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Abstract: Vitamin D (VD) is a fat-soluble prohormone well known for its role in regulating calcium
and phosphate metabolism. It has been clinically used for many years to prevent rickets in
children, osteomalacia, and osteoporosis in adults. VD insufficiency is a common medical condition,
and many supplements are available in the market in order to increase serum 25-hydroxy VD levels
to recommended amounts. Over the course of the last decades, it has become increasingly clear
that calcitriol, an active form of VD, regulates multiple cellular processes with effects on normal
and malignant cell growth and differentiation, and on the immune and cardiovascular function.
Increasing evidence supports the role of the VD system in cancer prevention and therapy. Due
to many pleiotropic and beneficial effects in extra-skeletal disorders, VD has gained potential and
become an interesting active for encapsulation into drug delivery systems. The purpose of this review
is to present the diversity of drug delivery systems that have been reported for VD or VD derivatives
in an orderly manner across the following categories: Oral administration, application on the skin,
cancer prevention/therapy, and other diseases or routes of administration.

Keywords: vitamin D; cholecalciferol; drug delivery systems; targeted delivery; nanoparticles; food
fortification; cancer

1. Introduction

Vitamin D (VD) is one of the lipophilic vitamins. The most important forms of VD are cholecalciferol
(vitamin D3, VD3) and ergocalciferol (vitamin D2, VD2) (Figure 1). VD3 is the main form and is
available in some natural dietary products (egg yolk, flesh of fatty fish, and fish liver oils), food
fortified with VD, and many forms of dietary supplements. VD2 is of plant origin and present in low
amounts, e.g., in some mushrooms. VD2, being less potent than VD3, is rarely present in commercial
preparations and fortified food. Despite that, it is a good alternative for vegans and vegetarians.
However, the main source of VD is endogenous synthesis from 7-dehydrocholesterol in the human skin
after sun exposure. Part of VD is stored in adipose and muscle tissue, and part of it gets hydroxylated.
Independent of the source, VD3 and VD2 act as hormone precursors since they require two stages of
metabolism: First to 25-hydroxy VD (25(OH)D, calcidiol) in the liver; then to 1α,25-dihydroxy VD
(1,25(OH)D, calcitriol) in the kidney [1]. 25(OH)D3 is significantly less active than calcitriol and is
transported in the circulation by binding to VD binding proteins. The amount of circulating 25(OH)D3
is the most reliable measurement and is thought to reflect body VD status best. The chemical structures
of the vitamin and its active derivatives are presented in Figure 1, whereas the fate of VD in the body is
presented in Figure 2.

It is considered that most people are insufficient or deficient in VD due to a lack of sun exposure,
extensive use of sunscreens, which block VD synthesis, and poor dietary intake. Maintaining
recommended serum levels, i.e., 30–60 ng/mL of 25(OH)D3, can be achieved through vitamin
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supplementation or food fortification without changing lifestyle to avoid impaired skeletal and
overall health [2].
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Figure 1. The chemical structure of ergocalciferol, cholecalciferol, and their active derivatives.

Nowadays, a lot is known and written about the mechanism of action and the beneficial effects of
VD on the human body [1,3,4]. Similar to other steroid hormones, the active form of VD binds to a
nuclear receptor (VDR, vitamin D receptor) and modulates gene expression. As the VDR is present in
most cells in the body and calcitriol directly or indirectly regulates as much as 3–5% of the human
genome, VD activity is widespread, and it exerts actions that can limit the progression of multiple
diseases [5]. One of the most important functions of VD is to maintain skeletal calcium and phosphate
balance, and VD deficiency can result in lower mineral density. For this reason, VD has been used in
order to prevent or treat rickets in children, osteomalacia, osteoporosis, bone fractures, and secondary
hyperparathyroidism in adults. There is also evidence that VD can prevent or has beneficial effects in
many other diseases such as malignancies, diabetes, and cardiovascular or autoimmune diseases [3].
A few drugs with VD-like activity (VD analogues), with more or less pronounced calcemic action
(e.g., calcifediol, alfacalcidiol, paricalcitol, calcitriol, eldecalcitol), are also clinically available and
used topically to treat psoriasis due to the regulation of keratinocytes proliferation, differentiation,
and apoptosis [6].

Nowadays, the use of VD or VD analogues in prophylaxis or in the therapy of many beyond-skeletal
diseases seems to be very interesting, especially for possible use in cancer treatment [7–9]. In such
a case, the calcemic activity becomes undesirable and targeting delivery to cancer cells could be
expected. However, anti-proliferative activity is associated with high concentrations of calcitriol at
which hypercalcemia may be induced due to the action of calcitriol in stimulating intestinal calcium
absorption. Additionally, the activity of the hormone is self-regulated as it simultaneously induces
its inactivation [5]. To overcome these barriers, several analogues of calcitriol with lower calcemic
activities that activate the target receptor have been synthesised [10–12]. The analogues should be
selective and should have increased pro-differentiating and anti-proliferative properties. Therefore, it is
necessary to characterize new VD analogues fully. Some of the analogues have undergone evaluation
in preclinical or clinical trials for potential anticancer activity [11]. It is worth paying attention to
seocalcitol (EB 1089), which is one of the potential analogues. Seocalcitol is 50–200 times more potent
than calcitriol concerning regulation of cell growth and differentiation in vitro as well as in vivo. It has
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reduced calcemic activity in vivo compared to that of calcitriol, but a lower binding affinity for the
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vitamin D (calcitriol), the active form of vitamin D. Reproduced with permission from [14]; published
by Elsevier, 2011.

Many attempts have been made to harness some drug delivery systems (DDS) to deliver VD or
VD analogues for skeletal or non-skeletal effects. A drug delivery system is defined as a formulation
or a device that enables the introduction of a therapeutic substance into the body and improves its
efficacy and safety by controlling the rate, time, and place of drug release. Ideal DDS should increase
the bioavailability of the drug, provide for controlled or sustained drug delivery, and transport the
drug intact to the site of action, while avoiding the non-diseased host tissues. The product should be
safe and reliable, cost effective, stable, easy to administer to the patients, and drug delivery should be
maintained under various physiological variables [15]. Meeting all these requirements at the same
time is often impossible and not always necessary. The development of DDS has been going on for a
few decades (starting from the discovery of liposomes in the 1960s) and this advanced drug delivery
is promising much in the treatment of disease, with superior control of delivery and action over
conventional formulations. However, development of such a delivery system with zero-order release
kinetics, suitable stability, and ease of scaling up is a difficult task. Therefore, the vast majority of
potential applications of DDS remain at the initial research stage.

Nowadays, the diversity of DDS is enormous, including nano- and microparticulate DDS that
may be composed of a range of materials such as polymers, lipids, surfactants, and inorganic or hybrid
materials [15–17]. The structure of the selected DDS is shown in Figure 3.

