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Abstract

Purpose

Vocal exertion is common and often results in reduced respiratory and laryngeal efficiency.

It is unknown, however, whether the respiratory kinematic and acoustic adjustments

employed during vocal exertion differ between speakers reporting vocal fatigue and those

who do not. This study compared respiratory kinematics and acoustic measures in individu-

als reporting low and high levels of vocal fatigue during a vocal exertion task.

Methods

Individuals reporting low (N = 20) and high (N = 10) vocal fatigue participated in a repeated

measures design study over 2 days. On each day, participants completed a 10-minute vocal

exertion task consisting of repeated, loud vowel productions at elevated F0 sustained for

maximum phonation time. Respiratory kinematic and acoustic measures were analyzed on

the 1st vowel production (T0), and the vowels produced 2 minutes (T2), 5 minutes (T5), 7

minutes (T7), and 10 minutes (T10) into the vocal exertion task. Vowel durations were also

measured at each time point.

Results

No differences in respiratory kinematics were observed between low and high vocal fatigue

groups at T0. As the vocal exertion task progressed (T2-T10), individuals reporting high

vocal fatigue initiated phonation at lower lung volumes while individuals with low vocal

fatigue initiated phonation at higher lung volumes. As the exertion task progressed, total

lung volume excursion decreased in both groups. Differences in acoustic measures were

observed, as individuals reporting high vocal fatigue produced softer, shorter vowels from

T0 through T10.
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Conclusions

Individuals reporting high vocal fatigue employed less efficient respiratory strategies during

periods of increased vocal demand when compared with individuals reporting low vocal

fatigue. Individuals reporting high vocal fatigue had shorter maximum phonation time on

loud vowels. Further study should examine the potential screening value of loud maximum

phonation time, as well as the clinical implications of the observed respiratory patterns for

managing vocal fatigue.

Introduction

Laryngeal pathology hinders communication for more than 17 million adults in the United

States [1]. Although the precise etiology of vocal pathology is varied, some voice disorders may

result from the accrued loss of laryngeal and respiratory efficiency caused by vocal exertion

(also referred to as vocal loading in the laboratory) [2, 3]. Vocal exertion is common in both

social and professional situations [4–8], and can negatively impact vocal fold physiology, as

well as make phonation more difficult [9, 10]. For example, vocal exertion increases self-per-

ceived vocal effort [11–13], and often induces changes in acoustic voice measures [14–16],

such as increased fundamental frequency or truncated vocal range [17–19]. Vocal exertion

may also adversely affect voice quality as indicated by changes in cepstral measures or mea-

sures of perturbation [13, 14, 20]. In addition, vocal exertion may increase viscoelastic vocal

fold properties as demonstrated by changes in aerodynamic measures [21–23].

Vocal exertion may also affect respiratory function since respiratory kinematics drive vocal

intensity and are correlated with vocal effort [24–28]. Recent research has considered changes

in respiratory kinematics resulting from vocal exertion [17, 29, 30]. For example, healthy older

adults initiated speech at lower lung volumes following a loud reading task, suggesting possible

fatigue [30]. These changes were not evident, however, in young healthy adults or teachers fol-

lowing loud reading tasks [29, 30]. Young healthy adults initiated speech at higher lung vol-

umes following a sustained-vowel task, presumably to benefit from recoil forces and increase

respiratory efficiency in the face of vocal challenge [17]. This might be expected considering

that initiating speech at higher lung volumes can be an efficient mechanism to increase vocal

intensity [24, 31, 32]. Additional research comparing populations across identical vocal exer-

tion tasks is needed to better understand how respiratory kinematics are affected by vocal

exertion.

Although changes in vocal effort, voice measures, and respiratory kinematics are frequently

evident following vocal exertion [29, 33–36], the duration and magnitude of these changes

vary [37, 38]. In laboratory conditions, changes in aerodynamic and acoustic voice measures

have lasted for as little as ten minutes or as long as two hours [17, 21, 39]. These differences in

outcomes are likely tied to the extent or type of vocal exertion experienced [40]. Even in stud-

ies using exertion tasks that are relatively similar, the results of vocal exertion may vary across

individuals [40, 41] and repeated days [20, 42]. In addition, increases in vocal effort may occur

and persist in the absence of negative changes to objective voice measures [43]. Additionally,

these changes may last even longer in individuals who experience voice problems such as vocal

fatigue.

