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Abstract: Apple pomace, which is a waste byproduct of processing, is rich in several nutrients,
particularly dietary fiber, indicating potential benefits for diseases that are attributed to poor diets,
such as non-alcoholic fatty liver disease (NAFLD). NAFLD affects over 25% of United States
population and is increasing in children. Increasing fruit consumption can influence NAFLD.
The study objective was to replace calories in standard or Western diets with apple pomace to
determine the effects on genes regulating hepatic lipid metabolism and on risk of NAFLD. Female
Sprague-Dawley rats were randomly assigned (n = 8 rats/group) to isocaloric diets of AIN-93G and
AIN-93G/10% w/w apple pomace (AIN/AP) or isocaloric diets of Western (45% fat, 33% sucrose)
and Western/10% w/w apple pomace (Western/AP) diets for eight weeks. There were no significant
effects on hepatic lipid metabolism in rats fed AIN/AP. Western/AP diet containing fiber-rich
apple pomace attenuated fat vacuole infiltration, elevated monounsaturated fatty acid content,
and triglyceride storage in the liver due to higher circulating bile and upregulated hepatic DGAT2
gene expression induced by feeding a Western diet. The study results showed the replacement of
calories in Western diet with apple pomace attenuated NAFLD risk. Therefore, apple pomace has the
potential to be developed into a sustainable functional food for human consumption.
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1. Introduction

One-third of apples harvested in the United States (USA) are processed into apple products [1].
Apple pomace is a byproduct of apple processing that includes: skin, stem, seeds, core, and
calyx [2]. Apple pomace presents an environmental and public health issue due to its rapid
spoilage and fermentation. Moreover, apple pomace disposal is expensive with annual costs being
estimated at $10 million in the USA [3,4]. Yet, apple pomace is a rich source of various nutrients
(e.g., phytochemicals, vitamins, dietary minerals), but it is particularly high in non-digestible
carbohydrates and dietary fibers, indicating potential benefits for reducing metabolic dysfunction,
such as non-alcoholic fatty liver disease (NAFLD) [5].

NAFLD is characterized by dysregulated lipid metabolism and liver steatosis. It is the most
prevalent liver disease worldwide with reports of over 25% of the population having NAFLD [6].
Global prevalence in children is estimated to be between 7.6–34.2% [7]. Further, liver steatosis has also
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been diagnosed in non-obese patients [8]. Diets that are high in fat and sucrose, which characterize
Western diets, have been shown to induce NAFLD [9,10]. High carbohydrate consumption has been
linked to NAFLD progression by upregulating the expression of key gene transcription factors that are
involved in hepatic de novo lipogenesis (DNL), such as sterol regulatory element-binding protein-1c
(SREBP-1c) and carbohydrate response element binding protein (ChREBP) [11]. SREBP-1c and ChREBP
stimulate fatty acid synthase (FAS) to catalyze the synthesis of saturated fatty acids (SFAs). In turn,
SFAs can be desaturated to monounsaturated fatty acids (MUFAs) by stearoyl-CoA desaturase-1
(SCD-1). Promoting fatty acid esterification by diacylglycerol O-acyl transferase-2 (DGAT2) stimulates
hepatic triglyceride synthesis that can contribute to hepatic steatosis and production of triglyceride-rich
very low density lipoproteins (VLDLs), which characterizes NAFLD [12].

Currently, there are no approved drugs for the treatment of NAFLD; therefore, management of
NAFLD relies on proper diet and lifestyle changes [13]. Despite a paucity of studies, apple pomace
has been shown to reduce metabolic risk factors, such as hyperglycemia and dyslipidemia, providing
rationale for apple pomace consumption to reduce NAFLD [14,15]. However, a potential concern
is apple pomace’s fructose content. Excessive fructose consumption has been shown to promote
NAFLD development and progression [16]. Previously, we reported growing female Sprague-Dawley
rats consuming different fructose containing drinks for eight weeks promoted NAFLD, but had no
significant effect on body weight when compared to the water control [17]. Therefore, the objectives of
this study were to determine the effects of caloric substitution with apple pomace in a normal (standard
diet) or Western diet on expression of genes regulating hepatic lipid metabolism and NAFLD risk in
a rat model. Our study followed the suggested dietary advice of replacing calories in the diet with
healthier food choices instead of dietary supplementation with a purified isolated nutrient [18]. Study
results showed that apple pomace had no detrimental effects on hepatic lipid metabolism and liver
health in rats consuming normal diets and attenuate features in the NAFLD spectrum of upregulated
gene expression of triglyceride synthesis as well as liver steatosis induced in rats consuming a Western
diet. Investigating whether apple pomace, a byproduct generated from apple processing, can be
re-purposed as a functional food for human consumption has the potential to improve public health
and food sustainability by providing an economical solution for reducing environmental pollution
and costly waste disposal.

2. Materials and Methods

2.1. Animals and Diets

Weanling (age 22–29 days) female Sprague-Dawley rats (n = 32) were purchased from
Harlan-Teklad (Indianapolis, IN, USA). Female rats were selected on the basis of their greater
susceptibility to hepatic effects with increased carbohydrate consumption [19]. All animal procedures
were approved by the Animal Care and Use Committee at West Virginia University and were conducted
in accordance with the guidelines of the National Research Council for the Care of Laboratory
Animals [20]. Rats were individually housed with cages kept in a room at constant temperature
of 21 ± 2 ◦C with a 12 h light/dark cycle throughout the study.

Following seven-days acclimation, rats were randomly assigned (n = 8 rats/group) to four dietary
groups consisting of: (1) AIN-93G, a standard purified rodent diet (AIN), (2) AIN-93G with 10% weight
(g/kg) substituted with apple pomace (AIN/AP), (3) Western diet (45% fat, 33% sucrose by kcals), or (4)
Western diet with 10% of weight (g/kg) substituted with apple pomace (Western/AP). AIN diets were
adjusted to be isocaloric (3.7–3.8 kcal/g) and Western diets were adjusted to be isocaloric (4.7 kcal/g),
resulting in different types rather than amounts of simple and complex carbohydrates. Detailed
ingredient composition of experimental diets is provided in Table 1. Locally sourced apple pomace was
provided by Swilled Dog Hard Cider Company (Franklin, WV, USA) and nutrient composition analysis
was performed by Medallion Laboratories (Minneapolis, MN, USA) (Table 2). Total polyphenols in
apple pomace and treatment diets were determined while using the Folin-Ciocalteu method [21]. Diets
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were stored at −20 ◦C until fed. Rats were provided ad libitum access to their assigned diets and
deionized distilled water (ddH2O) throughout the eight weeks study duration. At baseline (day 1) and
final (end of eight weeks), rats were individually housed in a metabolic cage for 24 h to collect feces.
Feces was weighed and dried. Food intake was measured and assigned diets were replaced every
other day while ddH2O was replaced weekly. Rats were fasted overnight then euthanized by carbon
dioxide inhalation. The liver was excised, perfused with 0.7% saline solution, weighed, and then flash
frozen in liquid nitrogen. Rat livers were stored at −80 ◦C until analyzed.

Table 1. Composition of rodent diets substituted with apple pomace (10% g/kg) fed to growing
female rats.

Diet Groups 1

AIN AIN/AP Western Western/AP

Ingredients (g/kg) 1

Apple pomace 0.0 100.0 0.0 100.0
Corn Starch 397.486 392.086 63.36 57.96

Maltodextrin 132.0 132.0 60.0 60.0
Sucrose 100.0 43.9 340.0 283.9

Total Dietary Fiber 50.0 50.0 50.0 50.0
Insoluble Fiber 2 50.0 39.0 50.0 39.0
Soluble Fiber 3 0.0 11.0 0.0 11.0

Anhydrous Milkfat 0.0 0.0 210.0 210.0
Soybean Oil 70.0 68.7 20.0 18.7

Casein 200.0 196.0 195.0 191.0
L-Cystine 3.0 3.0 3.0 3.0

Vitamin Mix 10.0 10.0 12.5 12.5
Mineral Mix 35.0 35.0 43.0 43.0

Choline Bitartrate 2.5 2.5 3.1 3.1
TBHQ, antioxidant 0.014 0.014 0.04 0.04

Polyphenols 0.0015 0.0029 0.0008 0.0032

Macronutrients (% kcal)
Protein 18.8 18.9 14.8 14.8

Fat 17.2 17.3 44.6 44.8
Carbohydrate 63.9 63.7 40.6 40.4

Calories (kcal/g) 3.8 3.7 4.7 4.7
1 Abbreviations: AIN, the American Institute of Nutrition; AP, apple pomace; TBHQ, tert-butylhydroquinone. 2

Insoluble fiber is cellulose. 3 Soluble fiber is mainly pectin [2].