The recent increase in VD interest by the general public has fuelled a big rise in sales of
over-the-counter VD preparations. Additionally, products with progressively increasing content of
VD have been introduced with similar rapidity. Many types of pharmaceutical preparations for VD
supplementation are commercially available, including oily drops, capsules, and tablets. At the same
time, considering the potential use of VD and its analogues in the therapy of various diseases, they
have become interesting candidates for encapsulation into DDS. This review of the published literature
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was conducted to present various types of delivery systems loaded with VD or VD-related compounds
across the following categories: Oral administration (food fortification), application on the skin, cancer
prevention/treatment, and finally other diseases or routes of administration.Pharmaceutics 2019, 11, x FOR PEER REVIEW 4 of 21 
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2. Drug Delivery Systems for Oral Administration (Food Fortification)

Most dietary products are a poor source of VD, including breast milk. VD is minimally found in
fat-free and low-fat dairy products, which are in growing demand. VD intake is found to be very low
in vegetarians and vegans. The high phytate and fiber content of vegetarian diets may also reduce VD
absorption [19]. Since VD insufficiency is a widespread public health problem, functional food fortified
with this vitamin during processing has received increasing attention in recent years. While the use of
oral VD supplements is a low-cost and practical method to treat deficiency, clinical advancements in
VD oral administration are limited by its lipophilic character, low solubility in gastrointestinal fluid,
and, thus, low bioavailability. Moreover, the facile degradation of VD by light, air, and heat should also
be considered during manufacturing, storage, and use. In a moderate climate, VD supplementation
should take place every day for most of the year. Thus, patient compliance could be low. Thereby, there
is a need to develop new formulations of VD, especially those with prolonged release. In this context,
the everyday consumption of foods enriched with VD seems to be a simpler and cheaper alternative.

In the gastrointestinal tract, after release from the food matrix or supplements, VD is included in
micelles made by bile acids and enters the enterocytes via passive diffusion through an unsaturable
mechanism [20]. Oral VD absorption requires three trans-membrane proteins that primarily function
as cholesterol transporters in the intestine. Afterwards, it is included in chylomicrons and is then
activated by the liver and kidneys. The absorption is blocked when there are not enough lipids in
the intestine [19]. To improve VD bioavailability, it is important to enhance the water solubility [21].
Grossmann and Tangpricha (2010) reviewed a few studies that examined the effect of oil, cellulose,
lactose, and ethanol vehicles on VD bioavailability from supplements. It was identified that VD in
an oil vehicle has better oral bioavailability and produces a greater 25(OH)D response than VD in a
powder (lactose or cellulose based) or an ethanol vehicle in healthy subjects [22]. However, a recent
clinical trial concluded that oily drops (peanut oil) and capsules in lactose excipient, both containing
VD, were bioequivalent [23].
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2.1. Delivery Systems from a Food Processing Point of View

While the encapsulation of bioactive compounds in food products using nano/microparticulate
systems is not a new concept [24], fortification of foods or beverages with VD still represents a big
challenge for several reasons, including (i) high hydrophobicity that prevents direct dispersion of
the vitamin in an aqueous food matrix, (ii) chemical degradation of VD leading to the reduction of
functionality and bioavailability, and (iii) variable oral bioavailability [19,25,26]. In the vitamin structure
(Figure 1), there are double bonds sensitive to oxidation. As mentioned earlier, light, oxygen, and
high temperature induce vitamin isomerization and degradation into its inactive forms [22]. All these
obstacles should be overcome to develop an efficient and inexpensive technology. Encapsulation
into colloidal delivery systems could be a good solution, as it can either protect the vitamin against
harmful conditions or make the vitamin soluble in aqueous systems. Various submicron-sized delivery
systems are in particular interest. Over past years the popularity of nanotechnology in the food sector
is increasing.

On the basis of the literature search, it is evident that most delivery systems for VD have been
developed for potential application in the food industry. In the field of food technology, VD is
often considered as a model nutraceutical, as it has more than nutritional value on health. The term
“nutraceutical” simply combines the words “nutrition” and “pharmaceutical”; however, up to today,
there is no official definition distinct from, e.g., dietary supplements. The importance of nanotechnology
in food processing can be evaluated by considering its role in the improvement of food product quality
in terms of food texture, appearance, taste, nutritional value of the food, and food shelf-life [27].
Colloidal systems such as micelles, liposomes, nanoemulsions, and solid nanoparticles have found
numerous applications as delivery vehicles for active pharmaceutical ingredients. Their use as vehicles
for functional food ingredients is relatively new in the food industry, and it is especially promising to
improve the bioavailability of poorly soluble substances such as functional lipids (e.g., carotenoids,
phytosterols, polyunsaturated fatty acids, fat-soluble vitamins) and natural antioxidants [21].

One of the main aspects of nutraceutical encapsulation is the selection of safe material for
encapsulation and procedure, preferably without using toxic solvents. Several new methods and
materials that are safe to be used in the food industry have been developed from natural materials
for nanoparticle production [28]. Delivery systems are commonly classified according to the main
building blocks, which are necessarily GRAS (generally recognized as safe) food materials, preferably
natural, and ideally-endogenous components of the product, thereby shortening the ingredient list
and minimizing changes to the product sensory attributes, for higher consumer satisfaction.

There are four main groups of delivery systems in food: Protein-based, carbohydrate-based,
lipid-based, and mixed systems. Due to the negative health implications of high-fat consumption,
there is a need for enriching low-fat and non-fat food and drinks with health-promoting oil-soluble
bioactives, preferably using non-lipid, amphiphilic delivery systems [29]. It is obvious that delivery
systems for such food application must be fabricated entirely from food-grade ingredients using
economically viable processing operations and should provide suitable release of the nutraceuticals
and their physical and chemical stability over the range of environmental conditions (e.g., temperature
fluctuations, light, oxygen, and mechanical forces) that food and beverage products are usually exposed
to during their manufacture, storage, and utilization. Additionally, the delivery system should not
adversely influence the physicochemical or sensory properties of the food or beverage product that it
is incorporated into, e.g., appearance, texture, or flavor [30].

According to the recommendations, the average daily requirement for VD for an adult is
1000–2000 international units (IU) [4]. This vitamin is a good candidate for encapsulation into drug
delivery systems due to high activity (1 IU is equal to 0.025 µg), the relatively low daily requirement
(25–50 µg/day), and high lipophilicity. Besides, most carriers are lipophilic in nature and generally
the more lipophilic the active, the better encapsulation efficiency, and the lower the undesirable
release. While the encapsulation of VD has been reported since 1993 [31], many disadvantages still
exist, inhibiting further application and industrialization of VD supplementation or food fortification.
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For instance, encapsulation technology may involve the use of high temperature during the preparation,
which would cause loss of VD activity, or the use of toxic solvents, which would pose potential side
effects to final products due to residues of these solvents. Other disadvantages may include low
loading capacity and incomplete encapsulation due to adsorption on the carrier surface resulting in
little protection against UV exposure [32]. Lack of long-term stability of some delivery systems is also
a serious technological problem. It should be mentioned that food and beverage products vary in
their pH, ionic composition, ingredient interactions, storage conditions, and preparation procedures.
Consequently, it will be important to test the stability of both the vitamin and the delivery system
under the precise conditions under which they will be utilized in food products [26].

2.2. Types of Vitamin D Delivery Systems for Food Fortification

Various types of delivery systems developed mainly over the last ten years for VD food fortification
are described below or presented in Table 1. It was noticed that emulsions/nanoemulsions and
nanoparticles are predominant types of vehicles for VD encapsulation. One of the most convenient
means to incorporate lipophilic active components into aqueous media, so that they are suitable for
utilization within food and beverage products, is to encapsulate them within colloidal lipid-based
delivery systems. Such carriers may enhance VD bioaccessibility by forming mixed micelles in the
small intestine that can solubilize and transport it [33].

