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Background: The inter- and intrarater variability of conventional computed tomography

(CT) classification systems for evaluating the extent of ischemic-edematous insult

following traumatic brain injury (TBI) may hinder the robustness of TBI prognostic models.

Objective: This study aimed to employ fully automated quantitative densitometric

CT parameters and a cutting-edge machine learning algorithm to construct a robust

prognostic model for pediatric TBI.

Methods: Fifty-eight pediatric patients with TBI who underwent brain CT were

retrospectively analyzed. Intracranial densitometric information was derived from the

supratentorial region as a distribution representing the proportion of Hounsfield units.

Furthermore, a machine learning-based prognostic model based on gradient boosting

(i.e., CatBoost) was constructed with leave-one-out cross-validation. At discharge, the

outcome was assessed dichotomously with the Glasgow Outcome Scale (favorability:

1–3 vs. 4–5). In-hospital mortality, length of stay (>1 week), and need for surgery were

further evaluated as alternative TBI outcome measures.

Results: Densitometric parameters indicating reduced brain density due to subtle global

ischemic changes were significantly different among the TBI outcome groups, except

for need for surgery. The skewed intracranial densitometry of the unfavorable outcome

became more distinguishable in the follow-up CT within 48 h. The prognostic model

augmented by intracranial densitometric information achieved adequate AUCs for various

outcome measures [favorability = 0.83 (95% CI: 0.72–0.94), in-hospital mortality = 0.91

(95% CI: 0.82–1.00), length of stay = 0.83 (95% CI: 0.72–0.94), and need for
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surgery = 0.71 (95% CI: 0.56–0.86)], and this model showed enhanced performance

compared to the conventional CRASH-CT model.

Conclusion: Densitometric parameters indicative of global ischemic changes during

the acute phase of TBI are predictive of a worse outcome in pediatric patients.

The robustness and predictive capacity of conventional TBI prognostic models might

be significantly enhanced by incorporating densitometric parameters and machine

learning techniques.

Keywords: pediatric traumatic brain injury, computed tomography, densitometric analysis, prognostic modeling,

machine learning

INTRODUCTION

Pediatric traumatic brain injury (TBI) accounts for over 500,000
emergency department visits in the United States each year
(1). The anatomical and physiological properties (e.g., thinner
cranium, less myelinated tissue) of the pediatric brain can
result in more rapid and severe development of secondary
ischemic-edematous insults after head injury (2–4), and hence
worse outcomes, than in adults (5). Given that cerebral edema
is the fundamental pathophysiological mechanism underlying
TBI, assessing the extent of cerebral edema may be crucial for
evaluating the risk of intracranial hypertension and predicting
outcomes (6).

Magnetic resonance imaging (MRI) is of significant diagnostic
value for identifying pathological diffuse brain swelling; however,
it requires children to be stationary and often sedated during a
long acquisition time. Therefore, brain computed tomography
(CT) remains the gold standard imaging modality during the
acute phase of TBI for rapidly evaluating TBI and developing
an appropriate intervention strategy (7, 8). The degree of brain
swelling is generally evaluated by CT classification systems
[i.e., Marshall (9) and Rotterdam score (10)] based on the
status of the mesencephalic cisterns or midline shift; this
classification is easily applicable and is considered useful for
predicting outcomes after TBI (9–12). The efficacy of CT
classification systems makes them important prognostic factors
in well-known TBI prognostic models (i.e., Corticosteroid
Randomization after Significant Head Injury [CRASH] or
International Mission for Prognosis and Analysis of Clinical
Trials [IMPACT] models) (13, 14). However, the classification
system relies on manual visual inspection of CT images by
clinicians and hence has been criticized for its intrinsic inter- and
intrarater variabilities (10, 15).

It is well-known that there is a linear relationship between
edema-induced water accumulation and Hounsfield unit (HU)

Abbreviations: ANN, artificial neural network; cEs, cerebral edema score;

CRASH, corticosteroid randomization after significant head injury; CT, computed

tomography; dGx, proportions of normal-density gray matter; dWx, proportions

of normal-density white matter; GBDT, gradient-boosted decision tree; GM, gray

matter; HU, Hounsfield unit; IMPACT, international mission for prognosis and

analysis of clinical trials; LOOCV, leave-one-out cross-validation; MRI, magnetic

resonance imaging; PCA, principal component analysis; SHAP, Shapley additional

explanations; SVM, support vector machine; TBI, traumatic brain injury; WM,

white matter.

values (16); a 1% increase in tissue water content causes a
2-3 HU reduction in attenuation on CT images (17). This
dose-responsive relationship could be applied to quantitatively
evaluate edematous changes by using HU distribution via
densitometric CT analysis in patients with TBI (18). Accordingly,
densitometric analysis could be an appropriate tool for evaluating
the majority of early-stage pediatric TBIs that show no
visually identifiable abnormalities on CT images. Moreover,
by performing whole-cerebrum densitometric analysis in a
fully automated manner, the degree of secondary edematous
accumulation following TBI could be objectively measured
without inter- or intrarater variability (18). These advantages of
densitometric CT analysis could be exploited to construct a more
robust prognostic model for TBI.

The past few years have seen a surge in attempts to use
machine learning to construct prognostic models. Traditional
logistic regression may have low robustness for explaining
multivariate non-linear relationships (19), whereas machine
learning can better apprehend non-linear relationships and
interactions through more flexible modeling (20). Gradient-
boosted decision trees (GBDTs), a widely used machine learning
algorithm, produce an interpretable prognostic model that is
an ensemble of decision trees, which are in high demand in
the medical domain (21). Among GBDT variants, CatBoost has
recently been introduced and has shown notable robustness and
highly accurate generalizability (22). This study hypothesized
that combining CT densitometry and a machine learning
technique (i.e., CatBoost) would enhance the prognostic value
of brain CT with a more robust prognostic model for pediatric
TBI. The objectives of this study are 2-fold: (1) to investigate
the association between intracranial densitometry based on brain
CT and various outcomes in pediatric TBI patients and (2)
to evaluate the prognostic value of brain CT by constructing
a densitometry-augmented TBI prognostic model based on a
robust machine learning method.

