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Lung Microbiome Analysis in Steroid-Naïve 
Asthma Patients by Using Whole Sputum
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Background: Although recent metagenomic approaches have characterized the distinguished microbial compositions 
in airways of asthmatics, these results did not reach a consensus due to the small sample size, non-standardization of 
specimens and medication status. We conducted a metagenomics approach by using terminal restriction fragment 
length polymorphism (T-RFLP) analysis of the induced whole sputum representing both the cellular and fluid phases in 
a relative large number of steroid naïve asthmatics.
Methods: Induced whole sputum samples obtained from 36 healthy subjects and 89 steroid-naïve asthma patients were 
analyzed through T-RFLP analysis.
Results: In contrast to previous reports about microbiota in the asthmatic airways, the diversity of microbial composition 
was not significantly different between the controls and asthma patients (p=0.937). In an analysis of similarities, the 
global R-value showed a statistically significant difference but a very low separation (0.148, p=0.002). The dissimilarity 
in the bacterial communities between groups was 28.74%, and operational taxonomic units (OTUs) contributing to this 
difference were as follows: OTU 789 (Lachnospiraceae), 517 (Comamonadaceae, Acetobacteraceae, and Chloroplast), 
633 (Prevotella ), 645 (Actinobacteria and Propionibacterium acnes ), 607 (Lactobacillus buchneri, Lactobacillus 
otakiensis, Lactobacillus sunkii , and Rhodobacteraceae), and 661 (Acinetobacter, Pseudomonas, and Leptotrichiaceae), 
and they were significantly more prevalent in the sputum of asthma patients than in the sputum of the controls.
Conclusion: Before starting anti-asthmatic treatment, the microbiota in the whole sputum of patients with asthma 
showed a marginal difference from the microbiota in the whole sputum of the controls.
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Introduction
Asthma is a chronic inflammatory airway disease in which 

various cells and mediators play a role in developing episodic 
dyspnea with wheezing as well as coughing1. Previously, 
asthma was known to be caused by external stimuli such as 
allergens and genetic susceptibility to allergic diseases; how-
ever, according to recent research, microbial communities of 
the airway may contribute to the pathogenesis of asthma.

As a representative example of bacterial involvement in 
asthma, Mycoplasma pneumoniae and Chlamydophila pneu-
monia were isolated from patients with acute asthma exacer-
bation2. Invasive pneumococcal pneumonia was found to be 
2 times more common in the asthma patients as compared 
to that in the control group2. In addition, a risk of developing 
asthma and recurrence of wheezing was reported in infants 
having colonizers in their hypopharynx including the combi-
nation of Streptococcus pneumoniae, Haemophilus influen-
zae, and Moraxella catarrhalis 3. However, these results reflect 
only a small culturable portion of the entire microbiota but 
not whole microorganisms.

The method for metagenomics study has been used re-
cently to overcome this limitation. In metagenomic approach, 
the uncultured microorganisms can be now identified by tar-
geting the 16S ribosomal RNA (16S rRNA) gene. Traditionally, 
gut microbiota were the main topics of human metagenomic 
research but interest in the role of the microbiome in asthma 
has been increasing recently4-9. Because of small sample size, 
diverse specimens and different asthma treatment status, 
results of metagenomic approaches on microbial composi-
tions in airways of patients with asthma were not consistent 
amongst studies.

Previous studies on the microbiome in asthma patients 
were performed using the bronchoalveolar lavage (BAL) fluid. 
Some researchers attempted microbiome analysis by analyz-
ing induced sputum samples10-12. However, those studies using 
sputum were performed with the fluid phase or the cellular 
phase only. This is because an appropriate sample for micro-
biome study in airway diseases has not been established yet. 

This study was performed to reassess the characteristics 
of the microbiome in steroid-naïve asthma patients using 
induced sputum, easily obtainable airway samples, including 
not only fluid phase but also cellular phase in a large sample 
size.