There is increasing interest in the utilization of nanoemulsions in the food industry. Nanoemulsions
are colloidal dispersions comprising two immiscible liquids with droplet sizes of the internal phase
between 20 and 200 nm and are expected to improve oral bioavailability of poorly water-soluble drugs.
Reducing droplet size in emulsion-based delivery systems has several consequences that may be
beneficial for certain food applications: (i) Greater stability to droplet aggregation, and gravitational
separation; (ii) higher optical clarity; and (iii) increased oral bioavailability. In particular, nanoemulsions
may be particularly useful for encapsulating lipophilic nutraceuticals into aqueous-based food products
that should be optically clear, such as fortified waters, soft drinks, or juices [26]. Additionally,
nanoemulsions can be produced with natural food ingredients using simple production methods.
Studies have shown that nanoemulsion composition effects lipid digestion and bioavailability so that
the nature of the carrier oil is of great importance [34].

The most common technique used for the production of emulsion-type delivery systems
is high-pressure homogenization. However, Guttoff et al. (2015) [26] proposed a spontaneous
emulsification method that is simple and inexpensive to carry out, and therefore has great potential
for forming nanoemulsion-based delivery systems for food, personal care, and pharmaceutical
applications. Nevertheless, the method needs a higher surfactant concentration and may be less
applicable to large-scale industrial processes [26].

An interesting approach has been taken by Salvia-Trujillo et al. (2017) [33]. They produced three
VD2-enriched O/W emulsions with different particle size distributions (D4,3 values of 0.112, 0.53,
and 14.5 µm) using different homogenization methods. To assess VD2 bioaccessibility (the fraction that
is solubilized within the mixed micelle phase after lipid digestion), both an in-vitro gastrointestinal
tract model consisting of mouth, stomach, and small intestine phases and in-vivo studies in rats were
conducted. The in-vitro studies showed that smaller lipid droplets were digested more rapidly than
larger ones and highest VD2 bioaccessibility was observed for the emulsions containing the smallest
droplets. In contrast, the in-vivo rat feeding studies demonstrated that the absorption of VD2 was the
highest for the emulsions containing the largest droplets [33].

Another of the most studied types of delivery systems for VD encapsulation is nanoparticles.
Nanoencapsulation of nutraceuticals may be primarily used for better absorption, better stability,
or sustained or even targeted delivery without affecting color or taste of food. Nanoparticles can be
dispersed homogeneously and uniformly in the food system. They have more suitable properties
compared to microstructures and can provide better bioavailability. There is a great number of synthetic
polymers, biopolymers, and lipids available for the pharmaceutical, cosmetic, and food industries
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that may be used for the production of nanoparticles. However, only inexpensive food materials and
technologies have the potential for commercialization. Abbasi et al. (2015) proposed whey protein
isolate, which is a by-product of the dairy industry produced vastly in the world. Whey protein isolates
have good nutritional and functional properties and can entrap hydrophobic compounds successfully.
Furthermore, they can be digested and release their contents easily. Nanoparticles of whey protein
isolate could entrap VD3 and delay its degradation in the presence of oxygen [28].

It is worth mentioning studies reported by researchers who prepared nanoparticles from
hydrophobic alginate derivative (oleoyl alginate ester, OAE) loaded with VD3. They proved that
such nanoparticles released in a sustained way in simulated gastric and intestinal fluid [21]. Next,
they visualized the internalization of fluorescent VD3-loaded OAE nanoparticles by Caco-2 cells.
Incorporation into OAE nanoparticles resulted in increased absorption of VD3 in mice. In in-vivo
studies in rats with nutritionally induced VD-deficiency rickets, encapsulated VD3 had better efficacy
than that of the VD3-free drug. Their studies provided evidence that OAE nanoparticles were valuable
as nutraceutical delivery vehicles to enhance the absorption of VD3 [35].

Table 1. Examples of various types of delivery systems reported for vitamin D encapsulation for
potential use in food and beverage fortification (VD2—vitamin D2, VD3—vitamin D3, MCT—medium
chain triglycerides).

Delivery System Active Main Components Technique/Method Reference

O/W emulsions
and

microemulsions

VD2 VD3

Oil phase: Soybean oil, olive
oil, or MCT; water phase
containing Tween 20 or

sodium cholate

Microchannel
emulsification [19]

VD2 VD3
Oil phase: Soybean oil, olive

oil, or MCT; water phase
containing Tween 20

Rotor-stator and
high-pressure

homogenization
[36]

VD3
Oil phase: MCT; water

phase containing Tween 20,
60, or 80

High-speed
blender and

high-pressure
homogenization

[30]

VD2

Oil phase: Soybean oil;
water phase containing

modified lecithin, sodium
caseinate, or decaglycerol

monooleate

Rotor-stator and
high-pressure

homogenization
[37]

O/W
nanoemulsions

VD3

Oil phase: MCT, corn oil,
fish oil, mineral oil, or

orange oil; water phase
containing a natural

surfactant

High-speed
blender and

high-pressure
homogenization

[34]

VD3 Oil phase: Fish oil; water
phase containing Tween 20 Ultrasonication [38]

Biopolymer-based
nanoparticles

VD3 Zein nanoparticles coated
with carboxymethyl chitosan

Phase separation
method and
coating by

cross-linking with
calcium

[32]

VD2 Beta-lactoglobulin–sodium
alginate complex

Electrostatic
interactions [39]

VD3 High amylose corn starch Ultrasonication [40]

VD3 Carboxymethyl chitosan–soy
protein complex

Ionic gelation
method [41]
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Table 1. Cont.

Delivery System Active Main Components Technique/Method Reference

Lipid-based
nanoparticles

VD2
Solid lipid nanoparticles

(glyceryl tripalmitate)
stabilized by Tween 20

Hot
homogenization

technique using a
high-pressure
homogenizer

[42]

VD3

Nanostructured lipid
carriers (solid lipids: Precirol

or Compritol, liquid lipid:
Miglyol or octyloctanoat,

surfactants: Tween 80 or 20
or Poloxamer 407)

Hot
homogenization

method
[43]

VD3

Nanostructured lipid
carriers (glycerol

monostearate as solid lipid,
oleic acid as liquid lipid, and

Tween 80)

Hot high-pressure
homogenization [44]

Micelles VD3

Amphiphilic chitosan
derivative of

N,N-dimethylhexadecyl
carboxymethyl chitosan

Synthesis [45]

Liposomes VD3
Soybean

phosphatidylcholine,
cholesterol

Thin film
hydration-sonication

technique
[46]

Microparticles VD2 Medium molecular weight
sodium alginate

Ultrasonic
atomization and

microwave
stabilization

[47]

An interesting approach was also presented by Semo et al. (2007). They proposed the use of
bovine casein micelles for encapsulation and stabilization of VD2 that could enrich non-fat or low-fat
food products. The authors demonstrated that these re-assembled casein micelles could provide
protection against photochemical VD2 degradation [48]. In the next step, the authors improved the
previous encapsulation technique by introducing ultra-high pressure homogenization and proved
the protection conferred by the micelles to incorporated VD3 against heat-induced degradation and
during cold storage. Finally, the bioavailability of a single high dose of 50,000 IU VD3 encapsulated in
casein micelles in 1%-fat milk was at least as high as that using an aqueous Tween 80-emulsified VD3
supplement [25]. In another study, the authors compared the VD3 bioavailability in casein micelles to
that in Tween 80, both in fat-free yogurt (VD3 dose: 50,000 IU), measuring serum 25(OH)D increase in
subjects. No significant differences in mean 25(OH)D levels were observed, evidencing the fact that
VD3 bioavailability in casein micelles was as high as that in the synthetic emulsifier [49]. Another recent
clinical study found that the bioavailability of VD in casein micelles in the absence of fat was found
to be insignificantly different from its bioavailability within fat, suggesting that the bioavailability of
lipophilic bioactives in protein nanovehicles is not lower than in fat [50].

