
were higher than those for the lowest group in multivariable models.

Table 3. Associations between blood pressure and 24 h estimated urinary factors obtained with Tanaka
and Kawasaki formulas in sample 2.

Urinary Factors

T1 T2 T3 p-Difference p-Trend

Tanaka Formula
24HUNa (mEq/day) 127.8 ± 16.8 1 163.4 ± 8.3 205.8 ± 29.7

SBP (mmHg)
Model 1 3 116.0 ± 0.4 a, 2 117.6 ± 0.4 b 121.7 ± 0.4 c <0.0001 <0.0001
Model 2 4 121.9 ± 1.0 a 122.7 ± 1.0 a 125.8 ± 1.0 b <0.0001 <0.0001

DBP (mmHg)
Model 1 73.7 ± 0.3 a 75.2 ± 0.3 b 77.0 ± 0.3 c <0.0001 <0.0001
Model 2 76.6 ± 0.6 a 77.6 ± 0.6 a 78.6 ± 0.7 b <0.0001 <0.0001

24HUK (mEq/day) 33.8 ± 3.4 42.6 ± 2.5 55.6 ± 9.1
SBP (mmHg)

Model 1 117.0 ± 0.4 a 117.5 ± 0.4 a 120.9 ± 0.4 b <0.0001 <0.0001
Model 2 123.8 ± 1.0 122.7 ± 1.0 123.5 ± 1.0 0.182 0.718

DBP (mmHg)
Model 1 74.4 ± 0.3 a 74.8 ± 0.3 a 76.7 ± 0.3 b <0.0001 <0.0001
Model 2 77.7 ± 0.7 77.1 ± 0.7 77.7 ± 0.7 0.188 0.991

24HUNa-K ratio 3.0 ± 0.4 3.8 ± 0.2 4.8 ± 0.5
SBP (mmHg)

Model 1 118.1 ± 0.4 118.2 ± 0.4 119.1 ± 0.4 0.188 0.093
Model 2 121.5 ± 1.0 a 123.1 ± 1.0 b 125.5 ± 1.0 c <0.0001 <0.0001

DBP (mmHg)
Model 1 75.3 ± 0.3 75.1 ± 0.3 75.5 ± 0.3 0.491 0.487
Model 2 76.8 ± 0.7 a 77.3 ± 0.6a 78.5 ± 0.6 b 0.0002 <0.0001
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Table 3. Cont.

Urinary Factors

T1 T2 T3 p-Difference p-Trend

Kawasaki Formula
24HUNa (mEq/day) 158.0 ± 25.2 213.8 ± 13.5 286.4 ± 53.7

SBP (mmHg)
Model 1 116.0 ± 0.4 a 118.0 ± 0.4 b 121.3 ± 0.4 c <0.0001 <0.0001
Model 2 121.8 ± 1.0 a 123.0 ± 1.0a 125.4 ± 1.0 b <0.0001 <0.0001

DBP (mmHg)
Model 1 73.8 ± 0.3 a 75.2 ± 0.3 b 76.8 ± 0.3 c <0.0001 <0.0001
Model 2 76.7 ± 0.6 a 77.5 ± 0.6 a 78.5 ± 0.6 b <0.0001 <0.0001

Kawasaki Formula
24HUK (mEq/day) 41.8 ± 4.6 54.0 ± 3.4 73.3 ± 14.4

SBP (mmHg)
Model 1 116.9 ± 0.4 a 117.8 ± 0.4 a 120.7 ± 0.4 b <0.0001 <0.0001
Model 2 123.6 ± 1.0 123.0 ± 1.0 123.4 ± 1.0 0.592 0.753

DBP (mmHg)
Model 1 74.2 ± 0.3 a 75.2 ± 0.3 b 76.4 ± 0.3 c <0.0001 <0.0001
Model 2 77.5 ± 0.7 77.5 ± 0.7 77.5 ± 0.7 0.998 0.950

24HUNa-K ratio 2.9 ± 0.5 3.9 ± 0.3 5.2 ± 0.7
SBP (mmHg)

Model 1 117.7 ± 0.4 118.4 ± 0.4 119.2 ± 0.4 0.056 0.017
Model 2 121.3 ± 1.0 a 123.4 ± 1.0 b 125.4 ± 1.0 c <0.0001 <0.0001

DBP (mmHg)
Model 1 75.1 ± 0.3 75.3 ± 0.3 75.6 ± 0.3 0.451 0.210
Model 2 76.6 ± 0.6 a 77.6 ± 0.6 a,b 78.4 ± 0.7 b 0.0001 <0.0001

T, tertile; 24HUNa, 24 h urinary Na; 24HUK, 24 h urinary K; 24HUNa-K Ratio, 24 h urinary Na-K ratio; SBP, systolic
blood pressure; DBP, diastolic BP. 1 Mean ± standard deviation. 2 LS mean ± standard error. Values with different
superscript letters within a row are significantly different means by Tukey’s multiple comparison test, p < 0.05.
3 Model 1 was adjusted for age and sex. 4 Model 2 was adjusted for age, sex, body mass index, energy intake,
smoking status, regular exercise status, chronic disease prevalence status, recruitment area, household income, and
blood pressure medication.