Materials and Methods
1. Study population

A total of 135 subjects (36 healthy subjects and 89 asthma 
patients) who were non-smokers or ex-smokers (less than 10 
pack-years) were selected for the study. Subjects with any re-

cent infection in either upper or lower airways prior to enroll-
ment of the study and those who ever used antibiotics within 
the last 1 month were excluded from the study. Subjects who 
were never diagnosed with asthma and did not have any 
respiratory symptoms were enrolled as the healthy control 
group. Patients who were newly diagnosed with asthma and 
did not start anti-asthmatic treatment (treatment-naïve) were 
considered as the asthma patients group. Asthma was defined 
as chronic respiratory symptoms such as coughing, sputum, 
dyspnea, and wheezing in addition to the confirmation of 
airway reversibility or airway hyperresponsiveness (AHR). 
Airway reversibility was defined as an increase in a forced 
expiratory volume in 1 second (FEV1) of 12% and 200 mL or 
greater when it was measured 15 minutes after inhalation of 
a short acting β2 agonist and AHR was defined as less than 16 
mg/mL of provocative concentration of mechacholine caus-
ing a 20% fall in FEV1 (PC20)13. Patients with a history of using 
anti-inflammatory anti-asthmatic drugs including inhaled 
corticosteroids were excluded from the study. 

The basic demographic characteristics of the patients, skin 
test results, the results of pulmonary function tests, serum to-
tal IgE, and peripheral blood cell counts were investigated.

2. Sputum induction and DNA extraction

Sputum induction was performed according to the stan-
dardized protocol14. After measurement of basal FEV1, all 
participants were treated with 200 µg of salbutamol (Ventolin; 
GlaxoSmithKline, Bredtfred, England). Four point five percent 
hypertonic saline solution was used to induce sputum pro-
duction by using an ultrasonic nebulizer with output set at 4.5 
mL/min (Omron Co., Tokyo, Japan), and this administration 
repeated up to 4 times at an interval of 5 minutes. After each 
nebulization, the subjects rinsed their mouths and spitted the 
sputum carefully into a Petri dish.

The induced sputum sample was mixed with the same 
amount of 10% dithiothreitol. The mixture was shaken, cen-
trifuged, and crushed. In this study, we did not separate the 
sputum samples to the fluid phase or the cellular phase. DNA 
was then extracted from 400 µL of the whole sputum samples 
using Mixer Mill MM 300 (Retsch GmbH, Haan, Germany) 
and DNeasy Kit (Qiagen, Hilden, Germany) with 0.2-mm glass 
beads (250 mg) and two 5-mm metal beads.

3. Polymerase chain reaction amplification

The 16S rRNA gene from the bacterial DNA extracted from 
the whole sputum samples was amplified using polymerase 
chain reaction (PCR). The extracted DNA (100 ng) was used 
to obtain a PCR amplified product about 920 bp in size using 
the following primers: forward, 5’-AGAGTTTGATCMTG-
GCTCAG-3’ labeled with 6-carboxyfluorescein at the 5’ end; 
reverse, 5’-CCGTCAATTCMTTTRAGTTT-3’. A GeneAmp 
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9700 system (Applied Biosystems, Foster City, CA, USA) was 
used; a 50-μL reaction mixture was prepared for each sample 
using 5 μL Taq buffer (20 mM MgCl2 is contained), 0.5 μM for-
ward primer, 0.6 μM reverse primer, 0.2 mM dNTP, 0.7 mg/mL 
bovine serum albumin (New England Biolabs, Beverly, MA, 
USA), 2 U ExTaq HS (TaKaRa, Tokyo, Japan), 100 ng template 
DNA, and sterile distilled water. The cycling conditions were 
1 minute at 95oC, 30 seconds at 97oC, 32 cycles of 30 seconds 
at 97oC, 20 seconds at 58oC, and 90 seconds at 72oC. The 
amount of amplified DNA through three-time PCR repetition 
using identical conditions was measured with the help of an 
EPOCH spectrophotometer (BioTek Instruments Inc., Win-
ooski, VT, USA). The formation of the specific product was 
verified by gel electrophoresis.