In the studies of Mohammadi et al. (2017), VD was incorporated into nanostructured lipid carriers
(mean diameter of approximately 88 nm), and then the effect of rising 25(OH)D in rat blood was
assessed. Nanoparticles demonstrated the faster and prolonged increase of 25(OH)D in plasma than
the oily solution formulation of VD [43]. A different approach was proposed by Diarrassouba et
al. (2015). They used food proteins (β-lactoglobulin and egg white lysozyme) to entrap VD3 and
obtained microspheres (mean diameter of approximately 7 µm) by electrostatic interactions with an
encapsulation efficiency of about 91%. The authors suggested the use of food proteins as potential
food-grade vehicles for bioactives in the formulation of food products and pharmaceuticals [51].
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Finally, as presented in Table 1, many other attempts were also carried out to improve water
solubility, stability, and bioavailability of VD using different encapsulation strategies, like protein-based
delivery systems [32,39,41], solid lipid [42] and nanostructured lipid carriers [43,44], liposomes [46],
and microparticle [47]. Interestingly, most researchers underline the fact that VD is a vitamin sensitive
to external factors. However, only some of the authors reported results concerning VD chemical
stability studies. In such studies, the chemical stability of the vitamin is measured either by HPLC [37]
or spectrophotometrically [19] and expressed as encapsulation efficiency decrease during storage of the
formulation. Both report that the chemical stability of VD2 or VD3 loaded in oil-in-water nanoemulsions
was dependent on the type of emulsifier; however, in these studies, there was no comparison to the
stability of non-encapsulated VD, and the effect was not sufficient for long-term storage.

3. Drug Delivery Systems for Application on the Skin

Alternatively to the oral administration of VD, which can have low efficiency because of many
barriers and differences of conditions along the route, skin application may provide several advantages.
Transdermal delivery gives a chance to avoid the first-pass effect of the liver, ensures the release for a
long period, and could be for people with diseases that impair the oral absorption of VD3. On the
other side, the topical application could provide a high concentration of the active substance in the
upper skin layers that is essential for the treatment of several skin diseases typified by the disfunction
of keratinocytes in the lower epidermis, mainly psoriasis [52]. Analyzing the research described
in the literature in which VD/VD analogue was loaded in drug delivery systems, most potential
applications were designed for topical administration on the skin. However, a few interesting studies
on transdermal VD delivery were also conducted.

3.1. Transdermal Delivery

The transdermal route of permeation of vitamin D3 may be interesting for people with fat
malabsorption in the intestine, due to Crohn’s disease, gastric bypass, bile acid-binding medications,
cystic fibrosis, and celiac disease. However, the transdermal route has little use, and there is little
scientific literature on the subject. D’Angelo Costa and co-workers [53] investigated the feasibleness of
VD3 skin retention and permeation with the presence of chemical penetration enhancers (soybean
lecithin, isopropyl palmitate, propylene glycol, ethoxydiglycol, and cereal alcohol) at different
pharmaceutical forms (gel and cream) through human skin from abdominal surgery. However,
according to their results, gel formulation showed VD3 detection at stratum corneum in 4 h and
epidermis and dermis in 24 h, whereas VD3 from the cream was detected only at the skin surface
(no VD3 was found at receptor fluid for both formulations). They concluded that VD3 did not indicate
feasibleness for transdermal use since it did not permeate through human skin, probably due to high
lipophilicity and, thus, high affinity with the vehicle in the cream. Nevertheless, the transdermal
route could be more effective with less lipophilic derivates of VD3 and with a different combination of
penetration enhancers in the gel [53]. In the research of Alsaqr et al. [54], ointments with oleic acid
and dodecylamine as penetration enhancers were used to evaluate the transdermal delivery of VD3
through porcine skin in 24 h. The results were retention at stratum corneum and epidermis for three
formulations assessed (control, oleic acid, and dodecylamine), but VD was detected in the receptor
medium only in the case of formulation with dodecylamine. They concluded that the transdermal
route could be effective. However, it should be noted that porcine skin has a higher permeability due
to the greater amount of hair follicles than human skin [54].

The above results obtained for transdermal VD delivery with conventional formulations (ointments
and gels) suggest that drug delivery systems could be attractive to enhance such delivery. To our
knowledge, the report of Bubshait et al. (2018) is the only research on humans in this area that so
far has been published [55]. They did a prospective randomized controlled trial in which patients
in the study group were given Top-D (VD3 gel made from proniosomal technology, 1 g contained
5000 IU of VD3) to apply daily on the skin, while the control group was given 1 g of Aloe vera gel to be
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applied every day. All the patients had VD deficiency (25OHD level ≤ 20 ng/mL). After four months,
only in the study group, the serum 25OHD level was sufficient (25OHD level 37.17 ± 6.04 ng/mL).
However, the proniosomal technology was not described in detail, and the only information is that the
average particle size of VD carriers is about 3.8 µm. Hence, the absorption of vitamin D3 through the
pores occurred without difficulty, as skin pores are approximately 50 µm in diameter [55]. Already
in 2014, this group of researchers from the same center did a randomized controlled pilot study on
the transdermal route of vitamin D3 and received similar results. One group of patients applied a
topical formulation with Aloe vera and VD3, and another group applied formulation without VD3.
After three months, an increase in the 25OHD level was observed [56]. In this study, aromatic oils and
glycerin were used as penetration enhancers, and the results were comparable to those obtained for
proniosomal technology.

Untypical studies were conducted by Kim et al. (2018) in which, first, VD was encapsulated
into poly(lactic-co-glycolic acid) (PLGA) nanoparticles by a well-known emulsion solvent evaporation
method; then, nanoparticles were immobilized onto the microneedles by a dip-coating method. The
overall system was designed for transdermal VD delivery as an alternation for oral supplementation.
It should be explained that microneedles easily pierce the skin layer with enough mechanical strength
and allow the localization of drugs within the dermal region. Finally, layers of nanoparticles coated
on solid microneedles were dissolved entirely into the intradermal region in the porcine skin model
and revealed better performance for VD3 release into the receptor compartment compared to the
ointment-based transdermal method [57].

Finally, an interesting study was done by Yamagishi et al., who evaluated the effects of a
reservoir-type calcitriol transdermal patch on plasma calcitriol and calcium concentrations in dairy
cattle. Interestingly, VD3, or its active form (calcitriol), is used as a prophylaxis for parturient
hypocalcemia in dairy cows. The patches were applied to the skin of the tail for two days at intervals
of at least three weeks. The data of this study describe evidence of measurable transdermal absorption
of exogenous calcitriol from a patch and its sufficient biological action to elevate plasma calcium
concentrations [58].