Emerging evidence suggests that individuals who experience vocal fatigue respond differ-

ently following periods of high vocal demand than their vocally healthy counterparts [34, 44,

45]. This is perhaps not surprising as vocal fatigue is characterized by detrimental self-

PLOS ONE Lung volumes, acoustics, and vocal fatigue

PLOS ONE | https://doi.org/10.1371/journal.pone.0268324 May 12, 2022 2 / 19

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0268324


perceptual or physiological voice changes induced by extended voice use [46–49]. Differences

in vocal demand response in people with high vocal fatigue have been observed primarily in

respiratory kinematics, which have been shown to differ in individuals with structural and

functional voice disorders [3, 50, 51]. For example, following a loud, prolonged vowel task,

individuals reporting high vocal fatigue initiated speech at lower lung volumes [34]. Following

the same task, individuals with low vocal fatigue increased lung volume initiation, presumably

to benefit from increased recoil forces and thereby improve respiratory efficiency [17]. Simi-

larly, teachers experiencing vocal fatigue were observed to initiate and terminate speech at

lower lung volumes than their vocally healthy counterparts during teaching tasks [3]. As such,

it appears that there is a relationship between vocal fatigue and respiratory kinematics follow-

ing vocal exertion [44].

Although individuals reporting chronic vocal fatigue may use different respiratory strate-

gies following vocal exertion when compared with vocally healthy individuals, it is unclear

exactly when speakers implement these strategies. Do individuals make physiological compen-

sations during the task, or are these changes only evident following vocal exertion? Voice and

respiratory kinematic measures are usually collected before and after vocal exertion rather

than during the vocally exerting events themselves [19, 52–55]. Therefore, little is known

regarding the compensatory strategies speakers use to successfully complete vocally demand-

ing tasks in the moment. It is also unknown if these strategies change over multiple trials of a

vocal exertion task. Investigating the way individuals reporting high and low levels of vocal

fatigue respond to vocal exertion has the potential to increase our understanding of how vocal

exertion and vocal fatigue intersect. It is hypothesized that exertion induced changes in laryn-

geal function, changes in respiratory kinematics, and vocal fatigue are all inter-related and pos-

sible cyclical (S1 Fig). It is unclear, however, whether loss of laryngeal efficiency, changes in

respiratory kinematics, or vocal fatigue initiate this cycle. Understanding what changes occur

during actual moments of vocal exertion will inform our understanding of how vocal fatigue

should best be managed clinically.

This study examined respiratory kinematics and acoustic measures in individuals reporting

low and high levels of vocal fatigue when completing a vocal exertion task across 2 experimen-

tal days. The vocal exertion task consisted of repeated, loud, sustained vowels. The vowels were

sustained for maximum duration on a single breath, at 50th of frequency range. It was hypothe-

sized that individuals reporting high levels of vocal fatigue in daily life would utilize lower lung

volumes to complete the vocal exertion task than their counterparts with low vocal fatigue. It

was hypothesized that acoustic voice measures would change as the exertion task progressed,

and that these changes would be more adverse for the high vocal fatigue group than the low

fatigue group. It was also hypothesized that the detrimental respiratory and acoustic changes

would be of greater magnitude on day 2.

Methods

Study procedures

All study procedures were approved by the Purdue University Institutional Review Board

(IRB# 1805020623). These data were gathered as part of a larger dissertation study, and the

laryngeal and respiratory data collected prior to and following this vocal exertion task have

been previously published [17, 34]. This current study examined laryngeal and respiratory

measures during the vocal exertion task itself.

A repeated measures design was utilized. Participants carried out two identical vocal exer-

tion tasks on consecutive days. Vocal exertion tasks consisted of ten minutes of repeated loud,

sustained vowels at elevated fundamental frequency (F0) [17, 56]. Experimental days were
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scheduled 24 hours apart (+ or– 1 hour) and were identical for the portions of the protocol

examined in this study, except that consent and screening procedures were performed on day

one. Participants followed similar patterns of voice use and food/liquid intake for 24 hours

prior to each experimental day. During each experimental day, the vocal exertion task con-

sisted of multiple loud, sustained vowels at elevated fundamental frequency (F0) [17, 56].

These vowel productions were repeated until 10 minutes had elapsed. Respiratory kinematic

and acoustic data were collected throughout the vocal exertion task (described below) on both

days. All participants completed the full vocal exertion task on both experimental days, how-

ever, five sustained vowels from each vocal exertion task were selected for analysis: the first

vowel production (T0) and the vowels produced closest to the following time markers; 2 min-

utes (T2), 5 minutes (T5), 7 minutes (T7), and 10 minutes (T10) into the vocal exertion task.