4. Terminal restriction fragment length polymorphism 
profiling

Terminal restriction fragment length polymorphism (T-
RFLP) was performed as described previously15-18. Briefly, four 
restriction enzymes (ApoI, HhaI, NlaIV, and Hpy166II), suit-
able for the analysis of respiratory bacterial pathogens, and the 
Restriction Enzyme Picker (REPK) Online version 1.3 (http://
rocaplab.ocean.washington.edu/tools/repk) were used for the 
profiling. The PCR products (200 ng) were added to the four 
restriction endonucleases at 37oC for 2 hours (HhaI, NlaIV, 
and Hpy166II) or at 50oC for 2 hours (ApoI). The mixture was 
then incubated at 65oC (HhaI, NlaIV, and Hpy166II) or at 80oC 
for 20 minutes and then stopped. The size of the fragmented 
T-RF gene was analyzed using capillary electrophoresis and 
an ABI PRISM 3130 genetic analyzer (Applied Biosystems). 
The fragment sizes were estimated using the Local Southern 
Method in GENESCAN 3.1 software (Applied Biosystems 
Japan, Tokyo, Japan). Based on the positive control bacterial 
DNAs (12 DNAs), GeneScan LIZ 1200 Size Standards were 
recalibrated. An operational taxonomic unit (OTU) was deter-
mined using T-REX software (http://trex.biohpc.org/, Cornell 
University), and the relative amounts of each OTUs were mea-
sured. The representative bacterial species or taxonomically 
related groups in the sputum were predicted using the T-RF 
size information from the T-RFLP database (http://mededu.
cau.ac.kr/micro/FRETS.asp) created in this study.

5. Statistical analysis

The OTUs obtained from whole induced sputum samples 
were analyzed using multivariate statistical techniques with 
the software PRIMER (Plymouth Routines In Multivariate 
Ecological Research) version 6 (PRIMER-E Ltd., Plymouth, 
UK). T-RF data were subjected to multivariate analysis, in-
cluding biodiversity analysis, analysis of similarity (ANOSIM), 
cluster analysis including hierarchal clustering analysis and 
non-metric multidimensional scaling (nMDS) and similarity 

percentage (SIMPER).
Biodiversity of each sample was measured by the Shannon-

Weiner diversity index, while differences in biodiversity be-
tween asthma group and normal control group were assessed 
by a nonparametric Mann-Whitney test. Using ANOSIM, we 
assessed the similarities between the healthy controls group 
and the asthma patients group. The R statistic value describes 
the extent of similarity between each groups in the ANOSIM, 
which R=1 indicates that the two groups are entirely separate, 
while R=0 signifies that there is no difference between the 
groups. The contribution of specific T-RFs to differences in 
bacterial composition between groups was assessed. These 
statistical analyses were performed to determine whether 
there was a difference in the bacterial composition of the air-
ways between the healthy controls and the asthma patients by 
SIMPER, and quantitative difference analysis was performed 
for the identification of specific T-RFs contributing to differ-
ences in bacterial composition between groups. Statistical 
significance was defined as a p-value of less than 0.05.

6. Ethics statement

This study was approved by the Institutional Review Board 
of Chung-Ang University Hospital and was performed with 
patients’ consents (C2014056(1252)).

Results
1. Characteristics of the study subjects

The mean age of the asthma patients was 62.0±14.8 years; 
47.2% of the subjects were males, 60.7% were non-smokers, 
and 39.3% were ex-smokers (Table 1). The mean FEV1 pre-
dicted was 82.0±17.2%, and PC20 was 10.9±8.1 mg/mL. In the 
control group, the mean age of the 36 subjects was 32.2±10.3 
years, and 47.2% were male, 88.9% were non-smokers, and 
11.1% ex-smokers. The mean FEV1 predicted was 100.8±10.3%.

