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Abstract

Shortest path length methods are routinely used to validate whether genes of interest are 

functionally related to each other based on biological network information. However, the methods 

are computationally intensive, impeding extensive utilization of network information. In addition, 

non-weighted shortest path length approach, which is more frequently used, often treat all network 

connections equally without taking into account of confidence levels of the associations. On the 

other hand, graph-based information diffusion method, which employs both the presence and 

confidence weights of network edges, can efficiently explore large networks and has previously 

detected meaningful biological patterns. Therefore, in this study, we hypothesized that the graph-

based information diffusion method could prioritize genes with relevant functions more efficiently 

and accurately than the shortest path length approaches. We demonstrated that the graph-based 

information diffusion method substantially differentiated not only genes participating in same 

biological pathways (p << 0.0001) but also genes associated with specific human drug-induced 

clinical symptoms (p << 0.0001) from random. Furthermore, the diffusion method prioritized 

these functionally related genes faster and more accurately than the shortest path length 

approaches (pathways: p = 2.7e-28, clinical symptoms: p = 0.032). These data show the graph-

based information diffusion method can be routinely used for robust prioritization of functionally 

related genes, facilitating efficient network validation and hypothesis generation, especially for 

human phenotype-specific genes.
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1. Introduction

Biological networks, such as protein-protein interaction (PPI) networks, facilitate functional 

interpretation of large omics data1 and knowledge discovery of disease genes2 and drug 

targets3. One of the major applications of biological network validation is validating 

functionally related genes, in which genes of interest that are highly connected to genes 

annotated with specific functions in the networks are more likely to have the same functions. 

Biological networks extensively support this application because they aggregate biological 

associations of a large number of genes1,4, thus allowing exploration of functionality of 

uncharacterized genes in a context of other genes. Biological networks also characterize the 

complexity of biology as they support integrating information of different types of biological 

processes from multiple data sources. For example, STRING4, a PPI network database, 

provides network information of different biological processes, such as physical protein-

protein interaction, protein fusion, and co-expression. The network information comes from 

experimental data, computational predictions, and text mining, adding different levels of 

confidence for the network associations. Biological networks, therefore, are often very 

complex with thousand nodes and million edges, often with confidence weight features. 

Methods that can handle the complicated nature of biological networks and efficiently 

explore network information are necessary to speed up knowledge discovery.

Shortest path length methods are routinely used to validate functionally related genes using 

biological network information5. Non-weighted shortest path is the path that requires 

smallest number of edges to travel between two nodes. On the other hand, weighted shortest 

path is the path with smallest sum of edge weights between two nodes. The general idea is 

that genes that are in closer distance or have shorter paths are often more likely to be 

involved in same biological processes. Non-weighted shortest path length is more often used 

than weighted shortest path length because it is easier to interpret how genes of interest 

interact directly with each other. However, without considering confidence weights of edges, 

the method could prioritize the interactions that are not supported by many evidences. The 

edge weights demonstrate how strongly genes are interacted with each other based on 

experimentally derived data1 and/or the number of supporting publications from text 

mining4 for given associations. Therefore, edge weights contain useful information to 

interpret biologically associations better and should be integrated.

A problem with shortest path length approaches is that they are computationally expensive. 

Multiple methods have been proposed yet it is still challenging, especially when computing 

for weighted graphs. For example, Dijkstra’s algorithm 6 is a popular method to compute 

shortest path length, both weighted and non-weighted. To determine shortest path, Dijkstra’s 

algorithm goes through unvisited nodes with the smallest distance from the starting node, 

continue to other unvisited nodes and update the neighbor’s distance6. For a network of |V| 

nodes and |E| edges, the time to compute a given shortest path length can take up to O(|E| + |

V|log|V|)7. For the application of prioritizing and validating functionally related genes, 

shortest path length will have to be computed for every pair of a validated gene and a gold 

standard gene of known functions, increasing computational time. Because the shortest path 

length approaches need extensive resources, they hinder full exploration of network 

information and knowledge discovery.
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Graph-based information diffusion method offers a solution. Graph-based information 

diffusion method8,9 simulates the flow of liquid or information, starting from nodes with 

certain information or known functional annotations, and spreading the information 
throughout the network to other nodes. Nodes that are closer to the starting nodes, meaning 

that they are few edges away and the edges have higher confidence weights, will receive 

more information signals and thus, more likely to share similar functions. The graph-based 

information diffusion method performs fast on large networks, allowing quick exploration of 

network information and knowledge discovery. Previously, graph-based information 

diffusion has been applied to biological networks and accurately predict functional 

annotations of uncharacterized protein structures9 and novel antigen for antimalarial drug10. 