The vowel produced at the 10-minute marker (T10) was the final prolonged vowel of the vocal

exertion task. The study design is presented in Fig 1.

Participants

Participants were recruited from the Purdue campus using flyers. Thirty participants passed

screening procedures and were included in this study. Inclusionary criteria included (a) age

greater or equal to 18 years, (b) general good health, and (c) perceptually normal vocal quality.

Exclusionary criteria included (a) history of voice disorder, respiratory disease, hearing loss, or

head/neck cancer, (b) history of voice training, or (c) self-reported history of smoking. Spi-

rometry was used to screen participants (Discovery Spirometer, Futuremed America, Inc.,

Granada Hills, CA) for normal vital capacity and forced vital capacity (�80% of expected

Fig 1. Visual representation of study design.

https://doi.org/10.1371/journal.pone.0268324.g001
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values based on sex, age, ethnicity, weight, and height matched norms). In addition, rigid

videostroboscopy (9100 KayPENTAX, Lincoln Park, NJ) was used to ensure that participants

were free of any gross laryngeal pathology.

Participants were recruited into low and high vocal fatigue groups using the Vocal Fatigue

Index (VFI) [57]. Prior to data collection, all participants completed the VFI, a validated, self-

report questionnaire designed to quantify vocal fatigue. Participants who scored within normal

range (<24 on part 1 and<7 on part 2) were assigned to the low vocal fatigue group, and par-

ticipants scoring in the range indicative of vocal fatigue (�24 on part 1 and/or�7 on part 2)

were assigned to the high vocal fatigue group [57]. No participants in either group were

experiencing vocal symptoms at the time of data collection.

Twenty individuals were categorized into the low vocal fatigue group (mean age = 20 years,

SD = 3.08); 10 females, 10 males) and 10 individuals were categorized into the high vocal

fatigue group (mean age = 20 years, SD = 3.03; 4 females, 6 males).

Vocal exertion task

The 10-minute vocal exertion task consisted of repeated loud, sustained vowels at elevated F0

[17, 56]. Target vowel duration, intensity, and pitch were established prior to data collection

during a practice production of the exertion task on day one. Participants were instructed to

sustain each vowel production for maximum phonation time. Vowels were sustained at 50%

pitch range as this pitch was within modal register but was elevated compared with comfort-

able speaking F0. Vocal range was calculated prior to data collection using pitch glides to maxi-

mal and minimum pitches of vocal range. Target vocal intensity was required to be greater

than 80 dB (no upper limit) as measured by a sound level meter (24 inches from participant).

Participants were also alerted if vowel duration or intensity fell below target levels. Participants

were cued for target pitch using a digital keyboard prior to each production (Casio SA-76,

Casio Computer Co. Ltd, Tokyo, Japan). Participants were notified when they were 5 minutes

into the task, when 2 minutes remained, and when 1 minute remained. All participants in the

low vocal fatigue group completed the task as described. Two participants in the high vocal

fatigue group reported vocal fatigue and discomfort around the 5-minute marker (T5). In

these cases, target pitch was reduced by a third to enable completion of the task.

Outcome measures

Respiratory kinematics. Respiratory measures included lung volume initiation, termina-

tion, and excursion. Lung volumes were estimated using inductive plethysmography (Respi-

trace system, Ambulatory Monitoring, Inc., Ardsley, NY). Rib cage and abdomen movements

were measured using respiratory bands placed on the patient’s rib cage (inferior to the axilla)

and abdomen (inferior to rib 12) respectively. Respiratory bands were attached to participant

clothing with tape. After respiratory bands were placed, participants remained seated for all

data collection. Labchart was used to capture respitrace and audio signals synchronously.

Respitrace system voltage was recorded into Labchart at a 1 kHz/s sampling rate. Equipment

setup is presented in Fig 2.

Lung volumes were estimated from the corrected sum of rib cage and abdominal move-

ments [58]. Correction factors were determined from periods of rest breathing and “speech-

like” breathing (silently reading the phrase “You buy Bobby a puppy now if he wants one” dur-

ing exhalation) [24, 25, 31, 32]. Participants breathed into a spirometer mouthpiece using a

tight lip seal and wore nose clips during calibration procedures to ensure all air volume was

directed through the spirometer mouthpiece. Rib cage and abdomen movements, as well as

digital spirometer (FE141 ADInstruments, Colorado Springs, CO) measurements of lung
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volume, were recorded during rest and speech-like breathing periods. Digital spirometer vol-