The associations between 24 h estimated urinary factors determined with the Tanaka and
Kawasaki formulas and the risk of hypertension are shown in Table 4. Significant associations
between the risk of hypertension and 24HUNa were apparent in the models using the Tanaka
formula (third versus first tertile, OR = 1.21; 95% CIs = 1.00–1.48; p-trend = 0.037) and the Kawasaki
formula (third versus first tertile, OR = 1.27; 95% CIs = 1.04–1.55; p-trend = 0.014). There were no
significant associations between the risk of hypertension and 24HUK. However, there were significant
associations between the risk of hypertension and 24HUNa-K ratio in the age-sex adjusted model and
the multivariable model with the estimated Kawasaki formula (third versus first tertile, OR = 1.27; 95%
CIs = 1.04–1.56; p-trend = 0.022).

Table 4. Odds ratios (ORs) and 95% confidence intervals (CIs) for hypertension according to 24 h
estimated urinary factors obtained with Tanaka and Kawasaki formulas in sample 2.

Urinary Factors

T1 T2 T3 p-Trend

Tanaka Formula
24HUNa (mEq/day) 127.8 ± 16.8 1 163.4 ± 8.3 205.8 ± 29.7

Model 1 3 1.00 (ref.) 1.08 (0.89–1.30) 2 1.59 (1.33–1.91) <0.0001
Model 2 4 1.00 (ref.) 0.93 (0.76–1.13) 1.21 (1.00–1.48) 0.037

24HUK (mEq/day) 33.8 ± 3.4 42.6 ± 2.5 55.6 ± 9.1
Model 1 1.00 (ref.) 0.96 (0.79–1.15) 1.19 (0.99–1.43) 0.037
Model 2 1.00 (ref.) 0.79 (0.65–0.97) 0.89 (0.72–1.10) 0.400

24HUNa-K ratio 3.0 ± 0.4 3.8 ± 0.2 4.8 ± 0.5
Model 1 1.00 (ref.) 0.94 (0.79–1.13) 1.14 (0.95–1.36) 0.161
Model 2 1.00 (ref.) 0.96 (0.79–1.18) 1.22 (0.99–1.49) 0.056
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Table 4. Cont.

Urinary Factors

T1 T2 T3 p-Trend

Kawasaki Formula
24HUNa (mEq/day) 158.0 ± 25.2 213.8 ± 13.5 286.4 ± 53.7

Model 1 1.00 (ref.) 1.22 (1.01–1.47) 1.57 (1.31–1.89) <0.0001
Model 2 1.00 (ref.) 1.07 (0.88–1.31) 1.27 (1.04–1.55) 0.014

24HUK (mEq/day) 41.8 ± 4.6 54.0 ± 3.4 73.3 ± 14.4
Model 1 1.00 (ref.) 0.99 (0.82–1.20) 1.14 (0.95–1.37) 0.125
Model 2 1.00 (ref.) 0.85 (0.70–1.05) 0.88 (0.71–1.09) 0.302

24HUNa-K ratio 2.9 ± 0.5 3.9 ± 0.3 5.2 ± 0.7
Model 1 1.00 (ref.) 1.06 (0.89–1.27) 1.20 (1.00–1.44) 0.046
Model 2 1.00 (ref.) 1.11 (0.91–1.35) 1.27 (1.04–1.56) 0.022

T, tertile; 24HUNa, 24 h urinary Na; 24HUK, 24 h urinary K; 24HUNa-K Ratio, 24 h urinary Na-K ratio.
1 Mean ± standard deviation. 2 OR (95% CIs). 3 Model 1 was adjusted for age and sex. 4 Model 2 was adjusted for
age, sex, BMI, energy intake, smoking status, regular exercise status, chronic disease prevalence status, recruitment
area, and household income.