MATERIALS AND METHODS

Study Design and Setting
This retrospective pilot study investigated the relationship
between intracranial densitometry based on brain CT and
the outcome of pediatric patients with TBI. Furthermore, TBI
prognostic models were constructed using the CatBoost model
(22), a cutting-edge gradient boosting algorithm optimized in
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FIGURE 1 | Flow diagram for the development of the densitometry-augmented prognostic model based on brain CT.

a small dataset and robust to overfitting, based on intracranial
densitometric information. The prognostic models were
evaluated through leave-one-out cross-validation (LOOCV),
which is appropriate for small datasets. An overview of this study
is shown in Figure 1.

The setting of this study is at a single trauma center (i.e.,
the Trauma Center of Seoul National University Hospital). Basic
clinical information of TBI patients, such as brain CT images
and Glasgow Coma Scale (GCS) scores, was obtained during
the same period. Anonymized clinical information obtained on
admission to the emergency room, radiology reports, and brain
CT images were retrospectively reviewed and collected from the
institutional database of Seoul National University Hospital from
2013 to 2017. This study was approved by the Ethics Committee
of Seoul National University Hospital (IRB H-1706-144-862).

The requirement for informed consent was waived due to the
retrospective nature of this study.

Study Population
The subjects were enrolled according to the following inclusion
criteria: (a) direct admission for TBI through the emergency
medicine department (not transferred from another hospital);
(b) age ≤ 19 years; (c) underwent non-enhanced brain CT
scan; and (d) eligible CT acquisition conditions (tube voltage
= 120 kVp, tube current ≥ 150mA) for analysis of HU values
(23). Additionally, the following exclusion criteria were applied:
(a) significant image artifacts (e.g., beam-hardening effects) in
the CT images and (b) outcome unrelated to traumatic head
injury (e.g., acute respiratory failure, myocardial contusions).
Furthermore, patients with significant infratentorial hemorrhage
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were excluded because even a small infratentorial lesion may be
fatal, which would significantly affect the outcomes and skew the
data (24).

These criteria were entered into the institutional clinical data
warehouse of Seoul National University Hospital, SUPREME R©.
Consequently, a total of 58 pediatric TBI patients who underwent
head CT examinations were retrospectively included in this pilot
study. Enrolled subjects were directly transferred to the trauma
center. The Glasgow Outcome Scale (GOS) score was recorded
at the time of discharge. Additionally, alternative outcome
measures such as in-hospital mortality, length of stay (LOS) and
need for surgery were used as reference standards.

Densitometric Analysis of Brain CT
Densitometric CT analysis utilizes HU values obtained by brain
CT to derive intracranial densitometric data as a distribution
representing the material density. It can provide a quantitative
evaluation of brain density alterations caused by edema-induced
water accumulation without inter- or intrarater variability. This
study utilized the methods proposed by Kim et al. (18), which
allow the quantitative derivation of intracranial densitometric
data of the whole cerebrum. To implement the method, in-
house software was written in Java (Oracle, Inc., Redwood
Shores, California, USA), providing a fully automatic method
for the densitometric analysis of head CT images. To analyze
only the major intracranial components (e.g., cerebrospinal fluid,
parenchyma, blood), a threshold limit of 0–79 HU was applied
(18). The intracranial densitometry was derived from Equation 1:

p (λ)=

∑n
k = 1 λk

∑n
k = 1

∑79
λ = 0 λk

(1)

where λk is the number of pixels having an HU value of λ

from the kth CT image in a series of CT scans showing the
supratentorial brain region, the denominator of the equation is
the entire number of pixels having an HU value of 0 to 79 in
the whole cerebrum, and p(λ) is the proportion of pixels having
an HU value of λ in the whole cerebrum. The graph of the
intracranial densitometric data was derived by plotting the p(λ)
in the range of 0–79 HU.

In this study, densitometric analysis was based on initial brain
CT scans at admission and follow-up CT scans acquired within
48 h of initial CT scans. Brain CT scans were obtained with
a Brilliance 64 scanner (Philips Medical Systems, Eindhoven,
Netherlands). The CT acquisition parameters were as follows:
tube voltage = 120 kVp, tube current ≥ 150mA, and image
matrix= 512 by 512, with a 5-mm slice thickness. Follow-up CT
scans were also performed with the same acquisition settings.

Quantitative Evaluation of Intracranial
Densitometry
There are two paradigms to quantitatively evaluate intracranial
densitometry: one for evaluating the proportion of a specific
HU region and the other for evaluating the morphology of the
HU distribution.

In evaluating the proportion of a specific HU region, three
parameters, dWx, dGx, and cEs, proposed in previous studies

were used in the study (18, 25). Excessive water accumulation
caused by cerebral edema or ischemia lowers the material
density of the brain parenchyma and consequently affects both
white matter (WM) and gray matter (GM). In addition, the
presence of space-occupied lesions with high density (e.g.,
subdural, epidural, and intracerebral hemorrhage) also decreased
the relative proportion of normal density parenchyma in the
cranium. Accordingly, the proportions of normal-density WM
(dWx) andGM (dGx) were quantitatively assessed. dWx and dGx
were defined as the proportions of pixels of 26–30 and 31–35
HU, respectively, among pixels depicting the entire cerebrum
(25). In addition, Kim et al. suggested the use of the cerebral
edema score (cEs), ranging from 17 to 24 HU, as an indicator of
cerebral edema severity to compensate for the CT classification
system (18).

The presence of a hypodense lesion (e.g., ischemic-edematous
lesion) or hyperdense lesions (e.g., intracranial hemorrhage)
in the intracranial area can contribute to the left- and
right-sided dominance of the densitometry, respectively. Such
pathological brain changes can be identified by assessing the
intracranial densitometric morphology, which was evaluated as
the proportional HU distribution by calculating µ, skewness and
kurtosis, where µ is the mean HU value of the distribution, and
skewness and kurtosis are the measure of the asymmetry and the
tail of the distribution, respectively.