Table 2. Composition of freeze-dried apple pomace substituted (10% g/kg) into diets fed to growing
female rats.

Macronutrients (%)

Protein 3.56
Fat 1.3

Carbohydrates 68.1

Sugars (%)
Fructose 32.5
Glucose 9.77
Sucrose 13.9
Maltose <0.1
Lactose <0.1

Dietary Fiber (%)
Insoluble Dietary Fiber 22.2
Soluble Dietary Fiber 11.0

Polyphenols (g/kg) 0.029

Calories (kcal/100 g) 387
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2.2. Liver Total Lipid and Triglyceride Content

Lipid extraction was performed according to Bligh and Dyer [22]. Briefly, 1g of liver tissue was
homogenized in Tris/EDTA buffer (pH 7.4). To quantify fatty acids, 50 µL of nonadecanoic acid (19:0)
was added as a standard during the initial weighing of the samples. A chloroform: methanol:acetic
acid (2:1:0.15, v/v/v) solution was added to liver samples, centrifuged at 900× g for 10 min at 10 ◦C,
and the bottom chloroform layer collected. The collected chloroform layer was mixed with chloroform:
methanol (4:1, v/v) and centrifuged at 900× g at 10 ◦C for 10 min. The chloroform layer was then
collected and filtered. Extracted lipids were dried under nitrogen gas. Total lipid content in the liver
was gravimetrically determined.

Liver triglyceride content was determined using a commercially available triglyceride colorimetric
assay kit (Cayman Chemicals, Ann Arbor, MI, USA). Briefly, liver tissue (400 mg) was homogenized
using assay standard diluent (2 mL). Tissue homogenate was centrifuged at 10,000× g for 10 min at
4 ◦C. Supernatant was collected and diluted 1:5 in assay standard diluent. Hepatic samples (10 µL)
and lipase enzyme solution (150 µL) were added to a 96-well cell culture plate and then incubated
for 15 min. Hepatic sample absorbance was measured at 540 nm using a BioTek Epoch microplate
spectrophotometer (Winooski, VT, USA). All samples were performed in duplicate. The inter-assay
coefficient of variation was 15.16%.

2.3. Diet and Liver Fatty Acid Composition

Following lipid extraction, diet and liver tissue samples were transmethylated according to the
method described by Fritsche and Johnston [23]. Briefly, fatty acids were methylated by adding 4%
sulfuric acid in anhydrous methanol to the extracted lipid samples followed by incubation in a 90 ◦C
water bath for 60 min. Samples were cooled to room temperature and ddH2O was added. Chloroform
was then added to the methylated samples and centrifuged at 900× g for 10 min at 10 ◦C. The collected
chloroform layer was filtered through anhydrous sodium sulfate to remove any remaining water. Fatty
acid methyl esters (FAMEs) were dried under nitrogen gas and re-suspended in iso-octane.

FAMEs were analyzed by gas liquid chromatography (CP-3800; Varian, Walnut Creek, CA, USA)
using an initial temperature of 140 ◦C held for 5 min and then increased 1 ◦C per min to a final
temperature of 220 ◦C. A wall-coated open tubular fused silica capillary column (Varian, Walnut
Creek, CA, USA) was used to separate FAME with CP-Sil 88 at the stationary phase. Nitrogen was
used as the carrier gas and the total separation time was 56 min. Quantitative 37 Component FAMEs
Sigma Mix (Supelco, Bellefonte, PA, USA) was used to identify fatty acids. Fatty acids were determined
by retention time and quantified using peak ultra-counts. All samples were performed in duplicate
and reported as % of total fatty acids.

2.4. Liver Histology

The left lateral liver lobe (n = 7–8) was removed and immediately fixed in 10% buffered formalin
solution for histological evaluation. Tissues were dehydrated through a series of increasing ethanol
concentrations (70–100% in ddH2O), then placed in xylene and embedded in paraffin. Sections (8 µm)
from each block were stained with hematoxylin and eosin. All slides were analyzed under a Nikon
TE 2000-S light microscope (Nikon Instruments, Melville, NY, USA) by three trained individuals who
were blinded to diet treatments. Liver fat accumulation was graded using the classification described
by Brunt, et al., where grade 0 is no evidence of fat vacuoles, grade 1 is evidence of fat vacuoles in
<33% of hepatocytes, grade 2 is evidence of fat vacuoles in 33–66% of hepatocytes, and grade 3 is
evidence of fat vacuoles in >66% of hepatocytes [24]. Images were captured using a PC interface with
Q-Capture imaging software (Quantitative imaging Corporation, BC, Canada).
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2.5. RNA Isolation and Gene Expression

Total RNA was extracted from frozen tissue (50 mg) using the Zymo Research mRNA Isolation
Kit (Irvine, CA, USA) according to the manufacturer’s instruction for total RNA isolation. Isolated
RNA integrity was visualized on a 1.5% agarose gel and then quantified by spectrophotometry
(NanoDrop 100; Thermo Scientific, Waltham, MA, USA). Following DNase I treatment with TURBO
DNA-free kit (Applied Biosystems, Foster City, CA, USA), total mRNA was amplified using the
Superscript III First-Strand Synthesis System with oligo dT primers (Invitrogen, Carlsbad, CA, USA).

Real-time quantitative polymerase chain reaction (RT-qPCR) consisted of 2.5 µL of SYBR Green
Master Mix (Applied Biosystems, Foster City, CA, USA), 1 µL of cDNA (diluted 1:10), 1 µL of forward
and reverse primer solutions (10 µM each), and 0.5 µL of deionized distilled water for a total reaction
volume of 5 µL. The thermal profile consisted of 50 ◦C for 2 min, 95 ◦C for 10 min, and then 40 cycles of
95 ◦C for 15 s and 60 ◦C for 1 min. A melt curve analysis was applied at the end of cycling. Primers were
designed for ChREBP, SREBP-1c, sterol regulatory binding protein 2 (SREBP2), FAS, SCD-1, peroxisome
proliferator-activated receptor-α (PPARα), peroxisome proliferator-activated receptor-γ (PPARγ),
hormone sensitive lipase (HSL), microsomal triglyceride transfer protein (MTTP), and DGAT2, as well
as for housekeeping genes, β-actin and glyceraldehyde 2-phosphate dehydrogenase (GAPDH) using
the Primer3 program (Howard Hughes Medical Institute) and respective mRNA sequences that were
obtained from the NCBI database. Forward and reverse primers for gene transcriptions can be found
in Appendix A.

2.6. Serum Biochemical Measurements

Rats were fasted overnight and euthanized by carbon dioxide inhalation. Blood was collected by
aorta puncture. Collected blood was centrifuged at 1500× g for 10 min at 4 ◦C to obtain serum. Serum
samples were stored at −80 ◦C until analyzed. Serum measures of liver function included: alanine
aminotransferase (ALT) and aspartate aminotransferase (AST). Values were determined enzymatically
using a commercially available Vet-16 rotor and were quantified by a Hemagen Analyst automated
spectrophotometer (Hemagen Diagnostics Inc., Columbia, MD, USA). AST: ALT ratio was determined
by dividing AST values by ALT values.

Serum cholesterol, low-density lipoprotein-cholesterol (LDL-C)/VLDL, and high-density
lipoprotein-cholesterol (HDL-C) were determined by commercially available fluorometric assay
(Cell Biolabs, San Diego, CA, USA). Briefly, 200 µL precipitation reagent was added to 200 µL of
serum and then centrifuged at 2000× g for 20 min. The supernatant containing HDL-C was removed
and diluted to a final volume of 1:50. Pelleted portion containing LDL-C/VLDL was resuspended in
reaction buffer and diluted to a final volume of 1:50. Serum samples were aliquoted onto a 96-well
plate, incubated for 45 min, and measured at excitation of 570 nm and emission at 590 nm using a
BioTek Epoch microplate spectrophotometer.

Serum triglycerides were determined by commercially available colorimetric assay (Cayman
Chemical, Ann Arbor, MI, USA). Briefly, 10 µL of serum was aliquoted onto a 96-well plate and
reaction was initiated with 150 µL of diluted enzyme mixture solution. The plate was incubated at
room temperature for 15 min and measured at a wavelength of 540 nm using a BioTek Epoch microplate
spectrophotometer. All of the samples were performed in duplicate. The intra-assay coefficient of
variation was 15.6%.

2.7. Serum Total Bile Acid Concentration

Serum total bile acid content was determined using a commercially available bile acid colorimetric
assay kit (Crystal Chem Inc., Elk Grove, IL, USA). Briefly, 20 µL of serum and 150 µL of standard
reagent were added to a 96-well plate and incubated for 5 min at 37 ◦C. Absorbance was measured
at 540 nm on a BioTek Epoch microplate spectrophotometer. A second standard reagent (30 µL) was
then added to all wells, followed by a 5 min incubation at 37 ◦C and absorbance read again at 540 nm.
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Differences between absorbance were measured to determine the total serum bile acid concentration.
All samples were performed in duplicate. The intra-assay coefficient of variation was 38.5%.