3.2. Topical Delivery

VD and its analogues have been proven to have anti-psoriatic activity by decreasing the
proliferation of epidermal keratinocytes, by regulating the differentiation process and apoptosis
of keratinocytes, by regulating the cutaneous immune system, and through their anti-inflammatory
ability [6,59]. The effectiveness on psoriasis of VD and its derivatives (calcitriol, calcipotriol,
calcipotriene, tacalcitol, hexafluoro-1,25(OH)D, and maxacalcitol) has been known since 1985, being
confirmed in numerous trials. The therapy with VD is one of the most popularly prescribed topical
medications for this disease as the first-line, singly or in combination with topical corticosteroids,
and numerous studies have documented the efficacy of such treatment [6].

Such activity in the skin is due to the presence of VD3 receptors on keratinocytes and fibroblasts
and an autonomous VD3 pathway in which VD3 is converted to calcitriol, the hormonally active form.
Nevertheless, the VD3 derivatives show also some hypercalcemic activity, which can be a limitation.
That is why a significant challenge is to increase the limited drug penetration and to minimize systemic
exposure [60,61]. Another issue that should be taken into consideration when developing topical
delivery systems is the high sensitivity of VD3 to external environmental factors such as light, heat,
and oxygen [57]. The success of drug delivery depends, among other things, on the physicochemical
properties of the active and its carriers in the formulation. Several studies have been focused on
using nanoparticles for topical delivery of VD or VD analogues, including liposomes, solid lipid
nanoparticles, polymeric nanospheres, or combinations of PLGA nanoparticles and microneedles [52].
Table 2 summarizes the delivery systems and methods of preparation described below.

The idea of liposomal encapsulation for topical administration of VD derivatives is not new.
For keeping small the negative side effects of VD3 derivatives and for increasing the drug concentration



Pharmaceutics 2019, 11, 347 11 of 21

in the skin, Merz et al. (1994) investigated their incorporation in liposomes to optimize their use for
psoriasis treatment; however, no in-vitro or ex-vivo study was done. They prepared liposomes made of
synthetic or naturally occurring lipids and evaluated the incorporation of VD and VD analogues into
liposomes and their thermal properties. Their results showed that VD3 and its analogues incorporated
into the lipid bilayer, altering the lipid–lipid interactions in the liposomes. The incorporation rates
were generally found to be high, i.e., ≥80% [62]. It is crucial to consider that liposomes which have
a phase transition temperature (Tm) above the temperature of the skin (32 ◦C) will be in a rigid gel
state and these with a Tm below 32 ◦C will be in a fluid liquid state. Several studies have presented
that liposomes in a liquid state have improved penetration into the skin. It was also proven that the
liposome-mediated delivery of calcipotriol to the epidermis of diseased skin is also affected by the
fluidity of the liposomal membrane [63].

Table 2. Examples of various types of delivery systems reported for encapsulation of vitamin D or its
analogues for potential topical delivery (VD3—vitamin D3).

Delivery
System Active Main Components Technique/Method Reference

Liposomes
Calcipotriol

Dipalmitoylphosphatidyl-choline
(DPPC) and

dilauroylphosphatidylcholine (DLPC)

Thin film method and
extrusion [63]

Calcipotriol

Distearoylphosphatidylcholine
(DSPC), poly(ethylene

glycol)-distearoylphosphoethanolamine
(PEG2000-DSPE), sodium cholate

Thin film method and
extrusion [61]

Calcitriol and
tacalcitol

Phosphatidylcholine, phosphatidic
acid, phospha-tidylethanolamine

Made from concentrate
(commercial kit) [64]

Solid lipid
nanoparticles

Bethamethasone
and calcipotriol Precirol® ATO 5

Hot melt high shear
homogenization
technique and

incorporation in Carbol
gel matrix

[65]

Polymeric
nanoparticles

VD3

Poly(lactic acid) nanoparticles with
non-ionic poly(ethylene glycol) or

zwitterionic
poly(2-methacryloyloxyethyl

phosphorylcholine) (PMPC) coating

Flash nanoprecipitation [66]

VD3

ABA triblock copolymers composed
of hydrophilic A blocks and

hydrophobic B blocks that form
TyroSpheres®

TyroSpheres®

preparation
[52]

The major problem related to the exploit of liposomes is their impaired colloidal stability, which
can be overcome by coating them with hydrophilic polymers. The one proposed by Knudsen et al.
(2012) was poly(ethylene glycol) (PEG). Liposomes loaded with calcipotriol were prepared by the thin
film method, and in their bilayer membrane, different molar ratios of PEG2000-DSPE were included.
The colloidal stability of the liposomes was received as a result of the inclusion of 0.5, 1, and 5 mol
% PGE-DSPE in the membrane. PEGylation has been shown as a promising approach for stabilising
calcipotriol-containing liposomes and improving skin penetration [61].

Earlier studies demonstrated that there is no remarkable improvement in the action of
liposomal-incorporated vitamin D3 analogues compared to the free analogues related either to
their proliferation or their IL1 alpha-releasing effects on keratinocytes. However, the authors suggested
that the influence of liposomal-incorporated VD3 analogues in keeping small their adverse side effects
has to be investigated at a more relevant model [60]. Results presented by Körbel et al. (2001) definitely
suggest that using liposomal calcitriol and tacalcitol allows receiving a better anti-psoriatic effect
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compared to non-liposomal phospholipid gel and conventional formulations that are clinically used,
i.e., ointments based on petrolatum. The authors suggested that, by using a liposomal formulation,
the concentration of the analogue could be reduced compared to that of currently available commercial
preparations without sacrificing any therapeutic effect, and thus lead to a reduction both in local side
effects (skin irritation) and systemic side effects (hypercalcemia). The advantage of using liposomes is
their physicochemical similarity to the lipid bilayer [64].

Another interesting approach for effective delivery is using solid lipid nanoparticles. They have
good biocompatibility, the ability to protect some labile compounds against degradation, and the ability
to modulate drug release. The research conducted by Sonawane et al. (2014) was focused on preparing
betamethasone and calcipotriol co-loaded solid lipid nanoparticles for the treatment of psoriasis.
Nanoparticles were prepared by hot melt high shear homogenization technique and incorporated in
Carbol gel matrix. The average particle size was 188 nm, and entrapment efficiency of betamethasone
and calcipotriol was very high for both drugs, 85%, and 97%, respectively. The versatile in-vitro
(rat skin permeation and dermal distribution, anti-proliferative effect in human hyperproliferative
keratinocyte cell lines) and in-vivo analysis (anti-psoriatic mouse tail studies, transepidermal water loss,
and Draize patch irritation) proved the high potential use for skin application and higher anti-psoriatic
efficiency compared to the commercial preparation (gel containing non-encapsulated betamethasone
and calcipotriol). It was demonstrated for solid lipid nanoparticles that the drugs penetrated to
epidermal and dermal skin layers, but were detected only in negligible amounts in the receptor
compartment. Additionally, in in-vivo studies, nanoparticle-loaded gel significantly decreased the
epidermal thickness and increased melanocyte count in comparison to commercial gel [65]. The work
of Sonawane and co-workers is proof that drug delivery systems can provide safer and more effective
anti-psoriatic therapy than conventional formulations.

On the contrary, in the study of Lalloz et al. (2018), it was not possible to penetrate VD into the
epidermis through the intact pigskin with the use of poly(lactic acid) nanoparticles, regardless of the
surface chemistry, although, the average particle size of nanoparticles was about 100 nm [66].