This suggests that the diffusion method may robustly prioritize genes associated with similar 

biological processes and even human phenotypes.

Because the graph-based information diffusion method employs both the presence and 

confidence weights of network edges, and the method has robustly predicted protein 

function, we hypothesized that the diffusion method could prioritize functionally related 

genes more accurately than the shortest path length approaches. Our data validated that the 

diffusion method robustly prioritized genes participating in same biological pathways and 

gene ontologies from random. We further demonstrated that the predictions for pathway 

genes of the diffusion method outperformed the shortest path length approaches. Finally, we 

showed that the diffusion method can predict genes associated with human-like clinical 

phenotypes in mice with statistically better performance than the shortest path length 

measures. Overall, our study advocated the use of graph-based information diffusion for 

efficient prioritization of functionally related genes, supporting robust validation of omics 

data and hypothesis generation of novel disease and drug mechanisms.

2. Materials and Methods

2.1. Data sources

2.1.1. Biological network information—The biological network that we used was the 

protein-protein interaction (PPI) STRING network11 (version 10.0), which can be 

downloaded from http://version10.string-db.org/. For our analyses, we used only Homo 
sapiens protein interaction network data, which consists of 19,236 proteins and 4,272,402 

edges. In order to construct a weighted graph, we used combined confidence scores of 

edges. Therefore, the constructed graph considered combined probabilities of predicted 

associations from different evidence channels, i.e. conserved neighborhood, gene fusion, 

phylogenetic co-occurrence, co-expression, large-scale experiments, literature co-

occurrence, and databases of biological pathways and physical protein interactions. 

Predictions from pathway database imports account for 5% predicted associations (7,938 

genes and 212,370 edges) in the combined network, indicating that the network is not 

restricted to only pathway information. Edges with greater weights have higher confidence 

levels. Methods that can leverage edges with higher confidence weights can prioritize more 

functionally relevant genes that have higher associative probabilities predicted by multiple 

evidence channels.
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2.1.2. References for pathway and ontology data—In order to validate functional 

gene prioritization abilities of different approaches, we selected a number of popular 

manually curated pathway and ontology data that have been pre-processed by Enrichr 

database12 (https://amp.pharm.mssm.edu/Enrichr). Pathway references used were 

Reactome13 (version 2016), KEGG14 (version 2016), and WikiPathways15 (version 2016). 

Gene Ontology Annotation (GOA) for aspects of Biological Process (version 2017), Cellular 

Component (version 2017), and Molecular Function (version 2017)16,17 were also examined. 

The numbers of gene sets and total gene coverages of the validated pathways and ontologies 

are summarized in Table 1. There are only 3 gene sets that are present in all of the three 

selected pathway databases, suggesting that these pathway databases are overall distinct 

from each other.

2.1.3. References for genes associated with human drug-induced clinical 
symptoms—The genes associated with mouse phenotypes are compiled from Mouse 

Genome Informatics database18 (MGI: http://www.informatics.jax.org). The genes selected 

were those that when being knocked out, yield substantial mouse phenotypes. We were 

interested in gene sets for relevant human clinical phenotypes, yet the information was not 

readily available. Therefore, we selected gene sets for mouse phenotypes that resemble drug-

induced side effect symptoms in human (e.g. “parotid gland inflammation” and “joint 

swelling”), assuming that the genetics behind these phenotypes are similar in human and 

mice. The human drug-induced side effect symptoms are annotated in SIDER19 (version 4.1) 

(http://sideeffects.embl.de). Combining the two databases gave us 266 human-like clinical 

phenotypes in mice and their gene sets cover in total 2,856 genes.