2.8. Statistics

Results are expressed as mean ± standard error of the mean (SEM). Gene expression was
determined as a function of mRNA abundance (A), where A = 1/(gene of interest primer efficiency ×
∆CT (g.o.i.) —average housekeeping primer efficiency × ∆CT (h.k.), where the product of efficiency and
average of expression of β-actin was averaged with the product of efficiency and average of expression
of GAPDH to determine the overall expression of the two housekeeping genes [25]. For gene expression
data, each treatment group was log-transformed prior to statistical analysis.

Data was analyzed for normal distribution and homogeneity of variance prior to conducting a
one-way analysis of variance (ANOVA) to determine the differences among dietary groups. Post hoc
multiple comparison tests were performed on parametric data using Tukey’s test with differences
considered to be significant at p = 0.05 and a tendency at p = 0.08. Histological scoring was analyzed
using the chi-square test. All statistical analyses were performed using JMP 12.2 statistical software
package (SAS Institute, Cary, NC, USA).

3. Results

3.1. Fatty Acid Composition of Diets

As shown in Table 1, dietary fat content was higher in Western diets than standard AIN diets. Fatty
acid analysis (Table 3) showed that Western/AP diet had the highest palmitic acid (16:0). Both Western
diets contained significantly higher palmitic acid, stearic acid (18:0), palmitoleic acid (16:1n 7), and oleic
acid (18:1n 9) as compared to AIN diets. Essential fatty acids, linoleic acid (18:2n-6), and α-linoleic acid
(18:3n-3) content were approximately seven-fold lower (p < 0.0001) in Western diets when compared to
AIN diets. Arachidonic acid was higher (p < 0.0001) in Western diets as compared to AIN diets, which
contained negligible amounts.

Table 3. Fatty acid analysis of rodent diets substituted with apple pomace (10% g/kg).

Measurements
Treatments 1

AIN AIN/AP Western Western/AP p-Value

SFAs
Palmitic acid (16:0) 11.36 ± 0.09 c 11.14 ± 0.15 c 32.19 ± 0.03 b 32.92 ± 0.30 a <0.0001
Stearic acid (18:0) 3.56 ± 0.25 b 3.72 ± 0.06 b 9.94 ± 0.11 a 10.24 ± 0.06 a <0.0001

MUFAs
Palmitoleic acid (16:1n-7) 0 ± 0.00 b 0 ± 0.00 b 1.44 ± 0.01 a 1.44 ± 0.02 a <0.0001

Oleic acid (18:1n-9) 19.09 ± 0.10 b 18.35 ± 0.33 b 22.96 ± 0.11 a 22.95 ± 0.17 a <0.0001

PUFAs
Linoleic acid (18:2 n-6) 50.12 ± 0.55 a 51.41 ± 2.41 a 6.99 ± 0.09 b 7.04 ± 0.06 b <0.0001

α-linolenic acid (18:3 n-3) 7.08 ± 0.13 a 7.13 ± 0.70 a 1.04 ± 0.01 b 1.05 ± 0.02 b <0.0001
Arachidonic acid (20:4 n-6) 0 ± 0.00 b 0 ± 0.00 b 0.13 ± 0.00 a 0.14 ± 0.00 a <0.0001

Values expressed as mean ± standard error of the mean (SEM, n = 5 samples/group). Different superscript letters
a, b, and c within. The same row indicates significant difference at p < 0.05 by one-way ANOVA followed by
Tukey’s test. Abbreviations: MUFAs, monounsaturated fatty acids; PUFAs, polyunsaturated fatty, acids; SFAs,
saturated fatty acids.

3.2. Food Intake, Body Weight and Tissue Weights

Figure 1 shows there was no significant differences in body weight among diet groups over eight
weeks. As shown in Table 4, there was a tendency (p = 0.08) for higher final body weights for rats fed
Western diets compared to AIN diets. Growing female rat fed Western diets consumed significantly
more carbohydrates, fat, and total calories than rats fed standard rodent AIN diets. There were no
statistically significant differences in amount of carbohydrates, fat, and total calories consumed by
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rats fed Western diet compared to Western/AP diet. There was a tendency (p = 0.08) for higher
initial wet and dry fecal weights in rats fed Western as compared to AIN diets, but no significant
differences in final fecal output among diet groups. There were no statistical differences observed
in feed efficiency ratio among diet groups. Rats consuming Western diets had increased (p < 0.001)
gonadal fat pad weights when compared to rats that were fed AIN diets. There were no statistically
significant differences in gonadal fat pad weight in rats fed Western diet as compared to Western/AP
diet. There were no statistically significant differences in absolute or relative liver weights among
diet groups.
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Figure 1. Growth curve of rats fed different diets containing apple pomace.

Table 4. Effect of consumption of different diets substituted with apple pomace (10% g/kg) by growing
female rats on caloric intake, body weight, and liver weight following eight weeks of feeding.

Measurements
Treatments 1

AIN AIN/AP Western Western/AP p-Value

Caloric intake (kcal) 2946 ± 85 b 2757 ± 62 b 3373 ± 71 a 3443 ± 134 a <0.0001
CHO intake (kcal) 1769 ± 54 a 1708 ± 39 a 1354 ± 29 b 1347 ± 54 b <0.0001
Fat intake (kcal) 476 ± 15 b 464 ± 11 b 1487 ± 32 a 1494 ± 60 a <0.0001
Initial bwt (g) 95 ± 3 92 ± 3 95 ± 3 95 ± 3 0.80
Final bwt (g) 216 ± 4 216 ± 8 228 ± 5 234 ± 5 0.08
Total bwt gain (g) 121 ± 4 124 ± 7 133 ± 6 138 ± 6 0.17
Wet Initial Fecal Weight (g) 0.82 ± 0.06 b 0.75 ± 0.11 b 1.30 ± 0.23 a 1.14 ± 0.13 a,b 0.06
Dry Initial Fecal Weight (g) 0.67 ± 0.06 0.54 ± 0.14 1.269 ± 0.27 0.75 ± 0.21 0.08
Wet Final Fecal Weight (g) 0.30 ± 0.18 b 0.28 ± 0.16 b 0.91 ± 0.34 a 0.63 ± 0.23 a,b 0.03
Dry Final Fecal Weight (g) 0.23 ± 0.13 0.19 ± 0.10 0.78 ± 0.27 0.50 ± 0.16 0.13
Feed Efficiency Ratio 0.17 ± 0.01 0.17 ± 0.01 0.18 ± 0.01 0.18 ± 0.01 0.13
Gonadal fat pad weight (g) 4.12 ± 0.26 b 3.46 ± 0.44 b 5.87 ± 0.24 a 5.96 ± 0.23 a <0.0001
Liver weight (g) 7.50 ± 0.24 7.44 ± 0.37 8.05 ± 0.30 7.98 ± 0.24 0.35
Relative liver weight (mg/g bwt) 3.47 ± 0.078 3.45 ± 0.068 3.52 ± 0.067 3.41 ± 0.048 0.69

1 Values expressed as mean ± SEM (n = 6–8 rats/group). Different superscript letters a and b within the same row.
Indicate significant difference at p < 0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: Bwt,
body weight; CHO, carbohydrate.

3.3. Liver Total Lipid and Triglyceride Content

Total lipids and triglyceride content in the liver were within the value range reported in previous
studies of NAFLD [17]. There were no statistically significant differences in hepatic total lipid content
among diet groups (Figure 2A). Rats that were fed Western diet had the highest (p = 0.01) hepatic
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triglyceride content. Rats fed Western/AP diet showed no significant differences in liver triglyceride
content as compared to rats fed AIN diets (Figure 2B).Nutrients 2018, 10, x FOR PEER REVIEW  8 of 17 
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Figure 2. (A) Total hepatic lipid content (mg/g) and (B) Total hepatic triglyceride content (mg/g) of
growing female rats consuming different diets substituted with apple pomace (10% w/w) following
eight weeks of feeding. Different letters a and b indicate significant difference at p < 0.05 by one-way
ANOVA followed by Tukey’s test.

3.4. Liver Histology

Based on liver histology, 14% of rats fed AIN diet had fat vacuoles in <33% of hepatocytes
(Figure 3A) and 43% of rats fed AIN/AP diet had fat vacuoles in <33% of hepatocytes (Figure 3B).
Higher hepatic fat infiltration was indicated by 25% of rats fed Western diet having fat vacuoles in
33–66% hepatocytes (Figure 3C), while 13% of rats fed Western/AP diet had fat vacuoles in 33–66% of
hepatocytes (Figure 3D). There was an overall significant (p < 0.0001) difference among histology scores.
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Figure 3. Representative histological staining images of livers of growing female rats consuming
(A) AIN, (B) AIN/AP, (C) Western, or (D) Western/AP following eight weeks of feeding. Arrow
indicates fat deposition. Scores analyzed by chi-square test at p < 0.05.