2. Comparison of microbiota in the sputum samples

The Shannon index was used to evaluate the intra-group di-
versity in the sputum samples of the two groups; it was 3.5±0.3 
in the control group and 3.5±0.3 in the asthma group, showing 
no significant difference in diversity between the two groups 
(p=0.807) (Figure 1). 

There was no marked difference between the composi-
tions of the microbial communities in the sputum samples of 
the two groups, when analyzed at the phylum level (Table 2). 
For the phylum Firmicutes, the prevalence was 46.4% in the 
control group and 44.2% in the asthma group. Further, Proteo-
bacteria and Bacteroides showed a prevalence of 14.5% and 
10.8% in the control group and 16.0% and 11.6% in the asthma 
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group, respectively.

3. Dissimilarity between the controls and asthma patients

The results of the ANOSIM test indicated that the bacterial 
composition in the two groups was different as the global R-
value was 0.148, with a p-value of 0.002 (Figure 2). The SIM-
PER of the bacterial communities in the sputum samples of 
the control and the asthma groups was calculated using SIM-
PER, and the average dissimilarity between the bacterial com-

munities of the two groups was 28.74%. Hierarchal clustering 
analysis (Figure 3) or nMDS (Figure 4) indicated no distinct 
difference in the OTUs for the sputum samples of the two 
groups.

4. OTUs contributing to the dissimilarity between the 
control and asthma groups

OTUs accounting for the top 50% contribution to the dis-
similarities in the bacterial communities between the two 
groups are presented in Appendix 1. OTUs 492, 805, 361, 375, 
198, 661, 789, 743, 658, and 598 accounted for the top 10%.

As shown in Figure 5, nine OTUs showed more than 1.5 
times the amount of bacteria in the induced sputum samples 
of the asthma group as compared to that in the control group. 
Particularly, OTU 789 showed 3.1 times more bacteria in the 
asthma group than in the control group, and belonged to 
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Figure 1. Diversity of microbiota profile in the healthy control and 
asthma groups. Diversity of microbiota did not show a distinction 
between healthy controls and asthma patients (p=0.937). 

Table 2. Microbial composition at the phylum level

Phylum
Healthy 

controls (%)
Asthma 

patients (%)

Firmicutes 46.4 44.2

Proteobacteria 14.5 16.0

Bacteroidetes 10.8 11.6

Firmicutes/Proteobacteria 4.2 5.4

Actinobacteria 4.0 4.0

Firmicutes/Bacteroidetes 4.0 2.7

Fusobacteria 3.8 3.6

Unknown 12.3 12.4
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Figure 2. Analysis of similarity test for global community composi-
tion (ANOSIM test). Microbial composition showed a significant 
difference between healthy controls and asthma patients (Global R 
value=0.148, p=0.002).

Table 1. Characteristics of the study subjects with asthma

Characteristic Asthma patients (n=89)

Male 47 (52.8)

Age, yr 62.0±14.8

BMI, kg/m2 24.9±3.7

Non-smoker:ex-smoker 54 (60.7):35 (39.3)

Blood WBC counts, /μL 4,993.7±3,977.5

Blood eosinophil counts, /μL 279.3±281.8

Serum total IgE, kU/L 331.5±546.5

Sputum neutrophil, % 2.1±2.1

Sputum eosinophil, % 10.6±8.7

Atopy, % 44.3

FVC % predicted 92.9±15.6

FEV1 % predicted 82.0±17.2

FEV1/FVC, % 68.9±12.2

PC20, mg/mL 10.9±8.1

Values are presented as number (%) or mean±standard deviation. 
BMI: body mass index; WBC: white blood cell; IgE: immunoglobulin 
E; FVC: forced vital capacity; FEV1: forced expiratory volume in one 
second; PC20: provocative concentration of methacholine causing a 
20% fall in FEV1.
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Lachnospiraceae, Alteromonadaceae, Methylococcaceae, 
Moraxellaceae , and Pseudomonadaceae . Both OTU 517 
(Rhizobiales , Rhodospirillales , and Comamonadaceae ) and 
OTU 633 (Prevotella ) showed 1.9 times more abundant in 
the asthma group than in the control group. In addition, OTU 
645 (Actinobacteria, Propionibacterium acnes ; 1.8-fold), 607 
(Lactobacillus buchneri, Lactobacillus otakiensis, Lactobacil-