Table 5 shows statistically significant interactions between gene polymorphisms and 24 h
estimated urinary factors using the Tanaka formula. Out of 22 tagging SNPs, two SNPs (c-src tyrosine
kinase (CSK) rs1378942, CSK-micro RNA 4513 (MIR4513) rs3784789) had significant interaction effects
with 24 h estimated urinary factors on the risk of hypertension. The strongest protective effects of
variants of CSK rs1378942 (p-interaction = 0.013; OR = 0.08; 95% CIs = 0.01–0.67) and CSK-MIR4513
rs3784789 (p-interaction = 0.027; OR = 0.08; 95% CIs = 0.01–0.72) on the risk of hypertension was found
in the second tertile for the 24HUNa-K ratio.

Table 5. Significant interactions between gene polymorphisms and 24 h estimated urinary factors
obtained with Tanaka formula in sample 2.

Urinary Factors

T1 T2 T3 p-Interaction

24HUNa-K Ratio
CSK (rs1378942) 0.013

AA 1.00 (ref.) 0.08 (0.01–0.67) 1 0.69 (0.20–2.42)
AC 0.61 (0.24–1.56) 0.77 (0.30–1.96) 0.67 (0.26–1.72)

CC (wild type) 0.87 (0.35–2.16) 0.80 (0.32–2.00) 1.11 (0.44–2.76)
24HUNa-K Ratio

CSK-MIR4513 (rs3784789) 0.027
GG 1.00 (ref.) 0.08 (0.01–0.72) 0.77 (0.22–2.71)
CG 0.61 (0.24–1.54) 0.74 (0.29–1.88) 0.68 (0.27–1.75)

CC (wild type) 0.86 (0.35–2.14) 0.80 (0.32–1.99) 1.08 (0.43–2.70)

T, tertile; 24HUNa-K Ratio, 24 h urinary Na-K ratio. 1 Odds ratio (95% Confidence intervals). All models were
adjusted for age, sex, body mass index, energy intake, smoking status, regular exercise status, chronic disease
prevalence status, recruitment area, and household income.

Table 6 shows the significant interaction between gene polymorphisms and 24 h estimated urinary
factors obtained with the Kawasaki formula. Among 22 SNPs, five SNPs (CSK rs1378942, CSK-MIR4513
rs3784789, uncharacterized LOC101929750 (LOC101929750) rs7554672, muskelin 1 (MKLN1) rs1643270,
teneurin transmembrane protein 4 (TENM4) rs10466739) showed significant interactions between 24 h
estimated urinary factors and the risk of hypertension. LOC101929750 showed the strongest risk effect
for hypertension in individuals with a wild type allele who were categorized into the third tertile of
24HUNa (p-interaction = 0.028; OR = 2.16; 95% CIs = 1.33–3.50). The strongest protective effect was
found in individuals with minor allele homozygotes of LOC101929750 who were categorized into the
second tertile of 24HUK (p-interaction = 0.034; OR = 0.36; 95% CIs = 0.22–0.58). In the group with minor
allele homozygotes of MKLN1 rs1643270, who were categorized into the second tertile of 24HUK, the
strongest risk effect was observed (P-interaction = 0.034; OR = 1.55; 95% CIs = 1.01–2.38). As in Table 5
(Tanaka formula), the strongest protective effects of variants of CSK rs1378942 (p-interaction = 0.012;
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OR = 0.09; 95% CIs = 0.01–0.83) and CSK-MIR4513 rs3784789 (p-interaction = 0.026; OR = 0.10;
95% CIs = 0.01–0.89) were found in the second tertile of the 24HUNa-K ratio. TENM4 rs10466739
showed the strongest risk effect in individuals with heterozygotes of this gene who were in the third
tertile of the 24HUNa-K ratio (p-interaction = 0.034; OR = 1.43; 95% CIs = 1.07–1.93).

Table 6. Significant interactions between gene polymorphisms and 24 h estimated urinary factors
obtained with Kawasaki formula in sample 2.

Urinary Factors

T1 T2 T3 p-Interaction

24HUNa (mEq/day)
LOC101929750 (rs7554672) 0.028

AA 1.00 (ref.) 1.33 (0.77–2.29) 1 0.79 (0.44–1.43)
AG 1.33 (0.82–2.14) 1.25 (0.77–2.01) 1.92 (1.20–3.06)

GG (wild type) 1.75 (1.07–2.84) 2.04 (1.26–3.31) 2.16 (1.33–3.50)
24HUK (mEq/day)

LOC101929750 (rs7554672) 0.034
GG (wild type) 1.00 (ref.) 0.92 (0.67–1.27) 0.72 (0.52–1.01)

AG 0.65 (0.48–0.89) 0.58 (0.42–0.79) 0.74 (0.55–1.01)
AA 0.67 (0.44–1.03) 0.36 (0.22–0.58) 0.40 (0.26–0.62)