Intracranial densitometry reveals pathological changes in
the material density of the whole cerebrum. Thus, it may be
suggestive of various TBI pathologies (e.g., cerebral ischemia,
edema, intracranial hemorrhage). Figure 2 shows some intuitive
examples of intracranial densitometry affected by various TBI
pathologies. The color bar at the bottom shows the HU area
on densitometry, where cerebral ischemia [3–27 HU] (26),
edema [17–24 HU] (18), and intracranial hemorrhage [40
HU∼] (27) are primarily affected. Compared with the patient
without significant visible pathology (Figure 2A), the patient
with massive brain edema following severe ischemic insults
(Figure 2B) showed a leftward shift of the densitometry center
with an increase in both skewness and kurtosis due to excessive
water accumulation. On the other hand, in the patient with a large
degree of acute subdural hemorrhage (Figure 2C), the center of
the densitometry shifted to the right due to the space-occupied
lesion. In addition, both Figures 2B,C show that the proportion
of parenchyma within the normal density range was also affected
by the occurrence of intracranial pathology.

Lesions with partially overlapping HU ranges (e.g., subacute
subdural hemorrhage) may skew the interpretation of the
densitometric parameters, but only patients during the acute
stage were involved in this study.

Prognostic Model Construction
Prognostic models were constructed based on the four outcome
measures (i.e., favorability, mortality, LOS and need for surgery)
with CatBoost (22), which is a state-of-the-art gradient-boosted
decision tree. CatBoost mitigates the overfitting problem and
shows robustness and generalizability. In addition, CatBoost has
various advantages of (1) having a swift training speed through
parallel processing, (2) being appropriate for small sample sizes
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FIGURE 2 | Representative cases of intracranial densitometry affected by various TBI pathologies. (A) A 7-year-old male patient with no visible pathology, (B) A

10-year-old female patient with massive brain edema, (C) A 7-year-old male patient with acute subdural hemorrhage. The color bar at the bottom shows the HU range

on densitometry, which mainly affects intracranial pathologies.

and unbalanced data, and (3) exhibiting higher accuracy than
other gradient boosting algorithms. The IMPACT model was
excluded from this study because the IMPACT model does not
consider patients under the age of 14 years (14).

In this study, a total of three types of prognostic models
were constructed. (1) CatBoost-based CRASH-CT (i.e., CRASH-
CTCatBoost) is the model based on admission characteristics (i.e.,
age, GCS, pupil reaction, and presence of extracranial injury)
and initial CT findings (i.e., presence of petechial hemorrhage,
obliteration of the third ventricle or basal cisterns, subarachnoid
hemorrhage, midline shift, and non-evacuated hematoma).
These are the same input of the conventional CRASH-CT model
(13). (2) The densitometry-augmented model (i.e., D/CRASH-
CTCatBoost) was constructed with the intracranial densitometric
information (i.e., dWx, dGx, cEs, µ, skewness, kurtosis, and HU
distribution) and the CRASH-CT input. (3) The reference model
was the conventional CRASH-CT model (i.e., CRASH-CTLR)
established by logistic regression.

Prognostic models for outcome favorability were derived
from both initial and follow-up CT to assess the changes in
prognostic value during the acute phase of TBI. Undoubtedly,
the model based on the follow-up CT data uses input
variables derived from the follow-up CT. On the other
hand, prognostic models for mortality, LOS, and need for
surgery were all established only based on initial CT data
at admission.

The prognostic value of CatBoost was optimized by a
grid search with the variation of three hyperparameters:
Iteration [50, 100, 200, 300, 400], depth [4, 5, 6, 7, 8, 9,
10], and loss function [log loss, cross-entropy]. Likewise, the
logistic regression model was optimized with iterations [50,
100, 200, 300, 400] and C [0.001, 0.01, 0.1, 1, 10, 100]
as hyperparameters.

Principal component analysis (PCA) was used to reduce the
dimensions of the input variables that still contain most of
the information to alleviate the dimensionality and overfitting
problems that can occur in machine learning procedures.
Accordingly, the high dimensions of admission characteristics,
initial CT findings, and HU distribution were reduced by PCA.

SHAPs (Shapley Additional exPlanations) of the tree ensemble
model were derived to assess the importance of the model input
variables. Based on this, it is possible to conveniently examine the
importance of individual input variables used in the CatBoost-
based prognostic model and to determine how the input variables
contribute to the prediction of the outcomes.

The predictive performance of all prognostic models was
assessed by LOOCV (Figure 1), which results in unbiased and
reliable estimates of model performance; iterative validations
were performed 58 times by separating training (N = 57) and
testing subjects (N = 1). These machine learning models were
developed by scikit-learn 0.24.1 and CatBoost library 0.25.1 in
the Python 3.7 environment.

Statistical Analysis
The calculation of the sample size was performed by
Viechtbauer’s formula developed for the pilot study (28);
the calculated sample size was 45, with a confidence level of 0.90
and a probability of 0.05. Considering that the dropout rate was
30%, 58 subjects were enrolled in this study. Non-parametric
statistical methods were employed due to the sample size. The
Mann-Whitney U-test was applied to compare continuous data
between outcome groups. The discrimination of the prognostic
models was assessed by receiver operating characteristic (ROC)
curve analysis. The optimal cutoff values for discriminating
outcomes were calculated using the maximal Youden’s J statistic
(sensitivity+ specificity – 1) (29) in the ROC curve. Hanley’s test
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(30) was performed to compare the area under the ROC curve
(AUC). In this study, four reference standards against AUC
of all prognostic models were used: (1) dichotomous outcome
measured at discharge [i.e., GOS score 1–3 (positive) vs. 4–5
(negative)], (2) in-hospital mortality [i.e., deceased (positive) vs.
survived (negative)], (3) LOS in hospital [i.e., > 1 week (positive)
vs. ≤ 1 week (negative)], and (4) need for surgical intervention
[i.e., underwent TBI-related surgery during hospitalization
(positive) vs. no need for surgical procedure (negative)]. In this
study, there was no need to reassign the LOS outcome of the
deceased patients because no patients died in the group with LOS
of <1 week (31). The sensitivity, specificity, positive predictive
value, and negative predictive value with 95% confidence interval
of each prognostic model were determined at the optimal cutoff.
The analyses were considered statistically significant at two-sided
p < 0.05. Statistical analyses were conducted using commercial
software (SPSS 24, IBM Corp., Chicago, Illinois, USA).