lus sunkii, Rhodobacteraceae ; 1.8-fold), 661 (Acinetobacter, 
Pseudomonas, Leptotrichiaceae ; 1.8-fold), 650 (Brevibac-
teriaceae, Lachnospiraceae, Fusobacterium ; 1.5-fold), 821 
(Lachnospiraceae, Acinetobacter, Actinomyces ; 1.5-fold), 415 
(Comamonadaceae, Streptomycetaceae; 1.5-fold) were signif-
icantly more prevalent in the sputum of asthma patients than 
normal control. On the contrary, only OTU 598, belonging to 
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Figure 3. Cluster analysis. Hierarchical cluster analysis indicated no distinct difference in the operational taxonomic units in the sputum sam-
ples between the two groups.
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Figure 4. Nonmetric multidimensional 
scaling (nMDS). nMDS indicated no 
distinct difference in the operational 
taxonomic units in the sputum samples 
between the two groups.
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Lactobacillaceae and Bacteroidales, showed 1.9 times more 
abundant in the control group than in the asthma group. 

As shown in Table 3, 17 OTUs including OTUs 789, 420, 
661, 664, 808, 633, 337, 222, 523, 517, 821, 415, 263, 110, 467, 
152, and 298, contributed to 90% of the induced sputum mi-
crobiota in the asthma patients but not in the healthy controls. 
In addition, OTUs 528 and 144 contributed to 90% of the 
induced sputum microbiota in healthy controls but not in the 
asthma patients (Table 4).

Discussion
The application of culture-independent tools for identifica-

tion of microbes has been changing concepts of pathogenesis 
in many diseases. The interests of microbiome research have 
expanded to the role of the airway microbiome in asthma 
which is still largely unknown about its predisposition and 
development. There are some evidence suggesting the micro-
biome of the airways differs distinctly in patients with asthma 
from healthy subjects11,12. However, evidences from recent 
studies are still inconclusive.

In this study, we compared the microbiome in induced 
whole sputum samples representing the airways of steroid 
naïve asthma patients with those of healthy subjects using T-
RFLP and we expanded sample size compared to previous 
studies. The diversity and the bacterial composition at the 
phylum level in the asthma group were not significantly dif-
ferent from that in the control group. However, there was a 
slight but significant difference of OTUs in the composition of 
microbiome community between the two groups. In addition, 

OTUs showed differences in the relative amounts of certain 
bacteria between the two groups; there were also some OTUs 
representing bacteria found only in one group, indicating a 
difference in the microbiome of the airway between asthma 
patients and healthy controls.

In previous metagenomics studies on asthma, the small 
number of study subjects fewer than 30 was the main obstacle 
to reach a conclusion. To overcome this, we expanded the 
sample size to 135 subjects, larger than any previous studies 
conducted. T-RFLP is a fingerprinting method and has a limi-
tation in the range of microbiota. However, T-RFLP technique 
can be useful clustering communities according to changes 
in the dominant members across large number of samples. 
There are several microbiome studies using T-RFLP in hu-
mans and those mainly focused on inflammatory bowel dis-
ease and irritable bowel syndrome with fecal microbiota17-21 
but some studies dealt with cystic fibrosis22,23 and asthma10.