ume output was compared with the sum of rib cage and abdomen movements during these

calibration tasks [24, 25, 29, 59, 60]. Calibration coefficients (k1 and k2) for the rib cage and

abdomen signals were calculated using a least squares solution (Matlab pseudoinverse func-

tion) with the formula

spirometer ¼ k1ðrib cageÞ þ k2ðabdomenÞ: ð1Þ

The least squares calibration method has used respiratory kinematic data to estimate lung vol-

umes within 5% accuracy of actual lung volume [59, 61]. During phonation, lung volumes

were estimated using these calibration coefficients in the formula

Estimated Lung Volume ¼ k1ðrib cageÞ þ k2ðabdomenÞ: ð2Þ

A vital capacity maneuver was also performed 3 times with the digital spirometer. This con-

sisted of maximum inhalation and maximum exhalation.

Respiratory data were gathered during the vocal exertion task and were analyzed with an

algorithm run using MATLAB (MathWorks, Inc., Natick, MA). To enable across-participant

comparisons, respiratory data were calculated as a percent of vital capacity. Prior to the start of

the vocal exertion task, a minimum of three troughs of rest breathing were collected to calcu-

late end expiratory level (EEL).

• Lung volume initiation (LVI) was the lung volume at which phonation was initiated, and

lung volume termination (LVT) was the lung volume at which phonation was terminated.

Both were expressed as a percentage of vital capacity relative to EEL. Negative values reflect

lung volumes below EEL and positive values reflect lung volumes above EEL.

• Lung volume excursion was the total lung volume displaced during phonation and repre-

sented the difference between LVI and LVT in percent vital capacity.

Fig 2. Schematic of equipment set-up.

https://doi.org/10.1371/journal.pone.0268324.g002
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Acoustic measures. Acoustic measures included vowel duration, sound pressure level

(SPL), fundamental frequency (F0), and cepstral peak prominence (CPP). A head-mounted

microphone (AKG C555 L, AKG, Vienna, Austria; 2-inch mouth to microphone distance) was

utilized for all audio-recordings. Audio signals were routed through an A/D converter (Power-

Lab 16/30 ADInstruments, Colorado Springs, CO) to a computer. All audio recordings were

made at a 44kHz sampling rate. To allow for calculation of SPL, a 90 dB calibration tone

(Acoustic calibrator Model QC-10/QC-20, Quest Technologies, Oconomowoc, WI) was

recorded using the same equipment and gain level used to record data. Except for vowel dura-

tion, all acoustic analyses were performed on the middle 5 seconds of prolonged vowels.

• Duration of prolonged vowels in seconds was calculated using Praat (version 6.1.16, Pho-

netic Sciences, Amsterdam).

• Mean Sound Pressure Level (SPL) of prolonged vowels was calculated using Praat. The cali-

bration tone at set gain was accounted for in the calculation of SPL.

• Fundamental frequency (F0) was calculated using Praat.

• Cepstral peak prominence (CPP) was analyzed using the sustained vowel protocol in the

Analysis of Dysphonia in Speech and Voice software (ADSV Model 5109, KayPENTAX,

Montvale, NJ).

Statistical analysis. Interclass correlation coefficients (ICCs) were calculated to measure

inter-rater reliability using SPSS (Version 23, 2016). Reliability was calculated for 10% of respi-

ratory kinematic and acoustic data.

The effects of the vocal exertion task across experimental days and groups were analyzed using

mixed level modeling. Fixed factors in the model included time (T0, T2, T5, T7 and T10, within

group), day (day one and two, within group), and group (low and high vocal fatigue groups,

between group). All interactions were also included in the statistical model. All assumptions for

mixed level modeling were met. Fisher’s protected least significant difference (LSD) tests were used

for post-hoc comparisons for significant main effects and all significant interaction effects. Alpha

level for significance was set at p< .05. Mixed models were run using SAS (Version 9.4, 2013).

Results

Reliability analysis

Inter-rater reliability for lung volume initiation and termination were in good range (LVI ICC

= .88, p = .00, 95% [.68, .96]; LVT ICC = .87, p = .00, 95% [.67, .96]). Inter-rater reliability was

in excellent range for vowel duration (ICC = .97, p = 00, 95% [.90, .99]), SPL (ICC = .90,

p = 00, 95% [.75, .90]), F0 (ICC = .90, p = .00, 95% [.74, .96]), and CPP analyses (ICC = .96,

p = 00, 95% [.88, .98]).

Respiratory measures

Lung volume initiation (LVI). Means and standard errors for LVI are presented in Fig 3.