3.5. Liver Fatty Acid Composition

As shown in Table 5, rats that were fed Western diet had significantly higher hepatic palmitic
acid content than rats fed AIN diets. While the Western/AP diet contained the highest amount of
palmitic acid, liver content in rats fed Western/AP diet was only significantly higher when compared
to rats fed AIN/AP diet. Western diets contained higher amounts of stearic acid and showed a
tendency (p = 0.08) for higher hepatic stearic acid content than rats fed AIN diets. Both Western diets
also contained higher amounts of palmitoleic and oleic acid than AIN diets. However, rats consuming
Western diet had the highest hepatic palmitoleic acid content (p = 0.05). Rats fed Western diet, but not
Western/AP diet had higher hepatic oleic acid content (p = 0.0005) compared to rats fed AIN diets.
Rats consuming Western diets had significantly lower (p < 0.0001) hepatic linoleic and α-linolenic acid
content when compared to rats consuming AIN diets, however no difference in hepatic arachidonic
acid content was observed among all groups, despite negligible amounts in the AIN diets.



Nutrients 2018, 10, 1882 10 of 17

Table 5. Effect of consumption of different diets substituted with apple pomace (10% g/kg) by growing
female rats on hepatic fatty acid composition following 8 weeks of feeding.

Measurements (%)
Treatments 1

AIN AIN/AP Western Western/AP p-Value

SFAs
Palmitic acid (16:0) 19.10 ± 0.57 b,c 18.40 ± 0.53 c 21.44 ± 0.53 a 21.08 ± 0.53 a,b 0.0007
Stearic acid (18:0) 14.46 ± 0.65 14.06 ± 0.60 14.83 ± 0.83 16.28 ± 0.60 0.08

MUFAs
Palmitoleic acid (16:1n-7) 0.57 ± 0.25 b 0.81 ± 0.25 b 1.61 ± 0.23 a 0.76 ± 0.25 b 0.05
Oleic acid (18:1n-9) 11.25 ± 1.65 b 10.72 ± 1.39 b 19.55 ± 1.39 a 15.95 ± 1.30 a,b 0.0005

PUFAs
Linoleic acid (18:2n-6) 22.44 ± 1.09 a 25.12 ± 1.09 a 9.28 ± 1.09 b 8.38 ± 1.09 b <0.0001
α-linoleic acid (18:3n-3) 1.04 ± 0.14 a 1.28 ± 0.15 a 0.23 ± 0.14 b 0.22 ± 0.14 b <0.0001
Arachidonic acid (20:4n-6) 13.26 ± 1.00 11.99 ± 1.61 13.20 ± 1.00 14.56 ± 1.00 0.37

1 Values expressed as mean ± SEM (n = 6–8 rats/group). Different superscript letters a, b, and c within the same
row indicate significant difference at p < 0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: MUFAs,
monounsaturated fatty acids; PUFAs, polyunsaturated fatty acids; SFAs, saturated fatty acids.

3.6. Hepatic Lipogenic Gene Expression

As shown in Table 6, hepatic DGAT2 gene expression was up-regulated (p < 0.01) in rats consuming
Western diet compared to all diet groups. The Western/AP diet reverted hepatic DGAT2 gene
expression to that found in rats fed AIN diets. There were no statistically significant differences
in hepatic gene expression of ChREBP, SREBP-1c, SREBP-2, SCD-1, FAS, PPARα, PPARγ, HSL or MTTP
among diet groups.

Table 6. Effect of consumption of different diets substituted with apple pomace (10% g/kg) by growing
female rats on hepatic lipid metabolism gene expression following 8 weeks of feeding.

Measurements
Treatments 1

AIN AIN/AP Western Western/AP p-Value

Lipogenesis
ChREBP 0.074 ± 0.004 0.069 ± 0.006 0.078 ± 0.006 0.077 ± 0.009 0.76

SREBP-1c 0.118 ± 0.027 0.132 ± 0.041 0.136 ± 0.038 0.117 ± 0.031 0.11
SREBP-2 0.088 ± 0.020 0.080 ± 0.012 0.083 ± 0.017 0.092 ± 0.026 0.92

FAS 0.116 ± 0.034 0.096 ± 0.015 0.121 ± 0.028 0.156 ± 0.075 0.15
SCD-1 0.234 ± 0.084 0.216 ± 0.036 0.223 ± 0.073 0.309 ± 0.080 0.13

Lipolysis
PPARα 0.088 ± 0.016 0.099 ± 0.013 0.098 ± 0.027 0.076 ± 0.012 0.74
PPARγ 0.054 ± 0.021 0.053 ± 0.013 0.053 ± 0.016 0.052 ± 0.026 0.99

HSL 0.085 ± 0.019 0.087 ± 0.011 0.084 ± 0.023 0.074 ± 0.027 0.89

Storage and Transport
DGAT2 0.171 ± 0.020 b 0.151 ± 0.025 b 0.617 ± 0.161 a 0.213 ± 0.039 b 0.002
MTTP 0.145 ± 0.026 0.090 ± 0.008 0.164 ± 0.044 0.151 ± 0.035 0.43

1 Values expressed as mean ± SEM (n = 6–8 rats/group) of transcript abundance (A) of gene of interest relative
to housekeeping genes β-actin and GAPDH. Different superscript letters a and b within the same row indicate
significant difference at p < 0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: ChREBP, carbohydrate
element response binding protein; DGAT2, diacylglycerol O-acyltransferase 2; FAS, fatty acid synthase; HSL,
hormone sensitive lipase; MTTP, microsomal triglyceride transfer protein; PPARα, peroxisome proliferator-activated
receptor alpha; PPARγ, peroxisome proliferator-activated receptor gamma; SCD-1, stearoyl-CoA desaturase-1;
SREBP-1c, sterol regulatory binding protein-1c; SREBP-2, sterol regulatory binding protein-2.

3.7. Serum Liver Enzymes, Cholesterol, Triglyceride, and Bile Acid Measurements

As shown in Table 7, there were no statistical significant differences in serum AST, ALT, AST:ALT
ratio among diet groups. Serum triglycerides, VLDL/LDL-C, HDL-C, and total cholesterol were not
significantly different among diet groups. Serum bile acid concentration was significantly higher in
rats fed Western diet, but not Western/AP compared to rats fed AIN diets.



Nutrients 2018, 10, 1882 11 of 17

Table 7. Effect of consumption of different diets substituted with apple pomace (10% g/kg) by growing
female rats on serum measurements of liver function enzymes, cholesterol, and bile acids following
8 weeks of feeding.

Serum Measurements AIN AIN/AP Western Western/AP p-Value

AST (U/L) 129.48 ± 52.86 212.50 ± 37.86 283.63 ± 45.30 259.67 ± 48.96 0.69
ALT (U/L) 107.63 ± 19.59 118.71 ± 43.60 94.5 ± 12.58 133.5 ± 30.59 0.78

AST:ALT ratio 3.16 ± 0.45 2.79 ± 0.28 2.97 ± 0.26 2.84 ± 0.17 0.83
VLDL/LDL-C (mg/dL) 41.59 ± 4.17 41.74 ± 2.38 40.42 ± 6.44 41.29 ± 6.74 0.99

HDL-C (mg/dL) 17.29 ± 2.18 18.95 ± 1.97 18.21 ± 2.13 21.85 ± 1.82 0.43
Total Cholesterol (mg/dL) 58.89 ± 3.43 60.38 ± 3.38 59.80 ± 5.69 57.98 ± 7.85 0.99

Triglyceride (mg/dL) 55.81 ± 8.17 47.39 ± 9.04 58.64 ± 9.38 50.04 ± 8.81 0.84
Total Bile Acids (µmol/L) 30.00 ± 3.13 b 28.80 ± 7.69 b 54.13 ± 7.96 a 31.52 ± 3.69 a,b 0.02
1 Values expressed as mean ± SEM of n = 6–8 rats/group. Different superscript letters a and b within the same
row indicate significant difference at p < 0.05 by one-way ANOVA followed by Tukey’s test. Abbreviations: AST,
aspartate aminotransferase; ALT, alanine aminotransferase; VLDL, very-low density lipoprotein, LDL-C, low density
lipoprotein-cholesterol; HDL-C, high density lipoprotein-cholesterol.