RESULTS

Demographics
Fifty-eight pediatric TBI patients were included in this study.
Of the 58 patients, 46 (79.3%) were assigned to the favorable
outcome group, and 12 (20.7%) were assigned to the unfavorable
outcome group. The detailed demographics are listed in Table 1.

Changes in Intracranial Densitometry at
the Acute Phase of Pediatric TBI
For initial CT acquired at admission and follow-up CT acquired
within 48 h later, the changes in intracranial densitometry
according to the outcome were evaluated. Figure 3A shows
the density distribution obtained from the initial CT scan
at admission, which skewed to the right in the unfavorable
outcome group compared to the density distribution of the
favorable outcome group, indicating brain density alteration
in the acute phase of TBI. These morphological disagreements
resulted in significant differences between the outcome groups in
the specific HU range. Contrary to the intracranial densitometry
of the favorable outcome relatively analogous to the normal
distribution, the skewed distribution of the unfavorable outcome
became more distinguishable in the follow-up CT (Figure 3B).
This deformation suggests that the change in brain density due
to secondary insults became more substantial.

The intracranial densitometric morphology was further
assessed through densitometric parameters in a quantitative
manner. Table 2 shows the densitometric parameters in both
outcome groups. Among the proportional densitometric
parameters from the initial CT, cEs showed a significant
difference, whereas dWx and dGx, indicating the proportion
of normal-density WM and GM, showed no significance.
Nevertheless, only the dGx from the follow-up CT showed a
significant difference. As the intracranial morphology of the
unfavorable outcome group showed a distorted distribution,
all of the morphological densitometric parameters differed
significantly between outcome groups both in initial and follow-
up CT. On the other hand, the CT classification systems (i.e.,
Marshall and Rotterdam score) did not significantly distinguish
outcome favorability in either initial or follow-up CT.

TABLE 1 | Baseline characteristics.

Total

(N = 58)

Favorable

outcome

group

(N = 46)

Unfavorable

outcome

group

(N = 12)

Age, years

Median, interquartile range 6 (1.75–13) 7 (2–14.25) 5 (1–9.25)

Sex, no. (%)

Male 32 (55.2) 27 (58.7) 5 (41.7)

Female 26 (44.8) 19 (41.3) 7 (58.3)

Cause of injury, no. (%)

Motor vehicle accident 17 (29.3) 15 (32.6) 2 (16.7)

Fall 24 (41.4) 22 (47.8) 2 (16.7)

Blunt trauma 17 (29.3) 9 (19.6) 8 (66.7)

Glasgow Coma Scale on admission, no. (%)

3–8 9 (15.5) 5 (10.9) 4 (33.3)

9–12 3 (5.2) 2 (4.3) 1 (8.3)

13–15 46 (79.3) 39 (84.8) 7 (58.3)

Pupil reactivity, no. (%)

Both 53 (91.4) 42 (91.3) 11 (91.7)

One 3 (5.2) 3 (6.5) 0 (0)

None 2 (3.4) 1 (2.2) 1 (8.3)

Extracranial injury, no. (%)

Extracranial hematoma 7 (12.1) 6 (13.0) 1 (8.3)

Facial injury 8 (13.8) 7 (15.2) 1 (8.3)

Lower extremity injury 4 (6.9) 4 (8.7) 0 (0)

Spinal cord injury 3 (5.2) 3 (6.5) 0 (0)

None 36 (62.1) 26 (56.5) 10 (83.3)

Surgical intervention, no. (%)

Burr hole trephination 4 (6.9) 4 (8.7) 0 (0)

Craniectomy/Craniotomy 9 (15.5) 7 (15.2) 2 (16.7)

External ventricular drain 1 (1.7) 0 (0) 1 (8.3)

None 44 (75.9) 35 (76.1) 9 (75.0)

Elapsed time between initial CT acquisition and trauma, hours

Median, interquartile range 11.50

(4.38–27.79)

10.09

(4.00–26.33)

12.50

(6.88–65.37)

Follow-up CT scan within

48 h, no. (%)

34 (58.6) 28 (60.9) 6 (50.0)

Imaging findings, no. (%)

Skull fracture 18 (31.0) 16 (34.8) 2 (16.7)

Petechial hemorrhage 10 (17.2) 8 (17.4) 2 (16.7)

Obliteration of basal cisterns 9 (15.5) 7 (15.2) 2 (16.7)

Midline shift > 5mm 25 (43.1) 19 (41.3) 6 (50.0)

Length of stay, days

Median, interquartile range 9

(3–25)

6

(2.75–16.5)

20.5

(12.5–153.75)

In-hospital mortality, no. (%) 6 (10.3) 0 (0) 6 (50.0)

Prognostic Model at the Acute Phase of
Pediatric TBI Augmented by Intracranial
Densitometry
The predictive performance of the prognostic models
constructed from the variables acquired during the acute
phase was assessed by LOOCV based on the outcome favorability
(Figure 4). As the reference model, the CRASH-CT model
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FIGURE 3 | Comparison of intracranial densitometry by outcome favorability based on the initial brain CT at admission (A) and follow-up brain CT within 48 h (B). Blue

= favorable outcome group, purple = unfavorable outcome group. The bold line and shaded area denote the mean and range of the 95% confidence interval,

respectively. Significance at p < 0.05* and p < 0.001**.

TABLE 2 | Comparison of densitometric parameters and conventional CT

classification systems by outcome favorability based on the initial and follow-up

brain CT.