A significant group by time interaction was also observed for LVI (F (4, 112) = 8.80, p< .001).

For the low vocal fatigue group, LVI was significantly higher at T7 (p = .039) and T10 (p =

.007), when compared with T0 on both days. For the high vocal fatigue group, LVI was signifi-

cantly lower than T0 at T7 (p = .013) and significantly lower than T7 at T10 (p< .001). LVI

data did not significantly differ between the low and high vocal fatigue groups except at T10

when data were significantly lower for the high vocal fatigue group (p = .008). No significant

effect of day or interaction between day, time, and group was observed.
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Lung volume termination (LVT). Means and standard errors for LVT are presented in

Fig 4. A significant main effect of time was observed for LVT (F (4, 112) = 17.65, p< .001). For

both groups, LVT was significantly higher at T7 than T0 (p< .001); and significantly higher at

T10 than T7 (p = .018). No significant main effects of group, day, or significant interactions

were observed for LVT.

Lung volume excursion (LVE). Means and standard errors for LVE are presented in Fig

5. A significant group by time interaction was observed for LVE (F (4, 112) = 2.68, p = .035).

For the low vocal fatigue group, LVE was significantly lower at T7 (p = .004) and T10 (p<
.001) as compared to T0 on both days. For the high vocal fatigue group, LVE decreased more

quickly. As compared to T0, LVE was significantly lower at T5 (p = .038), T7 (p = .005), and

T10 (p = .535). LVE data did not differ between the low and high vocal fatigue groups at T0 (p
= .633), T2 (p = .717), or T5 (p = .193). LVE was significantly smaller for the high vocal fatigue

group at T7 (p = .033) and T10 (p = .043). No significant main effects of group, day, or signifi-

cant interaction of time, group, and day were observed.

Acoustic measures

Means and standard errors for all acoustic outcome measures are reported in Table 1.

Duration of sustained vowel. A significant main effect of time was observed for duration

of sustained vowel (F (4, 112) = 10.50, p< .0001). For both groups, vowel duration signifi-

cantly decreased between T0 and T5 (p = .002). Values remained significantly below T0 at T7

(p< .001) and T10 (p< .001). A significant main effect of group was also observed for dura-

tion of sustained vowel (F (1, 28) = 13.72, p = .0009), as the low vocal fatigue group sustained

significantly longer vowels at all time points (p< .001). A significant main effect of day was

Fig 3. Means and standard errors for lung volume initiation across all time points, experimental days, and low

and high vocal fatigue groups.

https://doi.org/10.1371/journal.pone.0268324.g003
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also observed for vowel duration (F (1, 28) = 8.85, p = .006). For both groups, no differences

were observed between experimental days for vowel duration at T0 (low fatigue group p =

.223; high fatigue group p = .101) however, on day two, vowels became significantly shorter by

T2 (low fatigue group p< .01; high fatigue group p< .01). Data did not differ between experi-

mental days at T5, but for day two durations were also significantly shorter at T7 (low fatigue

group p< .01; high fatigue group p< .01) and T10 (low fatigue group p< .01; high fatigue

group p< .01). No significant interactions were observed for vowel duration.

Sound pressure level (SPL). A significant interaction between group and day was

observed for SPL (F (1, 28) = 5.44, p = .0271). On day one, the low vocal fatigue group pro-

duced vowels at significantly higher SPL than the high fatigue group all time points (p< .001).

On day two SPL was in similar range for both groups at T2 (p = .325) only and was greater for

the low fatigue group than the high fatigue group at all other time points (p< .001). SPL was

greater on day one when compared with day 2 for both groups at all time points (p< .01),

except T0 for the high vocal fatigue group where SPL was similar on both days (p = .348). No

significant main effect of time or interaction between day, time, and group were observed.

Fundamental frequency (F0). No significant interactions or main effects were observed

for F0.

Cepstral peak prominence (CPP). Means and standard errors for CPP are presented in

Fig 6. A statistically significant three-way interaction between group, time, and day was

observed for CPP (F (4, 112) = 2.75, p = .0317). CPP data were significantly greater for the low

vocal fatigue group when compared with the high fatigue group at all time points (p< .01).

For the low fatigue group, CPP was greater day one than day two at all time points (p< .001).