4. Discussion

Rats that were provided Western diets ingested more (p < 0.0001) calories than rats provided
standard AIN rodent diets and had greater (p < 0.0001) gonadal fat pad weight, although not heavier
body weight. In addition to being associated with obesity, diets that are high in saturated fats
and simple carbohydrates typified by Western diets have been associated with the development of
NAFLD [26,27]. Liver steatosis has also been diagnosed in non-obese patients [8]. Replacing sugars
in the diet, as well as increasing fruit consumption, is recommended [28]. However, studies have
reported high fructose consumption induces NAFLD by stimulating hepatic DNL [17,26]. Among
fruits popularly consumed in the USA, apples are considered to be particularly concentrated in
fructose [2,29]. In the present study, nutrient analysis of apple pomace showed the major sugar was
fructose (>30%).

Histological evaluation of liver tissue showed low fat infiltration (fat vacuoles in <33% of
hepatocytes), with no significant increase in total lipid or triglyceride content in rats consuming
AIN/AP as compared to AIN diet. Hepatic gene expression of DNL transcription factors and enzymes
were not upregulated and there were no increases in end products: palmitic, stearic, palmitoleic,
or oleic acid content in the liver of rats fed AIN/AP when compared to the AIN diet. Furthermore,
there were no significant differences in serum ALT, AST, and ALT/AST ratio to indicate liver damage
and dysfunction. Conversely, rats fed Western diets showed greater hepatic lipid accumulation,
as indicated by fat vacuoles in 33–66% of hepatocytes. Rats fed Western diet showed 25% when
compared to 14% of animals fed Western/AP having fat vacuoles in 33–66% of hepatocytes. Rats fed
Western/AP had decreased (p = 0.04) hepatic triglyceride content as compared to rats fed Western diet,
suggesting that substituting calories in the Western diet with 10% apple pomace attenuates hepatic
triglyceride deposition.

Hepatic DNL is stimulated by FAS catalyzing synthesis of SFAs (i.e., palmitic and stearic acid).
Our results showed no dietary effects on hepatic FAS gene expression. Yet, rats that were fed Western
diet had higher (p = 0.0007) hepatic palmitic acid content when compared to rats fed either AIN diets.
This may be explained by higher palmitic content of Western diets. Replacement with apple pomace in
the Western/AP diet resulted in similar hepatic palmitic acid content to rats fed the AIN diet, but was
higher than rats fed AIN/AP diet. In DNL, palmitic acid and stearic acid can be desaturated by the
enzyme SCD-1 to MUFAs and palmitoleic and oleic acid, respectively. Despite no significant differences
in dietary MUFA content between the Western and Western/AP diets, rats consuming Western diet
had the highest (p = 0.05) liver palmitoleic acid content. Serum palmitoleic acid has been shown to be to
be elevated in patients with liver disease and high serum VLDL [30,31]. Additionally, rats consuming a
Western diet, but not Western/AP diet, had higher (p = 0.0005) hepatic oleic acid content as compared to
rats consuming AIN diets. Studies have suggested that high oleic acid stimulates hepatic fat deposition,
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since oleic acid is the preferred substrate for hepatic triglyceride synthesis [32]. In a human clinical
study, higher serum oleic acid was positively correlated to NAFLD [33]. In the present study, despite
differences in liver MUFA content, gene expression of SCD-1 was not significantly different among
diet groups. Differences in hepatic fat infiltration and fatty acid composition in the absence of changes
in DNL gene expression may be due instead to diet influencing genes regulating lipolysis.

HSL catalyzes the conversion of diacylglycerols to monoacylglycerols in lipolysis [31]. PPARα
and PPARγ have been suggested as a potential therapeutic target for NAFLD, as the upregulation
of these transcription factors results in increased use of lipids for metabolism [34,35]. Therefore,
gene expression of HSL, as well as transcription factors PPARα and PPARγ, were determined to assess
whether increased lipolysis was responsible for the observed hepatoprotective effects of apple pomace.
In the current study, the expression of genes regulating lipolysis were not significantly different among
diet groups. Besides imbalanced DNL and lipolysis, altered hepatic lipid storage and transport has
been suggested to be key to NAFLD [31,36]. Increased gene expression of DGAT2 has been reported to
promote hepatic steatosis [37,38]. Reducing DGAT2 has also been identified as a therapeutic target for
NAFLD [39]. In the current study, hepatic DGAT2 gene expression was upregulated (p = 0.002) nearly
three-fold in rats that were fed a Western diet. The mechanism for higher triglyceride content in the
liver of rats fed Western diet might be explained by the combination of upregulation of DGAT2 gene
expression and increased MUFAs and palmitoleic and oleic acid content in the liver, since MUFAs
have been shown to be preferentially used for triglyceride synthesis [32,40]. On the other hand,
polyunsaturated fatty acids (PUFAs) have been reported to have anti-steatosis effects [33]. In our study,
rats fed both Western diets had significantly lower hepatic PUFA (e.g., linoleic acid and α-linolenic acid)
content than rats that were fed AIN diets. There was no difference in hepatic PUFA content in rats fed
Western diet as compared to the Western/AP diet. Based on our results, MUFAs appeared to be the
bioactive fatty acids inducing NAFLD in the Western diet.

Once synthesized triglycerides enter storage or secretory pools, hepatic MTTP regulates the
packaging of triglycerides into VLDLs for transport into the circulation [41–43]. In our study, hepatic
gene expression of MTTP was not significantly different among the diet groups. This was indicated by
no significant changes in serum triglycerides and LDL-C/VLDL among diet groups. Overexpression
of DGAT2 in mouse liver has been shown to increase liver triglyceride content, but not VLDL
secretion [44]. Based on the results, greater total triglyceride accumulation in the liver of rats that were
fed Western diet was due to increased triglyceride synthesis without a concomitant increase in the
transport of triglycerides out of the liver. Accumulation of hepatic triglycerides without increasing
circulating VLDLs may be due to the physical limitations of liver to export triglyceride-rich VLDL
particles that exceed the diameter of the sinusoidal endothelia pores [45].

On the other hand, DGAT2 gene expression in the liver was not significantly upregulated in
rats fed Western/AP diet, suggesting a potential therapeutic role of apple pomace in ameliorating
Western diet induced NAFLD. Studies have suggested that bile represses hepatic triglyceride secretion,
therefore reducing triglyceride accumulation [46]. Individuals with NAFLD have been reported to
have higher serum bile acid [47]. Dietary fiber has been reported to decrease serum bile acids [48].
Individuals with NAFLD have been shown to consume less dietary fiber than healthy individuals [49].
Apple pomace contains a substantial amount of non-digestible carbohydrates, including: dietary fibers,
pectin, and oligosaccharides [2]. In our study, serum bile acid concentration was higher in rats fed
Western diet (p < 0.05), but not Western/AP diet as compared to rats fed AIN diets. Western diet was
adjusted to remain isocaloric after substitution with apple pomace. All diets were adjusted to have 5%
total fiber. No significant differences in body weight, fecal weights, and feed efficiency ratio suggested
no differences in digestible energy among diet. However, differences in fiber type may be a potential
mechanism. Studies have reported that dietary oligofructose decreases intra-hepatic triglycerides [50].
Hepatocytes that were isolated from non-digestible carbohydrate oligofructose-fed rats showed a
reduced capacity to esterify palmitic acid [51]. In our study, rats fed Western diet, but not Western/AP,
had higher (p = 0.0007) palmitic acid content in the liver when compared to rats fed the AIN diet.
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Consumption of fruits and dietary fiber have been shown to improve liver steatosis [49,52]. Therefore,
as a fruit-based product that is high in dietary fiber, apple pomace could potentially improve dietary
fiber consumption in individuals with hepatic steatosis and the risk of NAFLD.

A study of fiber-rich colloids that were isolated from apple pomace reported increased fecal
excretion of bile acids with dietary fiber by fiber acting as a bile sequestrant to improve serum
lipoproteins [53]. Another potential mechanism is the effect of soluble fibers on microbiota. Mice fed
a 30% fat diet supplemented with 4% pectin modulated microbiota and increased short-chain fatty
acid (SCFA) production resulting in a reduction in NAFLD [54]. However, extraction and purification
of isolated ingredients from food can be technologically challenging and costly. Also, nutrients in
foods often act synergistically. Young male rats that were fed a standard diet supplemented with
5 or 15% apple pomace for four weeks increased cecal SCFAs [55,56]. However, there has been a
dearth of studies investigating the effects of apple pomace on lipid metabolism. Bobek, et al., focusing
specifically on cholesterol metabolism in the liver, reported the beneficial effects of a 5% (w/w) apple
pomace supplementation [57]. Another study reported diet-induced obese male Sprague-Dawley
rats fed a high-fat diet (15% w/w) that was substituted with 10% (w/w) apple pomace for five weeks
as compared to rats fed a high-fat diet resulted in significantly reduced liver triglyceride content,
serum total triglycerides, total cholesterol, and LDL-C due to higher fecal triglyceride and cholesterol
excretion [5]. In the present study, healthy growing female Sprague-Dawley rats fed the Western/AP
diet attenuated hepatic fat infiltration and also attenuated elevated MUFA and triglyceride content
induced by the Western diet. Additionally, elevated circulating bile acids was attenuated by apple
pomace consumption. In contrast to the study on diet-induced obese male rats fed apple pomace,
our study using female rats showed no improvement in serum lipoproteins [5]. Studies have shown
that various types of diets that are used for developing NAFLD in experimental animals produce
different effects [58]. In our study, Western diet induced hepatic steatosis was due to the dysregulation
of hepatic triglyceride synthesis without changes in circulating lipoproteins. Similar hepatic effects
were observed in other studies where the DGAT2 gene was overexpressed [44].