2.2. Network analysis methods

2.2.1. Graph-based information diffusion method—Graph-based information 

diffusion method was previously applied on biological networks8,9 using the following 

formula:

f = I + αL −1y (1)

where L = the Laplacian matrix of the combined STRING protein network

I = the identity matrix

y = a vector of labels prior to diffusion

f = the vector labeled after diffusion

α = 1/ǁ L ǁ1(ensuring convexity of the cost function8)

Every node or genes in the network was considered with a label. Diffusion was performed 

throughout the whole constructed STRING network. For the vector y, we initialized the 

diffusion process by setting the source nodes or genes with known functional annotations to 

1 and all other network nodes or recipient nodes to 0. After diffusion, the diffused signals or 

diffusion values that the recipient nodes received, as represented in the vector f, were ranked, 

with higher values suggesting that they had higher probability to share similar functions with 
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the source nodes. The known functional annotations of the source nodes or genes can be 

whether these genes participate in known biological pathways and ontologies and/or are 

associated with specific phenotypes. The method was run on a processor of 2.9 GHz Intel 

Core i5 and memory of 16 GB 1867 MHz DDR3.

2.2.2. Shortest path length (SPL) approaches—Dijkstra’s algorithm6 was utilized. 

The running time could take7:

O E + V log V (2)

where |V| = the number of nodes

|E| = the number of edges

We applied networkx python package20 to process the network data and compute shortest 

path length, both non-weighted and weighted. The codes were run on the same 

computational system used for the diffusion method. Non-weighted shortest path length 

method prioritizes the path with fewest steps or edges while weighted shortest path method 

prioritizes the paths with the lowest sum of edge weights. The STRING network that we 

used associates a higher edge weight with a higher confidence level. Therefore, in order to 

prioritize the path with highest confidence using the shortest path length method, we 

constructed another graph with the inversed values for edge weights. The transformed graph 

still has the same edge connections with the originally constructed STRING network but 

with inversed edge weight values. Both non-weighted and weighted shortest path length 

calculations were applied on the transformed network.

2.3. Diffusion method to validate genes in same pathways and ontologies

We tested whether the diffusion method could detect genes that are functionally related more 

than random. We used references of biological pathways and gene ontologies, as described 

in Section 2.1, for this analysis. Each gene set was randomly split into half. Diffusion signals 

would start from either of the halves (source nodes) and propagate throughout the entire 

network. We would compare the signals received by the other genes in the gene set and by 

random genes. Genes that are more connected to the diffusion source nodes would receive 

more diffusion signals. The random genes were selected either uniformly in the network or 

by matching degrees with the recipient genes in the gene set. This whole process was 

repeated with the other half of the gene set as the source nodes for diffusion. Therefore, 

there were two experiments for each gene set in the references. Kolmogorov–Smirnov test 

was performed to compare the distributions of diffusion signals received by pathway genes 

and random genes.

2.4. Comparisons of predictive performance for prioritizing functionally related genes

We evaluated whether diffusion method could prioritize genes of same functions from 

random genes more robustly than the shortest path length methods. Because the shortest path 

length methods are computationally intensive, we had to arbitrarily limit our analyses to 

only Reactome pathways with 6 to 20 genes, which gave us 591 pathways covering in total 

3,242 genes. These empirically selected sizes of Reactome pathway let us to finish the 
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shortest path length calculations in a week. We randomly split each of these pathways into 

halves. Diffusion signals started from one half and the received signals were used to predict 

the other half of the same pathway. Average shortest path length to one half of the pathways 

was calculated for the other half of the pathway and random genes. Genes that are closer to 

the known pathway genes, either through diffusion or shortest path length methods, were 

more likely to be in the same pathways. We measured area under receiver operating 

characteristic (AUROC) to evaluate predictive performance of different methods. For the 

diffusion method, the ranking was based on signals of the recipient nodes after diffusion. For 

the shortest path length approaches, genes that were ranked higher were those that have 

shorter average shortest path lengths. The truth table was whether those genes were in the 

same pathways with the initial source genes. We could not perform shortest path length 

predictions over every node of the network due to limited time and resources, thus we 

randomly selected (3 × n) random genes in the network, in which n is the number of 

pathway recipient genes, to evaluate AUROC for these methods. Finally, the distributions of 

predictive AUROC values for the diffusion and shortest path length methods were compared 

by Kolmogorov–Smirnov test.