Median (interquartile range) P-value

Favorable outcome Unfavorable outcome

Initial brain CT at admission (N = 58; favorable = 46, unfavorable = 12)

Proportional densitometric parameters

dWx 18.94 (13.43–25.17) 24.00 (15.31–27.90) 0.19

dGx 20.48 (14.92–24.48) 18.87 (7.08–22.07) 0.28

cEs 12.40 (7.15–19.40) 24.26 (15.58–39.71) 0.008

Morphological densitometric parameters

µ 32.89 (27.73–35.78) 28.32 (22.39–29.51) 0.005

Skewness 0.55 (0.09–1.17) 1.43 (0.76–1.73) 0.006

Kurtosis 2.28 (1.15–4.74) 4.46 (4.08–7.79) 0.002

CT classification systems

Marshall score 6 (2.75–6) 4 (2.50–6) 0.33

Rotterdam score 2 (2-2) 2 (1.25–2.75) 0.97

Follow-up brain CT within 48h (N = 34; favorable = 28, unfavorable = 6)

Proportional densitometric parameters

dWx 22.71 (15.15–27.59) 14.88 (6.75–26.07) 0.11

dGx 23.45 (19.99–26.23) 13.03 (2.63–18.50) 0.001

cEs 13.12 (8.35–19.00) 31.38 (5.09–40.09) 0.30

Morphological densitometric parameters

µ 31.65 (29.14–34.26) 26.67 (16.20–30.11) 0.037

Skewness 0.69 (0.06–1.07) 1.57 (0.69–1.86) 0.022

Kurtosis 3.05 (1.56–4.39) 5.01 (3.89–8.61) 0.015

CT classification systems

Marshall score 5.5 (4–6) 5 (3.75–6) 0.95

Rotterdam score 2 (1.25–3) 2.5 (2–3) 0.39

based on logistic regression (i.e., CRASH-CTLR) showed an
AUC of 0.56. By using the CatBoost model, an AUC of 0.63 was
derived from the model using only the CRASH-CT input (i.e.,
CRASH-CTCatBoost). The densitometry-augmented model (i.e.,
D/CRASH-CTCatBoost) showed significant enhancement in the
AUC compared with the CRASH-CTLR model. Specifically, the
AUC of the model that included densitometric information was
improved to 0.83 (p < 0.03 by Hanley’s test). Alternating the
variables from the initial CT to the follow-up CT further
enhanced the prognostic value of the CatBoot models
(Figure 4B). Accordingly, the difference in the AUC between
the CRASH-CTLR and the D/CRASH-CTCatBoost became more
significant (p < 0.02 by Hanley’s test) despite the smaller number
of subjects. The performance of the prognostic models at the
optimal cutoff point for predicting the outcome was further
evaluated (Table 3).

The feature importance of the input variable and SHAP
of the tree ensemble of the best model from the initial
CT, D/CRASH-CTCatBoost, was derived (Figure 5A). In the
D/CRASH-CTCatBoost model, morphological parameters (i.e.,
kurtosis, skewness, and µ) and dGx were the main contributors
to the prediction. As kurtosis and skewness increased, the
prediction of unfavorable outcomes increased. Additionally,
lower µ and dGx values contributed to the prediction of
unfavorable outcomes. D/CRASH-CTCatBoost from the follow-
up CT also showed that dGx and skewness mainly contributed
to the outcome prediction (Figure 5B), which is similar
to the model from the initial CT. This may reflect the
shift in the center of intracranial densitometry toward lower
HUs with morphological distortion in patients with an
unfavorable outcome.
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TABLE 3 | Comparison of prognostic models for predicting outcome favorability based on the initial and follow-up CT-based LOOCV.

AUC Sensitivity [%] Specificity [%] PPV [%] NPV [%]

Initial brain CT at admission (N = 58)

CRASH-CTLR 0.56 (0.36–0.76) 58.33 (31.95–80.67) 63.04 (48.60–75.48) 29.17 (14.91–49.17) 85.29 (69.87–93.55)

CRASH-CTCatBoost 0.63 (0.44–0.83) 58.33 (31.95–80.67) 73.91 (59.74–84.4) 36.84 (19.15–58.96) 87.18 (73.29–94.4)

D/CRASH-CTCatBoost 0.83 (0.72–0.94) 83.33 (55.20–95.30) 78.26 (64.43–87.74) 50.00 (29.93–70.07) 94.74 (82.71–98.54)

Follow-up brain CT within 48h (N = 34)

CRASH-CTLR 0.51 (0.21–0.82) 50.00 (18.76–81.24) 71.43 (52.94–84.75) 27.27 (9.75–56.56) 86.96 (67.87–95.46)

CRASH-CTCatBoost 0.73 (0.51–0.96) 80.00 (37.55–96.38) 79.17 (59.53–90.76) 44.44 (18.88–73.33) 95.00 (76.39–99.11)

D/CRASH-CTCatBoost 0.88 (0.74–1.00) 83.33 (43.65–96.99) 75.00 (56.64–87.32) 41.67 (19.33–68.05) 95.45 (78.20–99.19)

AUC, area under the ROC curve; PPV, positive predictive value; NPV, negative predictive value.

Comparative Assessment of Intracranial
Densitometry According to Alternative TBI
Outcome Measures
Intracranial densitometry acquired at admission was further
compared for alternative outcome measures for TBI (i.e., in-
hospital mortality, LOS, and need for surgical intervention).
Intracranial densitometry in the deceased group showed
considerable skewness, suggesting that low-attenuated pixels
dominate (Figure 6A). On the other hand, when the groups
were dichotomized based on the LOS (1 week), the intracranial
densitometry of the worse outcome group was transversely
shifted to the left without noticeable deformation (Figure 6B).
However, there was no association between need for surgery
and intracranial densitometry; the morphology between the
outcome groups (i.e., need for surgery vs. no surgery) was

indistinguishable (Figure 6C). In addition, Table 4 further
describes the densitometric parameters and CT classifications
that depend on the three outcome measures. Outcome groups
based on in-hospital mortality and LOS revealed significant
morphological parameters, although proportional parameters
and CT scores showed limited significance.