On both days, CPP for the low vocal fatigue group became significantly greater than T0 at T2

(day one p = .036; day two p = .037) and remained significantly above T0 at all time points

Fig 4. Means and standard errors for lung volume termination across all time points, experimental days, and low

and high vocal fatigue groups.

https://doi.org/10.1371/journal.pone.0268324.g004
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Fig 5. Means and standard errors for lung volume excursion across all time points, experimental days, and low

and high vocal fatigue groups.

https://doi.org/10.1371/journal.pone.0268324.g005

Table 1. Means and standard errors for acoustic outcome measures.

Low Vocal Fatigue Group High Vocal Fatigue Group

Time Points for Day 1a

Measure T0 T2 T5 T7 T10 T0 T2 T5 T7 T10

Duration (sec) 17.7 (1.1) 18.3 (1.6) 16.4 (1.5 15.9 (1.4) 14.5 (.81) 12.3 (1.1) 12.8 (1.0) 10.6 (.82) 11.0 (.77) 9.4 (.70)

SPL (dB)d 89.8 (.92) 89.3 (1.0) 88.2 (1.3) 88.6 (1.2) 88.4 (1.2) 84.5 (1.2) 87.7 (.62) 86.5 (.65) 86.2 (1.0) 86.5 (.76)

F0 (Hz)c 287.9 (15.0) 291.9 (14.1) 291.5 (13.8) 295.9 (14.1) 295.9 (14.4) 257.3 (22.9) 265.9 (23.1) 264.8 (25.3) 258.2 (25.0) 266.3 (26.8)

CPP (dB)b 10.9 (.24) 11.4 (.26) 11.4 (.25) 11.3 (.24) 11.4 (.22) 8.8 (.38) 9.6 (.35) 9.3 (.38) 9.8 (.32) 9.5 (.31)

Time Points for Day 2a

Measure T0 T2 T5 T7 T10 T0 T2 T5 T7 T10

Duration (sec) 19.7 (1.1) 15.1 (1.3) 15.7 (1.4) 13.3 (1.4) 13.0 (1.0) 12.5 (.75) 10.2 (1.2) 9.5 (.70) 8.9 (.51) 8.3 (.39)

SPL (dB)d 86.1 (.84) 85.1 (.77) 84.2 (.76) 83.2 (.87) 82.2 (.85) 83.5 (.60) 84.4 (.84) 82.0 (.73) 80.6 (.67) 78.2 (.61)

F0 (Hz)c 290.6 (14.7) 295.0 (14.3) 287.2 (15.4) 297.1 (13.3) 299.2 (14.2) 269.6 (19.5) 268.2 (20.6) 267.4 (20.9) 266.9 (21.1) 269.5 (22.0)

CPP (dB)b 10.1 (.24) 10.6 (.26) 10.6 (.25) 10.5 (.24) 10.6 (.22) 8.5 (.38) 9.5 (.35) 9.1 (.38) 9.4 (.27) 9.2 (.29)

aT0 = first vowel of vocal exertion task, T2 = 2 minutes, T5 = 5 minutes, T7 = 7 minutes, T10 = 10 minutes
bCPP = cepstral peak prominence
cF0 = fundamental frequency
dSPL = sound pressure level

https://doi.org/10.1371/journal.pone.0268324.t001
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through T10 (day one p = .026; day two p = .037). For the high vocal fatigue group, no statisti-

cally significant differences were observed between days one and two. On both days, CPP at

T7 was significantly greater than T0 (day one p = .035, day two p = .039) and remained signifi-

cantly greater than T0 at T10 (day one p = .028; p = .008).

Discussion

This study examined the respiratory strategies employed by individuals reporting low and

high levels of vocal fatigue during an exertion task across two experimental days. It was

hypothesized that individuals reporting high levels of vocal fatigue in daily life would utilize

lower lung volumes to complete the vocal exertion task when compared to speakers reporting

low levels of vocal fatigue. It was also hypothesized that these strategies might change when the

vocal exertion task was performed a second time. No differences in respiratory kinematics

were observed between groups at T0. As the exertion task progressed, individuals reporting

high levels of vocal fatigue initiated phonation at lower lung volumes, while those with low lev-

els of vocal fatigue initiated phonation at higher lung volumes. Overall lung volume excursion

decreased as the task progressed (T2-T10) for both groups. Participants employed similar

respiratory strategies on both experimental days.

It was also hypothesized that acoustic measures would be affected by the vocal exertion

task. Differences in acoustic measures were observed between low and high vocal fatigue

groups, both at T0 and as the exertion task progressed (T2-T10). Individuals reporting vocal

fatigue symptoms produced shorter vowels at lower SPL than the low fatigue group on both

experimental days. Vowels became shorter and softer on the second experimental day for both

groups. Changes in cepstral peak prominence followed SPL for the low vocal fatigue group but

did not change between experimental days for the high vocal fatigue group.