In summary, substituting calories with 10% apple pomace, despite added dietary fructose, did not
promote liver steatosis in rats that were fed a standard AIN diet. Caloric substitution with fiber-rich
apple pomace attenuated hepatic steatosis due to elevated hepatic MUFA content, higher circulating
bile acids, and upregulated hepatic DGAT2 gene expression induced by a Western (high fat/high
sugar) diet. Using a rat model, apple pomace consumption attenuated liver steatosis and had no
detrimental effects on liver health. The abundance of apple pomace, currently a food processing waste
by-product, has the potential to be re-purposed into a sustainable food product with beneficial health
properties. Further mechanistic studies, preclinical, and human clinical research investigating apple
pomace for human consumption and health can offer an environmental and economical solution for
fruit waste that is generated by the industrial processing of apples.
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Appendix A

Table A1. List pf primers used for RT-qPCR analysis.

Gene NCBI Accession Number Forward Primer Reverse Primer

ChREBP NM_133552.1 5′ CCTTAATGGGATGGTGTCT 3′ 5′ AGAGCAGGGCAGGGAACAGTA 3′

SREBP-1c NM_001276707.1 5′ GCCTGCTTGGCTCTTCTCT 3′ 5′ GCTTGTTTGCGATGTCTCC 3′

SREBP-2 NM_001033694.1 5′ TGATGCCGACTCTACTGCTG 3′ 5′ CACGAAGACGCTCAAGACAA 3′

FAS NM_017332.1 5′ GCTGCTACAAACAGCACCATC 3′ 5′ TCCACTGACTCTTCACAGACCA 3′

SCD-1 NM_139192.2 5′ TTCGCCACTGACTTGCTATG 3′ 5′ CAGGAGGTTCTTGGGATGATT 3′

PPARα NM_013196.1 5′ ATGAACAAAGACGGGATGCT 3′ 5′ AGGAACTCTCGGGTGATGAA 3′

PPARγ NM_013124.3 5′ GCAAAGACAACAGACAAATCACC 3′ 5′ CGAAACTGGCACCCTTGA 3′

HSL NM_012859.1 5′ TCTCCAAGTGTGTAGCGCCTA 3′ 5′ AACTCCAGGAAGGAGTTGAGC 3′

MTTP NM_001107727.1 5′ TCAGGTGCTGTGTATTCTGCT 3′ 5′ CGTGTTCCACTTCCGTTCT 3′

DGAT2 NM_001012345.1 5′ CACCCTCCTGTGTATTCTGCT 3′ 5′ TTTGGCTGTTCTTGTTTCCA 3′

B-actin NM_031144.2 5′ TTGCTGACAGGATGCACAAG 3′ 5′ CAGTGAGGCCAGGATAGAGC 3′

GAPDH NM_017008.4 5′ TCAAGAAGGTGGTGAAGCAG 3′ 5′ CCTCAGTGTAGCCCAGGATG 3′

Abbreviations: Abbreviations: ChREBP, carbohydrate element response binding protein; DGAT2, diacylglycerol
O-acyltransferase 2; FAS, fatty acid synthase; HSL, hormone sensitive lipase; MTTP, microsomal triglyceride transfer
protein; PPARα, peroxisome proliferator-activated receptor alpha; PPARγ, peroxisome proliferator-activated
receptor gamma; SCD-1, stearoyl-CoA desaturase-1; SREBP-1c, sterol regulatory binding protein-1c; SREBP-2, sterol
regulatory binding protein-2.

References

1. U.S. Apple Association. Apple Industry Statistics. 2017. Available online: http://usapple.org/all-about-
apples/apple-industry-statistics/ (accessed on 4 January 2018).

2. Bhushan, S.; Kalia, K.; Sharma, M.; Singh, B.; Ahuja, P.S. Processing of apple pomace for bioactive molecules.
Crit. Rev. Biotechnol. 2008, 28, 285–296. [CrossRef]

3. Shalini, R.; Gupta, D.K. Utilization of pomace from apple processing industries: A review. J. Food Sci. Technol.
2010, 47, 365–371. [CrossRef] [PubMed]

4. Kaushal, N.; Joshi, V.; Vaidya, D. Effect of Stage of Apple Pomace Collection and the Treatment on the
Physico-Chemical and Sensory Qualities of Pomace Papad (Fruit Cloth). J. Food Sci. Technol. 2002, 39,
388–393. Available online: http://jglobal.jst.go.jp/en/public/20090422/200902173246576860 (accessed on
10 January 2018).

5. Cho, K.D.; Han, C.K.; Lee, B.H. Loss of body weight and fat and improved lipid profiles in obese rats Fed
apple pomace or apple juice concentrate. J. Med. Food 2013, 16, 823–830. [CrossRef] [PubMed]

6. Lonardo, A.; Ballestri, S.; Marchesini, G.; Angulo, P.; Loria, P. Nonalcoholic fatty liver disease: A precursor of
the metabolic syndrome. Dig. Liver Dis. 2015, 47, 181–190. [CrossRef]

7. Anderson, E.L.; Howe, L.D.; Jones, H.E.; Higgins, J.P.T.; Lawlor, D.A.; Fraser, A. The prevalence of
non-alcoholic fatty liver disease in children and adolescents: A systematic review and meta-analysis.
PLoS ONE 2015, 10, e0140908. [CrossRef] [PubMed]

8. Margariti, E.; Deutsch, M.; Manolakopoulos, S.; Papatheodoridis, G.V. Non-Alcoholic Fatty Liver Disease
May Develop in Individuals with Normal Body Mass Index. Ann. Gastroenterol. 2012, 25, 45–51. Available
online: http://www.ncbi.nlm.nih.gov/pubmed/24713801 (accessed on 30 October 2018). [PubMed]

9. Ishimoto, T.; Lanaspa, M.A.; Rivard, C.J.; Roncal-Jimenez, C.A.; Orlicky, D.J.; Cicerchi, C.; McMahan, R.H.;
Abdelmalek, M.F.; Rosen, H.R.; Jackman, M.R.; et al. High-fat and high-sucrose (western) diet induces
steatohepatitis that is dependent on fructokinase. Hepatology 2013, 58, 1632–1643. [CrossRef]

10. Mells, J.E.; Fu, P.P.; Sharma, S.; Olson, D.; Cheng, L.; Handy, J.A.; Saxena, N.K.; Sorescu, D.; Anania, F.A.
Glp-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a
Western diet. Am. J. Physiol. Liver Physiol. 2012, 302, G225–G235. [CrossRef]

11. Strable, M.S.; Ntambi, J.M. Genetic control of de novo lipogenesis: Role in diet-induced obesity. Crit. Rev.
Biochem. Mol. Biol. 2010, 45, 199–214. [CrossRef]

12. Wang, Z.; Yao, T.; Song, Z. Involvement and mechanism of DGAT2 upregulation in the pathogenesis of
alcoholic fatty liver disease. J. Lipid Res. 2010, 51, 3158–3165. [CrossRef] [PubMed]

13. Munteanu, M.A.; Nagy, G.A.; Mircea, P.A. Current management of NAFLD. Clujul Med. 2016, 89, 19–23.
[CrossRef] [PubMed]

http://usapple.org/all-about-apples/apple-industry-statistics/
http://usapple.org/all-about-apples/apple-industry-statistics/
http://dx.doi.org/10.1080/07388550802368895
http://dx.doi.org/10.1007/s13197-010-0061-x
http://www.ncbi.nlm.nih.gov/pubmed/23572655
http://jglobal.jst.go.jp/en/public/20090422/200902173246576860
http://dx.doi.org/10.1089/jmf.2013.2784
http://www.ncbi.nlm.nih.gov/pubmed/23909905
http://dx.doi.org/10.1016/j.dld.2014.09.020
http://dx.doi.org/10.1371/journal.pone.0140908
http://www.ncbi.nlm.nih.gov/pubmed/26512983
http://www.ncbi.nlm.nih.gov/pubmed/24713801
http://www.ncbi.nlm.nih.gov/pubmed/24713801
http://dx.doi.org/10.1002/hep.26594
http://dx.doi.org/10.1152/ajpgi.00274.2011
http://dx.doi.org/10.3109/10409231003667500
http://dx.doi.org/10.1194/jlr.M007948
http://www.ncbi.nlm.nih.gov/pubmed/20739640
http://dx.doi.org/10.15386/cjmed-539
http://www.ncbi.nlm.nih.gov/pubmed/27004021