In this study, we used whole sputum obtained through 
induction. Previously, researchers investigated the microbial 
composition in the BAL fluid, bronchial epithelial brushings, 
and the lung tissue. The limitation of these studies was that 
these samples could not be easily obtained. Thus, induced 
sputum samples, relatively less invasive and easy to acquire, 
were used in this study. Only a few previous metagenomics 
studies using inducted sputum samples have already shown 
significant results in asthma patients10-12. Moreover, studies in-
volving an investigation of the microbiome of the oropharynx 
in asthma patients have shown significant results24,25. Another 
study reported that similar bacteria are distributed from the 
oral cavity to the lungs26. It is postulated that the induced spu-
tum samples in this study can sufficiently reflect the airway of 

Figure 5. Operational taxonomic units (OTUs) with at least 1.5-fold differences in sputum microbiota between the controls and asthma pa-
tients and fold abundance.
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asthma patients. However, in previous studies, microbiome 
studies have been performed only with induced sputum cell 
pellets or supernatants after in cytospin preparations10-12 and 
an appropriate sputum sample for studying lung microbiome 
in the airway of asthmatics is not established yet. A study on 
feces in the colon reported that there is a difference between 
the bacterial flora in the intestinal epithelium and the bacterial 

flora in the feces18. Furthermore, quantitative differences exist 
in specific bacterial groups between luminal and mucosal-
associated intestinal microbiota using two independent tech-
niques such as culture analysis and DNA study27. Therefore, 
microbiome analysis using the whole sputum sample includ-
ing both the cellular and the fluid phases of the sputum should 
be compared that from supernatants of sputum. In addition, 

Table 3. OTUs existing in 90% of the induced sputum microbiota in asthma patients, but not found in healthy controls

OTU Contribution (%)
Predicted bacterial group

Family Phylum

789 0.63 Lachnospiraceae Firmicutes

Alteromonadaceae Proteobacteria

Methylococcaceae

Moraxellaceae

Pseudomonadaceae

420 0.61 Veillonellaceae Firmicutes

Lachnospiraceae

661 0.61 Moraxellaceae Proteobacteria

Pseudomonadaceae

664 0.56 NBG NBG

800 0.47 Gammaproteobacteria Proteobacteria

633 0.46 Prevotella Bacteroidetes

337 0.45 Acidobacteria Acidobacteria

222 0.44 Streptococcaceae Firmicutes

Peptococcaceae

Clostridiaceae

523 0.44 Rhizobiales Proteobacteria

Kordiimonadales

517 0.41 Rhizobiales Proteobacteria

Rhodospirillales

Comamonadaceae

821 0.38 Lachnospiraceae Firmicutes

Gammaproteobacteria Proteobacteria

415 0.36 Burkholderiales Proteobacteira

Actinomycetales Actinobacteria

263 0.32 Flavobacteriaceae Bacteroidetes

110 0.31 Veillonellaceae Firmicutes

467 0.31 Peptostreptococcaceae Firmicutes

152 0.31 Rhizobiaceae Proteobacteria

Rhodobacteraceae Bacteroidetes

Flavobacteriaceae

298 0.3 Bacteroidales Bacteroidetes

OTU: operational taxonomic unit; NBG: numerous bacterial groups.
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genetic, dietary factors and socioeconomic status can affect 
microbiota in human28. In this study, considering that all study 
subjects were Koreans, genetic and dietary factors would be 
relatively homogeneous but may contribute and alter lung 
microbiota compared to other ethnic groups.

With regard to the diversity of the bacteria, researchers have 
reported that the diversity of the gut microbiome decreases 
immediately after birth and that it is associated with the devel-
opment of asthma and its severity29-31. The decreased diversity 
of the microbiome can increase the risk of asthma and allergic 
disease(s) and it is consisting with hygiene hypothesis. In 
addition, the reduced diversity of the microbiome in neutro-
philic asthma among poorly controlled asthmas has been 
reported12. However, some researchers have reported the 
diversity to be rather significantly higher in asthma patients 
than in controls, and that it is associated with AHR11,32, while it 
has been reported that there was no difference in the diversity 
based on the absence or presence of asthma25,33. In this study, 
no distinctive difference was found in the diversity between 
the control group and the asthma group.