Prognostic Model for Alternative TBI
Outcome Measures Augmented by
Intracranial Densitometry
For the three alternative outcome measures, the performance
of the prognostic models was evaluated through LOOCV
(Figure 7). Figure 7A shows exceptionally superior performance
of the D/CRASH-CTCatBoost than that of the CRASH-CTLR for
predicting in-hospital mortality (p < 0.018 by Hanley’s test). On
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0 the other hand, prognostic models for LOS prediction showed

consistent capacity without a significant difference between the
prognostic models (Figure 7B). The prognostic ability of the
model to predict the need for surgery showed a moderate AUC
of 0.71. Table 5 indicates detailed statistical measures for the
performance of the prognostic model.

The feature importance and SHAP of the tree ensemble of the
D/CRASH-CTCatBoost were derived based on the three outcome
measures (Figure 8). The in-hospital mortality prediction model
possessed the skewness of intracranial densitometry as a
significant contributor, but in the models predicting LOS
or need for surgery, the conventional CRASH-CT input,
not the densitometric parameter, made the most dominant
contribution to the prediction. This result was related to the
weak statistical significance of the input variables from the
intracranial densitometry.

DISCUSSION

The efficacy and practicality of the conventional CT classification
system for evaluating injury severity after TBI have long been
acknowledged; however, this method suffers from high inter- and
intrarater variability (10, 15). Non-etheless, the system has been
incorporated into well-known prognostic models for TBI, which
may significantly affect the robustness of the models. This study
utilized a recently developed interpretable machine learning
model (CatBoost) to build a TBI prognostic model and employed
CT densitometry, which is fully automated and thus does not
suffer from inter- and intrarater variability (18), to compensate
for the subjective CT classification system. The results indicate
that (1) densitometric parameters are independently associated
with various TBI outcome measures (i.e., favorability, mortality,
and LOS) but not the need for surgery, (2) the prognostic
capacity of the conventional CRASH model could be enhanced
by employing CatBoost rather than traditional logistic regression,
and (3) the capacity can be further increased by supplementing
densitometric parameters as model inputs. The novelty and
importance of the utilized methods and derived findings of this
study warrant a detailed discussion.

The Rationale of Densitometric CT
Analysis in TBI Pathologies
The inter- and intrarater variability of conventional CT
classification systems mainly stems from the wide heterogeneity
of injury types and severity (15) and the dependence on arbitrary
estimations based on visual inspection (10). Densitometric CT
analysis aims to overcome such limitations by quantitatively
evaluating the density of brain structures and/or lesions based
on brain CT scans. The technique has been widely applied in
evaluations of various pathological brain changes [e.g., early
cerebral edema (18, 32) or ischemic changes (33), lesion water
uptake (34), parenchymal compression (35), and hemorrhage
growth (36)] and for predicting outcomes (18, 25, 37, 38) in
acquired brain injury. There are two approaches to applying
densitometry: region of interest-based analysis (33–36, 38) and
whole-cerebrum analysis (18, 25, 37). This study adopted the
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FIGURE 7 | ROC curves of the prognostic models for the differentiation of alternative outcome measures: in-hospital mortality (A), length of stay (B) and need for
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TABLE 5 | Comparison of prognostic models for predicting alternative outcome measures based on LOOCV.

AUC Sensitivity [%] Specificity [%] PPV [%] NPV [%]

In-hospital mortality

CRASH-CTLR 0.55 (0.32–0.79) 50.00 (18.76–81.24) 61.54 (47.96–73.53) 13.04 (4.54–32.13) 91.43 (77.62–97.04)

CRASH-CTCatBoost 0.58 (0.29–0.87) 66.67 (30–90.32) 63.46 (49.87–75.2) 17.39 (6.98–37.14) 94.29 (81.39–98.42)

D/CRASH-CTCatBoost 0.91 (0.82–1.00) 100 (60.97–100) 78.85 (65.97–87.76) 35.29 (17.31–58.70) 100 (91.43–100)

Length of stay

CRASH-CTLR 0.79 (0.67–0.91) 80.00 (62.69–90.49) 78.57 (60.46–89.79) 80.00 (62.69–90.49) 78.57 (60.46–89.79)

CRASH-CTCatBoost 0.80 (0.68–0.92) 80.00 (62.69–90.49) 78.57 (60.46–89.79) 80.00 (62.69–90.49) 78.57 (60.46–89.79)

D/CRASH-CTCatBoost 0.83 (0.72–0.94) 76.67 (59.07–88.21) 78.57 (60.46–89.79) 79.31 (61.61–90.15) 75.86 (57.89–87.78)

Need for surgical intervention

CRASH-CTLR 0.51 (0.33–0.70) 57.14 (32.59–78.62) 63.64 (48.87–76.22) 33.33 (17.97–53.29) 82.35 (66.49–91.65)

CRASH-CTCatBoost 0.54 (0.37–0.71) 64.29 (38.76–83.66) 54.55 (40.07–68.29) 31.03 (17.28–49.23) 82.76 (65.45–92.40)

D/CRASH-CTCatBoost 0.71 (0.56–0.86) 85.71 (60.06–95.99) 63.64 (48.87–76.22) 42.86 (26.51–60.93) 93.33 (78.68–98.15)

AUC, area under the ROC curve; PPV, positive predictive value; NPV, negative predictive value.

latter approach (1) to ensure the robustness of the prognostic
model to be constructed and (2) because it was originally
designed to be applied for pediatric TBI (18).