Fig 6. Means and standard errors for Cepstral Peak Prominence (CPP) across all time points, experimental days,

and low and high vocal fatigue groups.

https://doi.org/10.1371/journal.pone.0268324.g006
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Seven minutes into the task (T7), individuals in the low vocal fatigue group began initiating

phonation at higher lung volumes. This increase in LVI was likely a strategy employed to

maintain elevated vocal intensity in the face of continued vocal loading. Increasing the lung

volume used to initiate speech would allow individuals to benefit from greater recoil forces

[24, 31, 62] and thereby potentially avoid vocal strain [17]. As previously published, these par-

ticipants employed the same strategy following the task [17, 34], but the findings from this

analysis suggest that this pattern of higher LVI is initiated during the actual vocal demand

itself. In other words, the strategy was evident in the moment of vocal demand as well as fol-

lowing the demanding task. It might be predicted that compensations employed during vocal

exertion would allow individuals to benefit from recoil forces and avoid compensatory strain.

In fact, avoiding compensatory strain is at least a secondary target of most voice therapy regi-

mens [63–67]. In addition, avoiding compensatory strain could be beneficial over an extended

period of time, whereas vocal strain might quickly lead to negative vocal symptoms [68, 69].

This finding could, in part, be related to the type of vocal exertion task used in this study.

Although evidence suggests that sustained vowel tasks fatigue the laryngeal mechanism more

quickly than traditional loud reading tasks [17, 22], some of the effects may arise from the fact

that the tasks differ from habitual phonatory patterns. Additional investigation is warranted to

determine if speakers employ similar respiratory strategies for other types of vocal exertion.

For individuals reporting high vocal fatigue, a decrease in LVI was observed. This decrease

in LVI would force individuals to produce loud, prolonged phonation without the benefit of

increased recoil forces [24, 31, 62]. Individuals might then compensate on a laryngeal level

with glottal squeeze or excess muscle tension [30, 34]. Such compensations could easily lead to

vocal fatigue that becomes more severe over extended periods of high vocal demand. This

hypothesis is supported by previous work reporting that phonating at low lung volumes is

associated with functional voice problems [3, 70]. For example, teachers with vocal fatigue

have been observed to use lower LVI for habitual teaching tasks [3]. As such, increased respira-

tory efficiency and unloading excess muscle recruitment during vocalization might be viable

therapeutic targets [71, 72].

LVE decreased for both groups as vocal exertion task progressed. As a result, vowel dura-

tion decreased for both the low and high vocal fatigue groups five minutes (at T5) into the

vocal exertion task. This might be expected as sustaining vowels for maximal phonation time

is a physiologically-challenging task requiring extended airflow regulation, laryngeal valving,

and respiratory muscle strength [73, 74]. The fact that participants sustained vowels for five

minutes without decreasing vowel duration is likely due in part to the frequent cues provided

during data collection, as past study has observed maximum phonation time to decrease in as

few as five trials [75]. Although it is not possible to determine if the reason for the decrease in

vowel duration was the result of physical fatigue, mental fatigue, or a combination of the two–

participants subjectively reported increased vocal effort after the vocal exertion task [17, 34].

Interestingly, when tasked with sustaining prolonged vowels at elevated SPL and F0, partici-

pants maintained accurate SPL and F0 targets throughout the task on day one. It was, there-

fore, vowel duration that was compromised when all targets could no longer be achieved. This

reflects an interesting allocation of resources in the setting of high vocal demand. This also

explains why CPP remained constant over the course of the task, as both F0 and SPL have

been shown to influence cepstral measures [76–78]. The change in vowel duration, rather than

F0 or SPL, may have implications for how individuals compensate when required to commu-

nicate for extended periods in suboptimal environment. That is: they may breathe more fre-

quently to maintain these other parameters. This would make sense as this pattern is also

observed in loud connected speech or when speaking in background noise [31]. This warrants
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further investigation as poor acoustics or ambient noise can alter vocal effort and acoustic

measures [79–81].

The high and low vocal fatigue groups displayed differences in acoustic measures at T0.