Several metagenomics studies have reported that the air-
way of asthma patients is represented with an increase of 
the number of proteobacterial species, which is a different 
characteristic from that observed in healthy people11,25,34,35. In 
addition, it has been reported that Bacteroidetes species are 
more common in healthy controls than in asthma patients25,33 
and other studies have reported that Acinetobacteria and 
Firmicutes exist at a greater proportion in the control group11. 
This discrepancy may be attributed from the limited number 
of study subjects included in the studies in part. In addition, 
the difference in the bacterial numbers at the phylum level, 
consisted of a number of species, can result in opposing find-
ings. This study was performed in a large number of subjects 
but we could not find significant difference in the bacterial 
community composition at the phylum level between the two 
groups. However, considering the 12% of unidentified bacteria 
and 8% of OTUs representing two phyla as a partial limitation 
of the T-RFLP method used in this study, the chance of false 
negative results cannot be ruled out. However, for the OTUs 
showing a significant difference between the two groups in 
this study, the number of Proteobacteria was much greater 
in the asthma group than in the control group, and the pro-

portion of Bacteroidetes was higher in the control group. In 
particular, among bacteria found only in the asthma group, 
the OTUs representing Proteobacteria tended to be relatively 
greater and the OTUs observed only in the healthy controls all 
belonged to Bacteroidetes.

Green et al.10 reported that Moraxella catarrhalis, and mem-
bers of the Haemophilus or Streptococcus genera are the ma-
jor bacteria in treatment-resistant patients with severe asthma, 
and a greater ratio of these bacteria is associated with reduced 
FEV1, increased neutrophil count, and increased interleukin 
8 expression, indicating that the composition of the bacterial 
community is associated with the severity of asthma. In addi-
tion, one previous study has also reported that Comamonada-
ceae, Sphingomonadaceae , and Oxalobacteraceae , which 
belong to the phylum Proteobacteria , are associated with 
bronchial hypersensitivity32. In agreement with this result, 
we found that OTU 789 in Moraxellaceae showed a 3.1-times 
higher prevalence in the asthma group than in the control 
group, OTU 517 representing Comamonadaceae showed a 1.5 
times higher prevalence in the asthma group.

A major limitation of this study is that the age of healthy 
control group is much lower than that of the asthma group. 
This was caused by recruitment of subjects without age 
matching. Study about aging and lung microbial change is 
rare36. Instead, studies from gut microbiome showed that age 
affect the microbiome profile and age related changes to the 
intestinal microbiome influence asthma37,38. The environment 
of the lung microbiome can also change according to aging36. 
Therefore, further studies would need to be performed with 
age matching. In other limitation, there were many unidenti-
fied bacteria as this study used T-RFLP, a fingerprint method. 
However, T-RFLP method is still being used before applying to 
next generation sequencing (NGS) owing to its several advan-
tages over sequencing methods. T-RFLP method is a highly 
robust, easy to handle and a cheap alternative to the com-
putationally demanding NGS analysis. In addition, T-RFLP 
method used in this study was tailored for the respiratory tract 
bacteria by in-silico testing the common bacteria residents in 
the respiratory tract and the four best restriction enzymes was 
chosen prior to performing the T-RFLP procedures in order to 
overcome the limitation of T-RFLP.

In conclusion, this study, unlike previous studies, involved 

Table 4. OTUs existing in 90% of the induced sputum microbiota in healthy controls, but not found in asthma patients

OTU Contribution (%)
Predicted bacterial group

Family Phylum

598 0.46 Lactobacillaceae Firmicutes

Bacteroidales Bacteroidetes

144 0.35 Lachnospiraceae Firmicutes

Flavobacteriaceae Bacteroidetes

OTU: operational taxonomic unit.
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the investigation of the microbiome in whole sputum samples 
of asthma patients using T-RFLP in a relatively larger sample 
size and the microbial composition in airway could not be 
clearly divided according to the presence of asthma.
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