Nutrients 2018, 10, 1882 15 of 17

14. Schulze, C.; Bangert, A.; Kottra, G.; Geillinger, K.E.; Schwanck, B.; Vollert, H.; Blaschek, W.; Daniel, H.
Inhibition of the intestinal sodium-coupled glucose transporter 1 (SGLT1) by extracts and polyphenols
from apple reduces postprandial blood glucose levels in mice and humans. Mol. Nutr. Food Res. 2014, 58,
1795–1808. [CrossRef] [PubMed]

15. Leontowicz, M.; Gorinstein, S.; Bartnikowska, E.; Leontowicz, H.; Kulasek, G.; Trakhtenberg, S. Sugar beet
pulp and apple pomace dietary fibers improve lipid metabolism in rats fed cholesterol. Food Chem. 2001, 72,
73–78. [CrossRef]

16. Lim, J.S.; Mietus-Snyder, M.; Valente, A.; Schwarz, J.-M.; Lustig, R.H. The role of fructose in the pathogenesis
of NAFLD and the metabolic syndrome. Nat. Rev. Gastroenterol. Hepatol. 2010, 7, 251–264. [CrossRef]

17. Mock, K.; Lateef, S.; Benedito, V.A.; Tou, J.C. High-fructose corn syrup-55 consumption alters hepatic lipid
metabolism and promotes triglyceride accumulation. J. Nutr. Biochem. 2017, 39, 32–39. [CrossRef] [PubMed]

18. Rinella, M.E.; Sanyal, A.J. Management of NAFLD: A stage-based approach. Nat. Rev. Gastroenterol. Hepatol.
2016, 13, 196–205. [CrossRef]

19. Vilà, L.; Roglans, N.; Perna, V.; Sánchez, R.M.; Vázquez-Carrera, M.; Alegret, M.; Laguna, J.C. Liver
AMP/ATP ratio and fructokinase expression are related to gender differences in AMPK activity and glucose
intolerance in rats ingesting liquid fructose. J. Nutr. Biochem. 2011, 22, 741–751. [CrossRef]

20. National Research Council. Guide for the Care and Use of Laboratory Animals: Eighth Edition—National Research
Council, Division on Earth and Life Studies, Institute for Laboratory Animal Research, Committee for the Update
of the Guide for the Care and Use of Laboratory Animals—Google Books, 8th ed.; The National Academies
Press: Washington, DC, USA, 2010; Available online: https://books.google.com/books?hl=en&lr=&id=
Vp5mgXtxYdQC&oi=fnd&pg=PP2&dq=national+research+council+2010+rats&ots=FrTgd1JCl5&sig=eZ_
vGWk36QfLScXnMbS__BgT8XU#v=onepage&q=nationalresearchcouncil2010rats&f=false (accessed on
27 February 2018).

21. Blainski, A.; Lopes, G.; de Mello, J.; Blainski, A.; Lopes, G.C.; de Mello, J.C.P. Application and Analysis of
the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium brasiliense L.
Molecules 2013, 18, 6852–6865. [CrossRef]

22. Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959,
37, 911–917. [CrossRef]

23. Fritsche, K.L.; Johnston, P.V. Effect of dietary a-linolenic acid on growth, metastasis, fatty acid profile
and prostaglandin production of two murine mammary adenocarcinomas. J. Nutr. 1990, 120, 1601–1609.
[CrossRef]

24. Brunt, E.M.; Janney, C.G.; Bisceglie, A.M.; Neuschwander-Tetri, B.A.; Bacon, B.R. Nonalcoholic
steatohepatitis: A proposal for grading and staging the histological lesions. Am. J. Gastroenterol. 1999,
94, 2467–2474. [CrossRef]

25. Jacometo, C.B.; Schmitt, E.; Pfeifer, L.F.; Schneider, A.; Bado, F.; Rosa, F.T.; Halfen, S.; Del Pino, F.A.; Loor, J.J.;
Corrêa, M.N.; et al. Linoleic and α-linolenic fatty acid consumption over three generations exert cumulative
regulation of hepatic expression of genes related to lipid metabolism. Genes Nutr. 2014, 9, 405. [CrossRef]

26. Loomba, R.; Sanyal, A.J. The global NAFLD epidemic. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 686–690.
[CrossRef]

27. Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S.A.; Brunt, E.M.;
Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the
American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [CrossRef]

28. Department of Health and Human Services. Dietary Guidelines for Americans 2015–2020—U.S. Department of
Health and Human Services, U.S. Department of Agriculture; Skyhorse Publishing: New York, NY, USA, 2017.

29. Southgate, D.; Paul, A.A.; Dean, A.C.; Christie, A.A. Free Sugars in Foods. Int. J. Food Sci. Nutr. 1978, 32,
335–347. Available online: http://www.ncbi.nlm.nih.gov/pubmed/363937 (accessed on 24 January 2018).
[CrossRef]

30. Nestel, P.; Clifton, P.; Noakes, M. Effects of Increasing Dietary Palmitoleic Acid Compared with Palmitic and
Oleic Acids on Plasma Lipids of Hypercholesterolemic Men. J. Lipid Res. 1994, 35, 656–662. Available online:
http://www.ncbi.nlm.nih.gov/pubmed/8006520 (accessed on 4 June 2018). [PubMed]

31. Lee, J.J.; Lambert, J.E.; Hovhannisyan, Y.; Ramos-Roman, M.A.; Trombold, J.R.; Wagner, D.A.; Parks, E.J.
Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am. J. Clin. Nutr. 2015, 101,
34–43. [CrossRef]

http://dx.doi.org/10.1002/mnfr.201400016
http://www.ncbi.nlm.nih.gov/pubmed/25074384
http://dx.doi.org/10.1016/S0308-8146(00)00207-7
http://dx.doi.org/10.1038/nrgastro.2010.41
http://dx.doi.org/10.1016/j.jnutbio.2016.09.010
http://www.ncbi.nlm.nih.gov/pubmed/27768909
http://dx.doi.org/10.1038/nrgastro.2016.3
http://dx.doi.org/10.1016/j.jnutbio.2010.06.005
https://books.google.com/books?hl=en&lr=&id=Vp5mgXtxYdQC&oi=fnd&pg=PP2&dq=national+research+council+2010+rats&ots=FrTgd1JCl5&sig=eZ_vGWk36QfLScXnMbS__BgT8XU#v=onepage&q=national research council 2010 rats&f=false
https://books.google.com/books?hl=en&lr=&id=Vp5mgXtxYdQC&oi=fnd&pg=PP2&dq=national+research+council+2010+rats&ots=FrTgd1JCl5&sig=eZ_vGWk36QfLScXnMbS__BgT8XU#v=onepage&q=national research council 2010 rats&f=false
https://books.google.com/books?hl=en&lr=&id=Vp5mgXtxYdQC&oi=fnd&pg=PP2&dq=national+research+council+2010+rats&ots=FrTgd1JCl5&sig=eZ_vGWk36QfLScXnMbS__BgT8XU#v=onepage&q=national research council 2010 rats&f=false
http://dx.doi.org/10.3390/molecules18066852
http://dx.doi.org/10.1139/y59-099
http://dx.doi.org/10.1093/jn/120.12.1601
http://dx.doi.org/10.1111/j.1572-0241.1999.01377.x
http://dx.doi.org/10.1007/s12263-014-0405-7
http://dx.doi.org/10.1038/nrgastro.2013.171
http://dx.doi.org/10.1002/hep.29367
http://www.ncbi.nlm.nih.gov/pubmed/363937
http://dx.doi.org/10.3109/09637487809143898
http://www.ncbi.nlm.nih.gov/pubmed/8006520
http://www.ncbi.nlm.nih.gov/pubmed/8006520
http://dx.doi.org/10.3945/ajcn.114.092262


Nutrients 2018, 10, 1882 16 of 17

32. Gambino, R.; Bugianesi, E.; Rosso, C.; Mezzabotta, L.; Pinach, S.; Alemanno, N.; Saba, F.; Cassader, M.
Different Serum Free Fatty Acid Profiles in NAFLD Subjects and Healthy Controls after Oral Fat Load. Int. J.
Mol. Sci. 2016, 17, 479. [CrossRef] [PubMed]

33. Juárez-Hernández, E.; Chávez-Tapia, N.C.; Uribe, M.; Barbero-Becerra, V.J. Role of bioactive fatty acids in
nonalcoholic fatty liver disease. Nutr. J. 2016, 15, 72. [CrossRef] [PubMed]