This was unexpected as none of the participants were experiencing vocal symptoms at the time

of the study. Nonetheless, individuals reporting high levels of vocal fatigue produced shorter

vowels at T0 and throughout the exertion task despite receiving identical instructions and

cues. It is unclear why this difference in loud maximum phonation time was evident between

groups, particularly as lung volumes were similar between groups at T0. It may be that individ-

uals experiencing frequent vocal symptoms, were less inclined to push themselves vocally for

fear of experiencing vocal fatigue. Individuals reporting low amounts of vocal fatigue may

have been less inhibited as they did not anticipate vocal problems. It is also possible that an

underlying physiological or anatomical difference existed between these populations. Deter-

mining whether these differences result from or cause vocal fatigue should be the subject of

future study. The fact that the lung volumes used to complete the task were similar at T0 sug-

gests that the high vocal fatigue group produced shorter vowels with the same amount of air

employed by the low fatigue group. Additional research may explain this finding and deter-

mine the potential screening value of loud maximum phonation time.

SPL was lower for the high vocal fatigue group at T0 but rose to near that of the low fatigue

group 2 minutes (T2) into the vocal exertion task. This suggests that the high vocal fatigue

group experienced a warm-up period before they could consistently sustain the vowel at target

SPL but then SPL decreased again by the 5-minute marker (T5). CPP was significantly lower

for the high vocal fatigue group at all time points. This finding was likely driven primarily by

SPL rather than other factors known to influence CPP, such as sex-related differences. This

conclusion is reasonable as the high vocal fatigue group was 60% male, which would normally

increase CPP values as males have larger normative values on this measure than females [76].

SPL was the primary acoustic difference observed between experimental days, as both over-

all groups produced vowels at lower SPL on day two. The reasons for this difference are

unclear given that participants were given the same cues and targets on both experimental

days. It may be that participants were vocally pacing themselves after having experienced the

vocal exertion task on the day one. The decrease in SPL on day two led to a decrease in CPP

for the low vocal fatigue group. This was expected as vocal intensity is correlated with CPP val-

ues [76]. For the high vocal fatigue group, the expected decrease in CPP was not evident on

day two. This may be because vocal quality became more pressed for the high vocal fatigue

group at these time points. Past study indicates that phonating at lower lung volumes is associ-

ated with higher laryngeal position, lower tracheal pull, and therefore increased vocal fold

adduction [82]–which could lead to slightly more pressed phonation [83–85]. Previous studies

have shown that changes in voice quality can alter CPP [86–88], thus more pressed vocal qual-

ity may have counteracted the effects of decreased SPL. More work is needed to examine this

physiological relationship between lower and upper airway. It should be noted that although

values have been suggested for separating normal and dysphonic voices [88, 89], it is unclear

what constitutes a clinically meaningful difference in CPP for healthy voices. It is possible that

some of the smaller magnitude differences observed in this study are not clinically significant.

Given the decrease in SPL on day two, it is surprising that there were no significant differ-

ences in lung volumes between experimental days. However, SPL is also regulated by supra-

glottal adjustments which were not examined in this study [90]. It may be that increased vocal

effort on the second experimental day caused individuals to use greater respiratory drive, as

emerging evidence suggests that increased vocal effort can affect the lung volumes used for

speech and glottal adduction [28]. Additional research is needed to understand why individu-

als used generally the same respiratory drive to produce lower SPL vowels on day two.
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Data from this study suggest that individuals reporting high levels of vocal fatigue utilize

less efficient respiratory strategies when faced with vocal challenge. This could make them

more vulnerable to problematic compensations such as vocal strain. More work, however, will

be needed to address some of the limitations of this study. For example, additional work will

be needed to determine if the differences between low and high vocal fatigue groups are indic-

ative of some underlying physiology or functional patterns developed over time. Ascertaining

whether these patterns are causative of -or result from- vocal fatigue also warrants investiga-

tion. More work is also needed to determine the long-term implications of these respiratory

strategies and their effects on laryngeal function. Specifically, future study incorporating elec-

troglottographic measures may clarify the relationship between lung volumes and glottal clo-

sure. In addition, it will be important to examine more vulnerable populations such as older

adults, those at occupational risk, or those with laryngeal pathology. This type of investigation

may lead to better treatments for vocal fatigue.

Conclusions

Individuals experiencing frequent vocal fatigue symptoms employed less efficient respiratory

strategies during periods of high vocal demand when compared with individuals reporting low

vocal fatigue. These findings suggest that respiratory kinematic changes previously observed

following vocal exertion occur during periods of high vocal demand as well. In addition, indi-

viduals reporting high vocal fatigue produced softer, shorter vowels than those in the low vocal

fatigue group, at baseline. Future research is warranted to consider the implications of these

differences in vocal fatigue management.
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