MKLN1 (rs1643270) 0.034
CC 1.00 (ref.) 1.55 (1.01–2.38) 1.22 (0.80–1.87)
CT 1.16 (0.79–1.70) 0.83 (0.56–1.22) 0.85 (0.58–1.26)

TT (wild type) 0.97 (0.63–1.48) 0.74 (0.48–1.14) 0.89 (0.58–1.38)
24HUNa-K Ratio
CSK (rs1378942) 0.012

AA 1.00 (ref.) 0.09 (0.01–0.83) 0.80 (0.23–2.75)
AC 0.67 (0.27–1.69) 0.94 (0.38–2.35) 0.73 (0.29–1.84)

CC (wild type) 0.93 (0.38–2.26) 0.99 (0.41–2.42) 1.25 (0.51–3.05)
CSK-MIR4513 (rs3784789) 0.026

GG 1.00 (ref.) 0.10 (0.01–0.89) 0.89 (0.26–3.09)
CG 0.66 (0.26–1.66) 0.91 (0.36–2.28) 0.74 (0.26–1.88)

CC (wild type) 0.92 (0.38–2.25) 0.99 (0.40–2.42) 1.22 (0.50–2.99)
TENM4 (rs10466739) 0.034

TT (wild type) 1.00 (ref.) 0.99 (0.77–1.26) 1.09 (0.85–1.40)
CT 0.86 (0.63–1.16) 1.06 (0.78–1.45) 1.43 (1.07–1.93)
CC 0.31 (0.11–0.93) 1.49 (0.78–2.85) 0.90 (0.43–1.87)

T, tertile; 24HUNa, 24 h urinary Na; 24HUK, 24 h urinary K; 24HUNa-K Ratio, 24 h urinary Na-K ratio. 1 Odds ratio
(95% Confidence intervals). All models were adjusted for age, sex, body mass index, energy intake, smoking status,
regular exercise status, chronic disease prevalence status, recruitment area, and household income.

4. Discussion

This study was conducted in order to identify interaction effects between gene variants and
urinary sodium, potassium, and the sodium-potassium ratio on the risk of hypertension, after
association analysis of hypertension with urinary factors and genetic factors. The primary finding
was related to the protective effects of minor allele homozygotes of CSK rs1378942, CSK-MIR4513
rs3784789 in the middle group (second tertile) of the 24HUNa-K ratio.

There were significant positive associations of blood pressure and hypertension with 24HUNa
and 24HUNa-K ratio. These results provide support that low salt diets decrease blood pressure and the
risk of hypertension. With regard to 24HUK, there were no significant associations with blood pressure
and hypertension. A recent meta-analysis including 14 cohort studies and 27 randomized controlled
trials showed that the reduction of salt intake lowers blood pressure [18]. Other epidemiology studies
showed similar results [14–17,19,20]. A possible mechanism for how sodium and potassium affect
blood pressure is as follows. Salt ingestion causes increased sodium and water retention, resulting in
extracellular volume expansion, which causes a release of substances that increase heart and blood
vessel contraction and affect the renin-angiotensin-aldosterone system [37,38]. Potassium increases
urinary sodium excretion, which decreases the amount of sodium in the body and leads to vascular
smooth muscle relaxation, thereby decreasing peripheral resistance [39].
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A total of 178 SNPs were significantly associated with hypertension in GWAS, and 22 SNPs for
21 gene symbols including ATP2B1 and CSK, which were frequently investigated with blood pressure
and hypertension [12,40–64], were selected as tagging SNPs. The mutant allele of ATP2B1 rs11105368
was negatively associated with hypertension, but no significant interaction effects of urinary sodium
were found in this study. The results of association between ATP2B1 and hypertension were similar to
those from previous studies [10,62,63]. A recent meta-analysis study showed that the group of risk
alleles, which were the same as the wild type ATP2B1 rs17249754, was significantly and positively
associated with the increase of blood pressure and hypertension (β = 0.15 p-value = 1.75 × 10−11

with hypertension) [51]. The mechanism of direct influence between ATP2B1 gene variants and blood
pressure has not been clearly identified, but hypotheses are continuously proposed [65–67]. ATP2B1
is expressed in vascular endothelium cells, and is related to the regulation of cellular calcium levels,
which is known to control the contraction and expansion of vascular smooth cells [67]. ATP2B1 is
related to the extrusion of Ca2+ [66] and the level of ATP2B1 mRNA was higher in hypertensive rats
than in non-hypertensive rats [65].