Finally, a different type of polymeric nanoparticles for local VD delivery was presented by
Ramezanli et al. (2017). ABA triblock copolymers composed of hydrophilic A blocks and hydrophobic
B blocks were used for the preparation of TyroSpheres. The polymers self-assemble in an aqueous
environment to form a core-shell structure with a hydrophobic core in which VD3 is incorporated
with hydrophilic blocks, making the shell and stabilizing the system. The average diameter was
approximately 70 nm, and the encapsulation efficiency was high. VD3 was released from TyroSpheres
in a sustained manner and was delivered across the stratum corneum separated from human cadaver
skin. An ex-vivo skin distribution study showed that TyroSphere formulations delivered significantly
higher amounts of active into the epidermis compared to VD dissolved in Transcutol®. Additionally,
TyroSpheres protected the vitamin against photodegradation and hydrolysis [52].

4. Drug Delivery Systems for the Prevention and Treatment of Cancer

Increasing evidence supports the role of VD systems in cancer prevention and therapy. Many
scientific articles have reported the role of VD systems in the onset, progression, prognosis, and treatment
of cancer. The mechanisms of the genomic action of VD systems seems to be multidirectional.

Since the first hypothesis linking VD with possible anticancer activity in the early 1980s, a vast
number of preclinical and clinical studies have been carried out, and various mechanisms of VD
system actions in carcinogenesis have been reported in thousands of articles [5,7–9,67,68]. Non-specific,
transversal anticancer actions of VD systems are presented in Figure 4. However, the possible actions
of VD systems implicated in cancer development may be exerted upon specific histologic subtypes
of cancer, including mainly breast, prostate, and colorectal cancer cells. Accumulating results from
preclinical and some clinical studies strongly suggest that VD deficiency increases the risk of developing
cancer and that avoiding deficiency and adding VD supplements might be an economical and safe
way to reduce cancer incidence and improve cancer prognosis and outcome [5,8].
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In the review of Pandolfi et al. (2017), some forms of cancer are mentioned that benefit from a
VD supplementation during treatment. For example, it has occurred that women with triple-negative
breast cancer have lower cathelicidin antimicrobial peptide (CAMP), which is an essential cytotoxic
and proapoptotic peptide. However, if the cells are stimulated with calcitriol, the level of CAMP
rises, leading to potential advantages for treatment. Another positive effect and a new therapeutic
avenue in breast cancer treatment may also be observed as a result of VD inhibition of the cluster of
microRNA-199a/microRNA-214, a well-known tumor promoter. Aside from that, research in Norway
has shown that patients who have prostate cancer had better outcomes during summer when sunlight
exposure is higher as well as VD serum levels. A similar situation was observed in connection with
the morbidity of colorectal cancer. Despite using different case populations, risk factors, and various
techniques of VD measurement, the studies confirmed the inverse correlation between VD intake and
colorectal cancer risk [9].

4.1. Vitamin D as an Adjuvant in Cancer Therapy

An interesting suggestion might also be a combination of VD with other active substances.
Xu et al. (2018) investigated the synergistic effect of astemizole and VD in hepatocellular carcinoma
cells in vitro and in vivo. Both actives were used as non-encapsulated. It has been proven in vitro that
astemizole enhances VD-induced apoptosis and decreases cell proliferation and migration. However,
the decrease of tumor number, mass, and incidence in hepatocellular carcinoma cells was demonstrated
in vivo. Astemizole increased VDR expression both in cells in vitro and in tumor tissues in vivo. They
also clarified that this combination inhibits the tumor suppressor miR-125a-5p and is responsible for
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subsequent upregulation of the VD receptor. These outcomes highlight the crucial role of combined
treatment of astemizole and VD for the cure of hepatocellular carcinoma cells [69]. Similarly, in other
studies, VD was encapsulated into nanostructured lipid carriers and was used as an adjuvant to elevate
the efficacy of doxorubicin on concurrent administration in breast cancer treatment. The prepared lipid
nanoparticles revealed a mean particle size of 87 nm and were in the range for passive targeting to cells.
In-vitro cytotoxicity results exhibited that VD-loaded nanoparticles were more effective than free VD
in the induction of breast cancer cell death after 24-h incubation. Indeed, cotreatment of the cells with
VD-loaded nanoparticles and doxorubicin caused a twofold increase in the percentage of apoptosis [70].
An innovative approach was presented by Maayah et al. (2018). They synthesized doxorubicin-VD by
conjugating VD to doxorubicin to increase the delivery of doxorubicin into human osteosarcoma cancer
cells and mitigate the chemoresistance associated with doxorubicin. The results were very promising,
as the conjugate doxorubicin-VD suppressed the growth of cancer cells by inducing apoptosis while
inhibiting cell survival and proliferative signaling pathways. They proposed that VD may serve as a
novel drug delivery approach to potentiate the delivery of anticancer drugs into cancer cells [71].

4.2. Vitamin D and Its Metabolites as Anticancer Drugs

Particularly in the case of anticancer application, drug delivery systems can be useful due
to the possibility of selective drug delivery to tumor tissue either by passive targeting with the
enhanced permeability and retention effect or by active targeting using functionalization. In this way,
nanoparticles, when internalized by target cells, increase intracellular drug delivery, sustain drug
release, increase therapeutic activity, and lower side effects. It is especially important knowing that
calcitriol has anti-tumoral activity in supraphysiological doses which are associated with a high risk of
hypercalcemia. Beyond very high toxicity, calcitriol has a very short half-life in bloodstream; this is
why its administration is particularly problematic [72,73]. In the case of cancer therapy, parenteral
administration of nanoparticles like intravenous injection/infusion or direct injection to the tumor are
the most probable way of administration since the oral route requires additional resistance of drug and
drug carriers to such factors as gastric juice and enzymes. From a variety of drug delivery systems,
liposomes have been considered so far as the most successful drug delivery system as liposome-based
drugs have been clinically used in cancer therapy (e.g., Doxil®, DaunoXome®, Depocyt®, Mepact®,
Myocet®).

It is essential to mention studies prepared by Almouazen et al. (2013) where they encapsulated
VD, calcidiol, or calcitriol into poly(lactic acid) (PLA) nanoparticles. As expected, encapsulation into
PLA nanoparticles significantly improved the stability of VD, calcidiol, and calcitriol compared to
non-encapsulated forms. Free or nanoencapsulated drugs were dispersed in cell culture medium
(Dulbecco’s Modified Eagle Medium with antibiotics) and incubated at 37 ◦C. After 24 h, more than
75% of the drugs remained in nanoparticles, whereas only about 25% of free VD and calcitriol remained
in the medium, and free calcidiol was already totally degraded. In this study, loaded nanoparticles
showed similar growth inhibition of human breast adenocarcinoma cells to non-encapsulated calcidiol
and calcitriol [72]. This was not surprising, as calcidiol and calcitriol are lipophilic and readily cross
the membranes to reach their nuclear receptors. A similar approach was presented by Ramalho et al.
(2015). They prepared poly(lactic-co-glycolic-acid) (PLGA) nanoparticles as nanocarriers for calcitriol
with a mean diameter of 186 nm. The in-vitro cytotoxic effects on three different human cell lines
(two non-tumor pancreatic cell lines and one lung cancer cell line) after treatment with calcitriol-loaded
nanoparticles were assessed relative to free calcitriol in terms of cell growth. Both free and encapsulated
calcitriol exhibited a similar concentration-related decrease in cell growth and survival of the human
non-tumor cells. However, calcitriol-loaded nanoparticles demonstrated an increased inhibitory effect
on lung cancer cell line by inducing cell cycle arrest and morphological changes in the tumor cells [73].