Whole-cerebrum analysis-based intracranial densitometry
can respond to two major intracranial pathologies of TBI:
ischemic-edematous insults and intracranial hemorrhage.
However, there is a discrepancy in the sensitivity of intracranial
densitometry for the two pathologies. According to volumetric
CT measurements, the proportion of parenchyma in pediatric
subjects accounts for 93–94% of the cranium (39). Undoubtedly,
parenchyma also occupies the equivalent proportion in
intracranial densitometry. Therefore, intracranial densitometry
derived fromwhole-cerebrum analysis benefits from the sensitive
response to diffuse ischemic injury that contributes to global
changes in parenchymal density, despite subtle alterations
(18, 25). Of course, the significant amount of hyperdense
lesion (e.g., crescent-shaped acute subdural hemorrhage)

also markedly expanded the proportion of the intracranial
densitometry area above 40 HU (Figure 2C). On the other
hand, whole-cerebrum densitometry shows a limited response
to focal lesions occupying a relatively small proportion. For
example, intracranial densitometry may be less sensitive for
focal lesions such as petechial hemorrhages or focal brain
ischemia. Accordingly, consideration of focal lesions in the
whole-cerebrum densitometric analysis may be restricted, and
this study thus focused on the interpretation of TBI pathologies
involved in global parenchymal changes.

Quantitative Assessment of Secondary
Ischemic-Edematous Insults in the Acute
Phase of TBI
Intracranial densitometry offers a wide variety of quantitative
parameters, i.e., morphological parameters (µ, skewness, and
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kurtosis) and proportional parameters (dWx, dGx, and cEs). The
morphological parameters are derived from a whole-cerebrum
density distribution (Figure 3). Based on the dichotomized

outcome favorability, the averaged density distribution of
patients with an unfavorable outcome was determined to be
significantly right-skewed in distribution with a leftward shift of
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the center compared to that of patients with a favorable outcome.
The distortion of the intracranial densitometry in the unfavorable
outcome group became further apparent in the follow-up CT.
These morphological characteristics are reflected as an increase
in skewness and a decrease in µ, respectively, and suggest that
the overall density of the parenchyma was reduced due to a
subtle global ischemic change after TBI (37). The unfavorable
outcome group also showed a higher kurtosis value in their
density distributions than the favorable outcome group. Kurtosis,
which has often been wrongfully interpreted as a measure of
the “peakedness” of distribution graphs, is actually a measure
of outliers (40). Localized hyper- or hypodense lesions result
in significant increases in a specific range of HU values, i.e.,
they are outliers that contribute to increased kurtosis of the
density distribution (Table 2). Although the statistical power was
limited due to the small number of subjects in the follow-up CT
subgroup, this group exhibited the same trend as the outcome
group in terms of the morphological parameters from the initial
CT. These morphological parameters were the main contributors
to the outcome prediction of the proposed model (Figure 5).

Unlike morphological parameters, which mainly reflect
whole-cerebrum density distribution, proportional parameters
reflect the density distribution of specific, major intracranial
entities, and can be interpreted in relation to the pathophysiology
of cerebral edema. Cerebral edema is divided into vasogenic and
cytotoxic types. In general, cytotoxic edema affects both WM
and GM (41), whereas vasogenic edema primarily affects WM
and easily spreads to other locations via WM tracts (42). In
the acute phase of TBI, vasogenic, and cytotoxic edema often
coexist (43). Thus, reduced brain tissue density mediated by
cerebral edema can be simultaneously reflected by lower WM
and GM density values on CT. The increased proportion of
hypodense pixels in CT images is reflected as an increase in
the cEs (18), whereas changes in WM and GM densities are
reflected as changes in dWx and dGx (37). Intriguingly, the
conventional statistical analysis indicated that only cEs was
significant in differentiating favorable and unfavorable outcome
groups based on the initial CT (Table 2), whereas the machine
learning model indicated that dGx had the highest importance
among the proportional parameters, followed by cEs and dWx
(Figure 5). Nonetheless, inferential statistics are influenced by
effect size or sample size (44), and statistical significance does
not guarantee high feature importance in the prognostic model.
Indeed, dGx, the proportion of normal-density GM, which did
not differ significantly between the two outcome groups, was
considered a significant predictor of the outcome by the utilized
machine learning model. Nevertheless, in follow-up CT within
48 h, dGx showed a significant difference between the outcome
favorability. Despite the shortage of statistical power, this would
suggest that brain density alternation even affected the relative
proportion of GM with normal density.

In addition to the densitometric analysis, quantitative CT
classification systems (i.e., Marshall and Rotterdam score) have
been evaluated for use in assessing the severity of TBI. In
pediatric TBI, the Rotterdam score has better discriminatory
power than that of Marshall (45). However, neither the Marshall
nor the Rotterdam scores classified outcomes well in our

cohort (Tables 2, 4), which may be attributed to the cohort
characteristics of this pilot study. Originally, the Rotterdam
score was developed for only moderate or severe TBI, excluding
mild head injury (10). Liesemer et al. reported that although
the Rotterdam score was initially developed for use in the
adult population, the prognostic function worked well in the
pediatric TBI population (46); however, ∼80% of the subjects
had moderate or severe TBI (GCS, 3–8). A study in which the
Marshall score showed adequate prognostic ability in pediatric
TBI was also composed of moderate or severe TBI in 60% of
the cohort (45). Consequently, the conventional CT classification
systems could not work properly in this study, where ∼70% of
mild TBI patients are composed.

Responsiveness of Intracranial
Densitometry to Alternative Outcome
Measures
Mortality, LOS, and the need for surgical procedures are
primary outcome measures for pediatric TBI in clinical practice
(47). In addition to outcome favorability, we investigated
how intracranial densitometry responds to these outcome
measures. LOS was closely associated with mortality in TBI
patients (48); nevertheless, mortality is the worst consequence
of TBI. Therefore, undoubtedly, the most sensitive response
of intracranial densitometry was mortality. The averaged
densitometry between the survival and deceased groups showed
the most distinguishable difference among the alternative
outcome measures. This finding suggests that deceased patients
enter an irreversible state in which the brain densitometry
was significantly different from the normal state. On the other
hand, the morphology of intracranial densitometry was relatively
similar between groups based on the LOS, a less severe outcome.
However, the dichotomized LOS revealed a significant difference
in the GM-related HU range. In contrast to mortality and LOS,
no statistically significant difference in intracranial densitometry
was observed between the groups classified by surgery necessity.
This non-significance implies that, as mentioned above, the focal
lesions that require surgical interventionmay have a limited effect
on the deformation of whole-cerebrum densitometry.