34. Kersten, S.; Desvergne, B.; Wahli, W. Roles of PPARs in health and disease. Nature 2000, 405, 421–424.
[CrossRef] [PubMed]

35. Fuchs, C.D.; Claudel, T.; Trauner, M. Role of metabolic lipases and lipolytic metabolites in the pathogenesis
of NAFLD. Trends Endocrinol. Metab. 2014, 25, 576–585. [CrossRef] [PubMed]

36. Romeo, S.; Kozlitina, J.; Xing, C.; Pertsemlidis, A.; Cox, D.; Pennacchio, L.A.; Boerwinkle, E.; Cohen, J.C.;
Hobbs, H.H. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease.
Nat. Genet. 2008, 40, 1461–1465. [CrossRef]

37. Monetti, M.; Levin, M.C.; Watt, M.J.; Sajan, M.P.; Marmor, S.; Hubbard, B.K.; Stevens, R.D.; Bain, J.R.;
Newgard, C.B.; Farese, R.V.; et al. Dissociation of hepatic steatosis and insulin resistance in mice
overexpressing DGAT in the liver. Cell Metab. 2007, 6, 69–78. [CrossRef] [PubMed]

38. Yu, X.X.; Murray, S.F.; Pandey, S.K.; Booten, S.L.; Bao, D.; Song, X.Z.; Kelly, S.; Chen, S.; McKay, R.;
Monia, B.P.; et al. Antisense oligonucleotide reduction of DGAT2 expression improves hepatic steatosis and
hyperlipidemia in obese mice. Hepatology 2005, 42, 362–371. [CrossRef]

39. Samuel, V.T.; Shulman, G.I. Nonalcoholic fatty liver disease as a nexus of metabolic and hepatic diseases.
Cell Metab. 2018, 27, 22–41. [CrossRef]

40. Sampath, H.; Miyazaki, M.; Dobrzyn, A.; Ntambi, J.M. Stearoyl-CoA desaturase-1 mediates the pro-lipogenic
effects of dietary saturated fat. J. Biol. Chem. 2007, 282, 2483–2493. [CrossRef]

41. Lichtenstein, A.H.; Van Horn, L. Very Low Fat Diets. Circulation 1998, 98, 935–939. Available online:
http://www.ncbi.nlm.nih.gov/pubmed/9738652 (accessed on 8 January 2018). [CrossRef]

42. Fabbrini, E.; Sullivan, S.; Klein, S. Obesity and nonalcoholic fatty liver disease: Biochemical, metabolic,
and clinical implications. Hepatology 2010, 51, 679–689. [CrossRef]

43. Chang, X.; Yan, H.; Fei, J.; Jiang, M.; Zhu, H.; Lu, D.; Gao, X. Berberine reduces methylation of the MTTP
promoter and alleviates fatty liver induced by a high-fat diet in rats. J. Lipid Res. 2010, 51, 2504–2515.
[CrossRef]

44. Millar, J.S.; Stone, S.J.; Tietge, U.J.; Tow, B.; Billheimer, J.T.; Wong, J.S.; Hamilton, R.L.; Farese, R.V.; Rader, D.J.
Short-term overexpression of DGAT1 or DGAT2 increases hepatic triglyceride but not VLDL triglyceride or
apoB production. J. Lipid Res. 2006, 47, 2297–2305. [CrossRef] [PubMed]

45. Olofsson, S.-O.; Stillemark-Billton, P.; Asp, L. Intracellular sssembly of VLDL: Two major steps in separate
cell compartments. Trends Cardiovasc. Med. 2000, 10, 338–345. [CrossRef]

46. Li, T.; Chiang, J.Y.L. Bile Acid signaling in liver metabolism and diseases. J. Lipids 2012, 2012, 754067.
[CrossRef] [PubMed]

47. De Caestecker, J.S.; Jazrawi, R.P.; Nisbett, J.A.; Joseph, A.E.; Maxwell, J.D.; Northfield, T.C. Direct Assessment
of the Mechanism for a Raised Serum Bile Acid Level in Chronic Liver Disease. Eur. J. Gastroenterol.
Hepatol. 1995, 7, 955–961. Available online: http://www.ncbi.nlm.nih.gov/pubmed/8590141 (accessed on
25 June 2018). [CrossRef] [PubMed]

48. Ebihara, K.; Schneeman, B.O. Interaction of bile acids, phospholipids, cholesterol and triglyceride with
dietary fibers in the small intestine of rats. J. Nutr. 1989, 119, 1100–1106. [CrossRef] [PubMed]

49. Zolfaghari, H.; Askari, G.; Siassi, F.; Feizi, A.; Sotoudeh, G. Intake of nutrients, fiber, and sugar in patients
with nonalcoholic fatty liver disease in comparison to healthy individuals. Int. J. Prev. Med. 2016, 7, 98.
[CrossRef]

50. Busserolles, J.; Gueux, E.; Rock, E.; Demigne, C.; Mazur, A.; Rayssiguier, Y. Oligofructose protects against the
hypertriglyceridemic and pro-oxidative effects of a high fructose diet in rats. J. Nutr. 2003, 133, 1903–1908.
[CrossRef]

51. Kok, N.; Roberfroid, M.; Robert, A.; Delzenne, N. Involvement of lipogenesis in the lower VLDL secretion
induced by oligofructose in rats. Br. J. Nutr. 1996, 76, 881–890. [CrossRef]

52. Farrell, G.C.; Larter, C.Z. Nonalcoholic fatty liver disease: From steatosis to cirrhosis. Hepatology 2006, 43
(Suppl. 1), S99–S112. [CrossRef]

http://dx.doi.org/10.3390/ijms17040479
http://www.ncbi.nlm.nih.gov/pubmed/27043543
http://dx.doi.org/10.1186/s12937-016-0191-8
http://www.ncbi.nlm.nih.gov/pubmed/27485440
http://dx.doi.org/10.1038/35013000
http://www.ncbi.nlm.nih.gov/pubmed/10839530
http://dx.doi.org/10.1016/j.tem.2014.08.001
http://www.ncbi.nlm.nih.gov/pubmed/25183341
http://dx.doi.org/10.1038/ng.257
http://dx.doi.org/10.1016/j.cmet.2007.05.005
http://www.ncbi.nlm.nih.gov/pubmed/17618857
http://dx.doi.org/10.1002/hep.20783
http://dx.doi.org/10.1016/j.cmet.2017.08.002
http://dx.doi.org/10.1074/jbc.M610158200
http://www.ncbi.nlm.nih.gov/pubmed/9738652
http://dx.doi.org/10.1161/01.CIR.98.9.935
http://dx.doi.org/10.1002/hep.23280
http://dx.doi.org/10.1194/jlr.M001958
http://dx.doi.org/10.1194/jlr.M600213-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/16877777
http://dx.doi.org/10.1016/S1050-1738(01)00071-8
http://dx.doi.org/10.1155/2012/754067
http://www.ncbi.nlm.nih.gov/pubmed/21991404
http://www.ncbi.nlm.nih.gov/pubmed/8590141
http://dx.doi.org/10.1097/00042737-199510000-00009
http://www.ncbi.nlm.nih.gov/pubmed/8590141
http://dx.doi.org/10.1093/jn/119.8.1100
http://www.ncbi.nlm.nih.gov/pubmed/2550597
http://dx.doi.org/10.4103/2008-7802.188083
http://dx.doi.org/10.1093/jn/133.6.1903
http://dx.doi.org/10.1079/BJN19960094
http://dx.doi.org/10.1002/hep.20973


Nutrients 2018, 10, 1882 17 of 17

53. Sembries, S.; Dongowski, G.; Mehrländer, K.; Will, F.; Dietrich, H. Dietary fiber–rich colloids from apple
pomace extraction juices do not affect food intake and blood serum lipid levels, but enhance fecal excretion
of steroids in rats. J. Nutr. Biochem. 2004, 15, 296–302. [CrossRef]

54. Li, W.; Zhang, K.; Yang, H. Pectin Alleviates High Fat (Lard) Diet-Induced Nonalcoholic Fatty Liver Disease in
Mice: Possible Role of Short-Chain Fatty Acids and Gut Microbiota Regulated by Pectin. J. Agric. Food Chem.
2018, 66, 8015–8025. [CrossRef] [PubMed]

55. Kosmala, M.; Kołodziejczyk, K.; Zdunczyk, Z.; Juskiewicz, J.; Boros, D. Chemical composition of natural and
polyphenol-free apple pomace and the effect of this dietary ingredient on intestinal fermentation and serum
lipid parameters in rats. J. Agric. Food Chem. 2011, 59, 9177–9185. [CrossRef] [PubMed]
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