A different approach was proposed by Vora et al. (2017), who created PLGA microspheres (28 µm)
loaded with VD as an injectable controlled drug delivery system. The results showed that these
microspheres could offer an interesting method for once-a-month delivery by the parenteral route
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(intramuscular injection), which was confirmed by in-vivo studies in rats [74]. However, such an
approach could be an alternative for daily oral supplementation of this vitamin rather than a way to
induce anticancer effects since such a system does not protect from hypercalcemia. On the other hand,
Nguyen et al. (2007) reported a promising technique in liver cancer treatment by utilizing crosslinked
microspheres (35 µm) prepared by polymerization as a carrier to control the release of calcitriol at the
targeted site over a long period after direct injection of microspheres into the tumor. Local treatment
through hepatic injection of calcitriol should prevent the development of hypercalcemia [75].

4.3. Active Targeting of Nanoparticles Loaded with Vitamin D to Cancer Cells

Very interesting studies were done by Liu et al. (2018). Calcitriol is also known as a promising
agent for the treatment of non-small cell lung cancer with a developed resistance to inhibitors of
EGFR (epidermal growth factor receptor) tyrosine kinase. However, calcitriol induces the expression
of 24-hydroxylase, the enzyme that decreases calcitriol activity. That is why CTA091, a potent and
selective 24-hydroxylase inhibitor, has been developed; however, CTA091 also suppresses renal
24-hydroxylase activity and so may promote hypercalcemia. To exploit the favorable effects of both
calcitriol and CTA091 in tumor cells, tumor-targeted co-delivery of calcitriol and CTA091 was proposed
by developing EGFR-targeted liposomes loaded with both drugs. Targeting of liposomes was achieved
by conjugating human anti-EGFR monoclonal antibody to the liposomal surface. Liposomes were
produced as uniformly distributed nanoparticles, with a mean diameter by volume of 157 nm and
positive zeta potential. Compared with free calcitriol and CTA091, such targeted liposomes with
co-loaded drugs have shown improved cellular uptake and effective inhibition of colony formation in
lung cancer cells [76].

It should be mentioned that in some studies, conclusions suggest that VD is ineffective in cancer
prevention/treatment and its role is overestimated. The research conducted by Maleklou et al. (2016)
proved that targeted delivery of VD-loaded nanoparticles to C6 glioma cell lines reinforces the resistance
to doxorubicin, epirubicin, and docetaxel and increases the cancerous characteristics in vitro [77]. It is
also speculated that VD intake can be more significant in early carcinogenesis stages rather than
advanced cancers [5]. Besides, many trials had some limitations, including being largely unable
to observe a statistical relevant reduction in cancer occurrence or a lack of knowledge about the
appropriate dose, the form of VD, and the length of time that it should be taken [10]. The large-scale
and long-term human randomized controlled trials are not available so far, and there is no clear
conclusion whether vitamin D can be beneficial during cancer treatment. Based on existing studies,
it is crucial to avoid VD deficiency; VD might play a role in cancer risk reduction and treatment [5].

5. Drug Delivery Systems for Other Diseases or Routes of Administration

As mentioned earlier, VD was demonstrated to have multiple extra-skeletal effects on biological
processes, such as immune regulation, neurogenesis, or genome stability, and the level of it can be
associated with the therapy of other illnesses. Recent studies have focused on how VD can be exploited
in the treatment of chronic, infectious, or autoimmune diseases. Some scientists also presume that we
should consider VD as a hormone rather than a nutritional vitamin [78].

The immunomodulatory effects of VD through regulation and differentiation of lymphocytes,
macrophages, and natural killer cells enhance opportunities to reinforce the treatment of arthritis. The
research conducted by da Silveira et al. (2016) suggests that VD may inhibit the proinflammatory
response. In the study, first arthritis was induced in rats, and then the groups were treated for
15 days with oral VD3 either in solution based on corn oil (120 IU/day) or VD3-loaded nanocapsules
(15.84 IU/day). Lipid-core nanocapsules were made by interfacial deposition of preformed polymer
technique using poly(ε-caprolactone) as a polymer making the shell. The versatile analysis was
done before and after treatment for all the groups including chronic inflammation evaluation,
histopathological observation, measurements of the activity of the inflammatory state enzymes
in rat lymphocytes, and determination of many hematological and biochemical parameters in blood.
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As a result, better anti-inflammatory activity was demonstrated for the oral oily solution of VD3.
However, it should be mention that the dose of encapsulated VD3 was approximately more than
7.6-fold lower than the dose of non-encapsulated vitamin. While an increase in serum levels of 25OHD
was observed only in groups receiving non-encapsulating VD3, histological analyses showed that both
formulations were able to reduce the inflammatory changes [79].

Asthma is another immunologic disease characterized by chronic airway inflammation that is
a promising target for VD. In the research done by Wei-hong et al. (2014), nanoemulsions were
prepared for the delivery of VD in ovalbumin-induced asthmatic mice, and VD bioavailability and
anti-inflammatory activity were evaluated. In the study, nanoemulsions were prepared from the
established composition of solid self-emulsifying drug delivery systems (sSEDDS) by spray-drying
technique. VD in the form of either the non-encapsulated one or nanoemulsion was administered to
mice with induced asthma at a high dose of 2000 IU/kg. It was evident that nanoemulsions significantly
increased oral VD absorption. This increase in bioavailability resulted in enhanced pharmacological
activity. The anti-inflammatory and antioxidant assay revealed that the therapeutic efficiency of VD
significantly enhanced upon nanoemulsion formation [80].

An interesting approach was presented by Goff et al. (2012). The purpose of this study was to
evaluate whether β-glucuronides of 1,25(OH)D (calcitriol) could deliver free calcitriol to the colon
to treat colitis while decreasing the risk of hypercalcemia. Several studies have demonstrated a
direct therapeutic effect of VD and calcitriol in mouse models of inflammatory bowel disease, since
VDRs are widely expressed in the epithelial cells and the immune cells in the colon. The authors
conjugated glucuronic acid to the calcitriol molecule to form water-soluble 1,25-dihydroxy vitamin
D-25-β-glucuronide that is inactive, and little of that glycosidic form can be absorbed across the intestine.
Cleavage of the β-glucuronide of the calcitriol to free calcitriol upon hydrolysis by β-glucuronidase
produced by bacteria in the lower intestinal tract would: (i) Reduce systemic absorption of the
1,25(OH)D, (ii) decrease hypercalcemic effects, and (iii) allow targeted delivery of 1,25(OH)D to the
ileum/colon cells affected by the disease. As a result, the authors confirmed that β-glucuronides of
vitamin D compounds delivered 1,25(OH)D to the lower intestine and reduced hypercalcemia and
symptoms of acute colitis in this model [81].

The influence of VD on immune and anti-inflammatory regulation raises the question of potential
benefit against bacterial infections. Therefore, the study presented by Castoldi et al. (2017) was focused
on the encapsulation of calcifediol in liposomes to enable aerosolization. Prepared 25(OH)D-loaded
liposomes were nanosized and monodisperse, with a negative surface charge and a 25(OH)D entrapment
efficiency of approximately 23%. Jet nebulization of liposomes was seen to yield an aerosol suitable
for tracheobronchial deposition. Calcifediol in either liposomes or ethanolic solution was tested for
the capacity to prevent pulmonary infection by Pseudomonas aeruginosa. Interestingly, encapsulation
into liposomes resulted in a significant reduction in bacterial survival. Besides, the formulation can be
regarded as a means to achieve calcifediol lung deposition and as safe for pulmonary administration
in humans [82].