Machine-Learning-Based Prognostic TBI
Model Augmented by Densitometric
Information
This study proposed a novel prognostic model based on GDBTs
augmented with CRASH-CT and intracranial densitometric
information. Based on various outcome measures, the proposed
models (i.e., D/CRASH-CTCatBoost) achieved enhanced
prognostic capacity compared with the conventional model; this
consistent improvement can be contributed by a combination of
(1) densitometric information and (2) machine learning models.
Intracranial densitometry is a quantitative input variable that
responds to global pathological changes in the intracranial region
(18, 25). The proposed model included additional densitometric
information, enhancing prognostic values, especially for GOS-
related outcome measures (Figures 5, 6A). On the other hand, in
terms of LOS and surgery necessity, CRASH-CT input variables
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(e.g., age, GCS, pupil reaction, extracranial injury, CT findings)
played a more substantial contribution than the densitometric
information (Figures 6B,C). In this case, it can be assumed
that machine learning itself contributed to increasing the
prognostic value rather than adding the densitometric variables.
Logistic regression does not consider the correlation between
the input variables and has multicollinearity problems (49),
whereas CatBoost can lead to better performance by reducing
information loss by creating a combination considering the
correlation between the input variables (50).

The significant factors contributing to the decreased
prognostic capacity of the conventional CRASH-CT model are
2-fold, namely, interrater variability, and validation method.
The CRASH-CT model is a widely used prognostic TBI model
(13), and its variables are based on the injury status and initial
CT findings. The radiological findings used as the input of the
CRASH-CT model are based on the Marshall CT classification,
which has been reported to have ∼12.7% interrater variability
(51). Interrater variability changes the results of a prognostic
model and thus lowers its reliability. In addition, CRASH-CT
yielded low accuracy for pediatric TBI patients in this study,
unlike reports in the literature (25, 52). It can be assumed that it
is not properly fitted to predict the outcome at discharge since
the original CRASH-CT model predicts outcome favorability
after 14 days (13). In addition, the LOOCV method, a stricter
validation method than others reported in the literature
(25, 52), also contributed to the low prognostic capacity of
the CRASH-CT model. Previous studies (13, 25, 52) in which
the training and testing of logistic regression models were
performed with the same cohort without external validation
have the potential to overestimate the prognostic capacity, and
it is complicated to resolve the overfitting problem oriented to
the cohort. In this study, individual and iterative validations
were performed 58 times by separating training and testing
subjects through LOOCV. Despite the more rigorously evaluated
results, improvements in prognostic value were observed by
adding densitometric information to the CRASH-CT input.
A significantly enhanced prognostic value could be achieved
compared with CRASH-CT when only initial brain CT data
were used, suggesting that machine learning-based automated
densitometry is a useful prognostic tool that can minimize
unnecessary radiation exposure in children with TBI.

In several recent studies, prognostic models using machine
learning have been proposed to predict the outcome favorability
of patients with pediatric TBI more accurately (53–55).
Kayhanian et al. proposed a support vector machine (SVM)-
based prognostic model using admission laboratory variables
(53). Hale et al. developed an artificial neural network (ANN)
model using laboratory values, GCS scores, and initial CT
findings (54). Tunthanatip et al. compared the prognostic value
of various machine learning models using comorbidity and
radiological finding information and concluded that the SVM-
based model showed the highest performance (55). These studies
consistently reported that machine learning outperformed
conventional logistic regression (53–55), and the same results
were obtained in the present study. However, unlike the GBDT
used in this study, the ANN and SVM models used in previous

studies are “black box” models that are difficult to interpret (56).
Interpretability of the model is an important issue when using
machine learning in the medical domain (21). A black box-based
prognostic model that lacks an explanation of how much an
input variable contributed to the prediction may have limited
application in the clinical environment (57). It is complicated
to convince a clinician of the results of a model when they
are presented without any explanation. On the other hand,
the proposed GBDT-based model showed reliable prognostic
capacity and could explain how the input variables contribute
to the prediction. Consequently, unlike the previous ML-based
prognostic models for pediatric TBI, which entail a trade-off
between interpretability and prognostic capacity (53–55), the
proposed model accomplished both.

Limitations and Suggestions
Several limitations should be considered. First, this study was a
single-center, retrospective pilot study with a small cohort size.
The small cohort size hampered the appropriate distribution
of TBI severity; mild TBI patients were the most dominant
in this study. Thus, the proposed model should be validated
by a large-scale dataset, and a prospective, multicenter study
is required for generalization of the model proposed in this
study. Second, this study used only the in-hospital outcome
measures because there was no long-term outcome information
in our institutional database. Themodel’s prediction of long-term
outcomes should also be validated. Third, except for intracranial
densitometry, elaborative modalities for assessing cerebral edema
in TBI patients were not used in this study. The extent of cerebral
edema would have been better assessed and cross-validated using
MRI (e.g., diffusion-weighted imaging and apparent diffusion
coefficient mapping). In future validation studies, the benefits
of the proposed method will be investigated to address the
following issues: (1) changes in physician decision-making as
the result of utilizing densitometric analysis; (2) estimation of
other intracranial pathologies (e.g., intracranial hypertension);
and (3) prognostic capacity of the proposedmodels for predicting
long-term outcomes.

CONCLUSION

This study revealed that intracranial densitometric information
derived from initially acquired brain CT scans performed
at admission was highly associated with worse outcomes in
pediatric TBI patients. Contrary to the conventional TBI
prognostic model (i.e., CRASH-CT model), which mainly
uses arbitrary measures (i.e., Marshall classification) that
suffer from inter- and intrarater variability, fully automated
densitometric analysis of the whole cerebrum was supplemented
in the construction of the prognostic model. Accordingly,
the prognostic value of brain CT was significantly enhanced
by augmenting densitometric information with a cutting-
edge GBDT-based machine learning model. In conclusion,
intracranial densitometry information could improve the
reliability of brain CT-based clinical decision-making during the
acute phase of TBI and may serve as the basis for enhancing the
TBI prognostic model.
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