The prominent finding of this study is the protective effect of minor allele homozygotes of
CSK rs1378942 and CSK-MIR4513 rs3784789 on the risk of hypertension in the middle group for the
24HUNa-K ratio. A meta-analysis with two Korean cohorts (The KoGES_Ansan and Ansung Study and
The KoGES_health examinees (HEXA) study) found that CSK increases the risk of hypertension in the
group with major allele homozygotes of CSK, which is the same as the group with the risk allele [10].
CSK is known as a protein coding gene, and its molecular function is related to protein binding and
protein kinase activity [68–71]. Neither the mechanism for the CSK gene variant or for blood pressure
has been clearly identified, but there are meaningful studies that assume an association between
CSK and blood pressure. c-Src is known to be expressed in vascular smooth muscle cells [72], to be
activated by angiotensin II, and to regulate signaling action, which is associated with the migration,
growth, and contraction of human vascular smooth muscle cells [73–75]. Although there is no direct
mechanism between CSK and blood pressure, blood pressure may be associated with CSK functions
related to angiotensin II and vascular smooth muscle cells. Moreover, angiotensin II is known for its
role in renal sodium absorption and potassium excretion [76], which is able to affect blood pressure
control. Our results proposed that there are interaction effects of CSK and urinary sodium-potassium
ratio on the risk of hypertension. Overall, this study suggested that blood pressure is modified with
CSK and urinary sodium-potassium ratio.

CSK-MIR4513 rs3784789 had negative associations with hypertension, and its variant had the
strongest protective effects against hypertension in the middle group for the 24HUNa-K ratio. MIR4513
is a kind of micro RNA, which is a non-coding RNA, and it is related to the regulation of the expression
of human genes. A recent study found effects of MIR4513 on the long-term averaging of quantitative
blood pressure [77], but there is no information regarding its molecular function or a direct pathway
for its relationship with blood pressure and sodium.

MKLN1 rs1643270 and TENM4 rs10466739 were positively associated with hypertension.
The group with heterozygotes of MKLN1 rs1643270 had the strongest risk effects on hypertension in
the middle group for 24HUK obtained with the Kawasaki formula. MKLN is one of the predicted
target genes of micro RNA 27ab-3p, which is associated with smooth muscle cells [78], thus, it is
possible that MKLN is associated with blood pressure control. However, this assumption has not been
validated by experimental studies.

The heterozygotes of TENM rs10466739 showed the strongest risk effects on hypertension in the
middle group for 24HUNa-K ratio obtained with the Kawasaki formula. TENM4 are protein coding
RNA, but there were no studies or other forms of information for them related to blood pressure
and sodium.

LOC101929750 rs7554672 was negatively associated with hypertension, and its variant had the
strongest protective effects against hypertension in the middle group for 24HUK obtained with
the Kawasaki formula. However, LOC101929750 is an uncharacterized RNA gene affiliated with a
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non-coding RNA, and no details or studies were found on its protein domain structure, molecular
function, or pathway with blood pressure.

Since this study used a cross-sectional design, there was a limitation in the ability to investigate the
causal association between urinary factors and hypertension. Thus, further studies with independent
samples are needed to confirm the interaction effects of gene polymorphisms with urinary sodium,
potassium, and sodium-potassium ratio on the risk of hypertension. Among gene variants that showed
interaction effects, most genes, including MIR4513, LOC101929750, MKLN1, and TENM4, have not
been investigated to determine their molecular functions or pathways in blood pressure control.

There are several advantages to this study. First, to our knowledge, this study is the first large-scale
investigation to identify interaction effects of 24 h estimated urinary factors (sodium, potassium, and
sodium-potassium ratio) and gene polymorphism associated with the risk of hypertension through
GWAS on the risk of hypertension among a Korean population. Second, possible confounding bias was
minimized by adjusting various potential confounding factors (age, sex, BMI, energy intake, smoking
status, regular exercise status, chronic disease prevalence, recruitment area, and household income)
in the multivariable models. Third, though the use of 24 h estimation for urinary sodium using spot
urine samples as a predictor of 24 h urinary excretion is still controversial, 24 h estimated urinary
formulae were used instead of the spot urine test reflecting sodium intake more precisely; this method
is recognized as suitable in population surveys [79].

5. Conclusions

In conclusion, the present study results indicate the protective effects of minor allele homozygotes
of CSK rs1378942 and CSK-MIR4513 rs3784789 on hypertension in the middle group for the 24HUNa-K
ratio. These findings may provide evidence for personalized nutrition to prevent hypertension. Further
studies are needed to investigate the mechanisms of MIR4513, MKLN1, TENM4, and LOC101929750
on blood pressure, and to replicate these interaction effects among other populations in Korea.
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