In recent years it has been found that low serum 25-hydroxyvitamin D3 concentration is connected
with periodontal destruction in periodontitis and likewise with osteoporosis in diabetes. Both studies
conducted by Li et al. (2013, 2014) endeavoured to prove that 25OHD-loaded PLA microspheres may
ensure a potential therapy for patients with periodontitis. These microspheres were prepared using
an emulsion-solvent evaporation method and were evaluated due to the biological effect on both
in-vitro and in-vivo models. As a result, drug release during these experiments remained almost
steady, which is promising for long-term therapy. The 25OHD-loaded PLA microspheres upregulated
VD receptor expression and impaired periodontal inflammatory infiltrate and bone loss in diabetic rats
with periodontitis [83,84].

Furthermore, a growing body of evidence has pointed out that calcitriol, an active form of VD,
takes a role in maintaining brain functions through stimulation of neurotrophic factors’ expression,
immune regulation, and prevention of neuronal damage. It is worth mentioning the approach
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made by Ślusarczyk et al. (2016), who prepared nanocapsules with calcitriol for neuroprotective
targeted therapy to the brain and compared protective properties of calcitriol-loaded nanocapsules
with those of non-encapsulated calcitriol in hippocampal organotypic cultures after treatment with
lipopolysaccharide (LPS). The active substance was enclosed in a hydrophobic core coated with either
PLL (poly(l-lysine hydrobromide)), PLL/PGA (poly(l-glutamic acid)), or PLL with pegylated PGA.
The average size of nanocapsules ranged from 80 to 100 nm. The results demonstrated that carriers
with PLL/PGA and PLL-PGA-PEG were recognized as non-toxic and as having a protective ability.
Both forms of nanoparticles also exhibited a higher neuroprotective action than free calcitriol connected
with the suppression of LPS-induced nitric oxide (NO) release. Since calcitriol can modulate the brain
NO signalling, it may be used as a promising solution in neuroinflammation and neurodegenerative
processes [85].

6. Conclusions

Due to its many beneficial effects, the interest in VD and its derivatives has increased, and they have
become attractive as active substances for incorporation into DDS. In this review, we summarized and
discussed the main directions of development of drug delivery technologies that have been reported
in recent years for VD or VD analogues. Overall, although the number of works describing new
technologies appears large at first glance, and they cover a wide range of strategies, they are all at an
early stage of research. In this work, many types of DDS have been presented depending on the disease
or route of administration. Oral administration is the most convenient route, and is cost-effective,
to increasing 25(OH)D levels, especially since large proportions of the population have low VD levels.
The implementation of DDS for food enrichment or VD therapy with dietary supplements seems to
be justified and feasible in the near future. However, most interesting is the potential use of VD/VD
analogues in anticancer therapy. The combination of both strategies, i.e., synthesis of low calcemic VD
analogues and targeted delivery, seems to be most desirable. However, until now, no sophisticated
technology with functionalization of DDS was introduced for VD or VD derivatives. Nevertheless,
the delivery of VD-based drug payloads via tumor-targeted carriers seems to be a future direction.

Author Contributions: Conceptualization, E.G.; resources, E.G. and J.S.; writing—original draft preparation, E.G.
and J.S; writing—review and editing, E.G. and J.L.; visualization, E.G and J.S.; funding acquisition, J.L.

Funding: This work was supported by Poznan University of Medical Sciences grant no 502-01-3314429.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wimalawansa, S.J. Vitamin D in the New Millennium. Curr. Osteoporos Rep. 2012, 10, 4–15. [CrossRef]
[PubMed]

2. Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention.
Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [CrossRef]

3. Christakos, S.; Dhawan, P.; Verstuyf, A.; Verlinden, L.; Carmeliet, G. Vitamin D: Metabolism, Molecular
Mechanism of Action, and Pleiotropic Effects. Physiol. Rev. 2016, 96, 365–408. [CrossRef]

4. Cavalier, E.; Delanaye, P.; Chapelle, J.P.; Souberbielle, J.C. Vitamin D: Current status and perspectives.
Clin. Chem. Lab. Med. 2009, 47, 120–127. [CrossRef] [PubMed]

5. Feldman, D.; Krishnan, A.V.; Swami, S.; Giovannucci, E.; Feldman, B.J. The role of vitamin D in reducing
cancer risk and progression. Nat. Rev. Cancer 2014, 14, 342–357. Available online: http://www.nature.com/

nrc/journal/v14/n5/abs/nrc3691.html#supplementary-information (accessed on 23 March 2019). [CrossRef]
[PubMed]

6. Barrea, L.; Savanelli, M.C.; Di Somma, C.; Napolitano, M.; Megna, M.; Colao, A.; Savastano, S. Vitamin D
and its role in psoriasis: An overview of the dermatologist and nutritionist. Rev. Endocr. Metab. Disord. 2017,
18, 195–205. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s11914-011-0094-8
http://www.ncbi.nlm.nih.gov/pubmed/22249582
http://dx.doi.org/10.1007/s11154-017-9424-1
http://dx.doi.org/10.1152/physrev.00014.2015
http://dx.doi.org/10.1515/CCLM.2009.036
http://www.ncbi.nlm.nih.gov/pubmed/19099529
http://www.nature.com/nrc/journal/v14/n5/abs/nrc3691.html#supplementary-information
http://www.nature.com/nrc/journal/v14/n5/abs/nrc3691.html#supplementary-information
http://dx.doi.org/10.1038/nrc3691
http://www.ncbi.nlm.nih.gov/pubmed/24705652
http://dx.doi.org/10.1007/s11154-017-9411-6
http://www.ncbi.nlm.nih.gov/pubmed/28176237


Pharmaceutics 2019, 11, 347 18 of 21

7. Moukayed, M.; Grant, W.B. The roles of UVB and vitamin D in reducing risk of cancer incidence and
mortality: A review of the epidemiology, clinical trials, and mechanisms. Rev. Endocr. Metab. Disord. 2017,
18, 167–182. [CrossRef] [PubMed]

8. Merchan, B.B.; Morcillo, S.; Martin-Nunez, G.; Tinahones, F.J.; Macias-Gonzalez, M. The role of vitamin D
and VDR in carcinogenesis: Through epidemiology and basic sciences. J. Steroid Biochem. Mol. Biol. 2017,
167, 203–218. [CrossRef] [PubMed]

9. Pandolfi, F.; Franza, L.; Mandolini, C.; Conti, P. Immune Modulation by Vitamin D: Special Emphasis on Its
Role in Prevention and Treatment of Cancer. Clin. Ther. 2017, 39, 884–893. [CrossRef] [PubMed]

10. Duffy, M.J.; Murray, A.; Synnott, N.C.; O’Donovan, N.; Crown, J. Vitamin D analogues: Potential use in
cancer treatment. Crit. Rev. Oncol. Hematol. 2017, 112, 190–197. [CrossRef]

11. Corcoran, A.; Bermudez, M.A.; Seoane, S.; Perez-Fernandez, R.; Krupa, M.; Pietraszek, A.; Chodyński, M.;
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