2.5. Diffusion method to prioritize genes associated with drug-induced clinical symptoms

Going beyond genetic and molecular processes, we explored whether the diffusion method 

could explore genes associated with human phenotypes. Specifically, we tested whether the 

diffusion method could detect genes that were linked to human drug-induced clinical 

symptoms. Similar to the approaches described in sections 2.3 and 2.4, we first explored 

whether the diffusion method could differentiate genes associated with specific clinical 

symptoms from random and compared the predictive performance of the method against the 

weighted and non-weighted shortest path length approaches. For comparing the diffusion 

values between pathway genes and random genes, we performed the experiments on the 

whole 266 gene sets associated with human-like clinical phenotypes in mice from MGI and 

SIDER. For the performance comparisons with shortest path length approaches, we limited 

the analysis to only 128 symptom-related gene sets with 6 to 60 genes, covering 1,496 genes 

in total. The empirically selected size range of the gene sets allowed us to finish shortest 

path length calculations in a week.

3. Results and Discussions

3.1. The diffusion method robustly prioritized functionally related genes

3.1.1. The diffusion method robustly prioritized pathway-specific genes—We 

explored whether the diffusion method detected genes participating in same biological 

pathways, i.e. whether genes in the same pathways diffused to each other more than to 

random genes. Fig. 1 shows that genes in the same pathways statistically diffused to each 

other more than random (KS test: p << 0.0001 for both degree-matched and uniformly 

selected random). Pathway genes often have higher degrees because they are studied more, 

thus more likely to connect to other in the PPI network than lower degreed genes. This is 

demonstrated as the distributions of the degree-matched random genes were skewed to 

higher diffusion values than the distributions of uniformly selected random genes (Fig. 1). 
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However, even when controlling for node degrees, the diffusion method still substantially 

differentiated pathway genes from degree-matched genes.

It is worth noting that the observed pattern was consistent across multiple pathway 

references (i.e. Reactome, KEGG, and WikiPathways), which have different numbers of 

gene sets and gene coverages (Table 1), suggesting that the observation is global. In 

addition, interestingly, the distributions of recipient diffusion signals for biological pathways 

seemed to close to unimodal, centering at larger diffusion values, while distributions for 

random genes were bimodal, spreading over larger ranges of values. Because selected 

random genes are involved in multiple biological processes, this data suggests the diffusion 

method specifically prioritized genes participating in same biological pathways.

3.1.2. The diffusion method robustly prioritized gene ontology-specific 
genes—Similar to pathway-specific genes, the diffusion method robustly detected genes 

linked to same gene ontologies. For diffusion initialized from a portion of gene ontologies, 

genes in the same gene ontologies received significantly higher diffusion signals than 

random genes, whether they were degree-matched or not (Fig. 2; KS test: p << 0.0001). 

Interestingly, the distributions of recipient diffusion values for ontology-related genes 

seemed to closer to bimodal with more smaller signal values, instead of unimodal 

distributions centered at larger diffusion values like pathway-specific genes. This is 

potentially because ontology-specific genes participate in multiple biological processes, thus 

making the predictive performance of the diffusion method less robust. Overall, these data 

demonstrate the usability of diffusion method in detecting functionally similar genes in 

biological networks.

3.2. The diffusion method outperformed the shortest path length approaches in 
prioritizing functionally related genes

Because the diffusion method employs both the number of edges and edge confidence 

weights for measuring distance, we hypothesized that the diffusion method can detect 

functionally related genes better than both non-weighted and weighted shortest path length 

approaches. Because shortest path length detection requires intensive computational time, 

we limited our analyses to small pathways, specifically Reactome pathways with 6 to 20 

gene members. Overall, we observed that all three methods performed fairly well, in which 

for the majority cases, AUROC can be achieved up to 1.0, confirming that genes that are 

functionally similar diffused better to each other and were closer in distance as measured by 

both weighted and non-weighted shortest path length (Fig. 3). However, the diffusion 

method stood out to be the best performing method overall (Fig 3). The AUROC distribution 

for the diffusion method was statistically skewed more to higher AUROC values than those 

of the non-weighted and weighted shortest path length approaches (KS test: p 

diffusion vs non-weighted SPL = 2.7e-28, p diffusion vs weighted SPL = 2.8e-11). Non-weighted 

shortest path length performed slightly better than weighted shortest path length (p 

non-weighted vs weighted SPL = 2.7e-10), suggesting that the number of edges between genes 

was probably more important than the edge confidence weight, at least in the context of 

small pathways. However, by employing both of these elements, diffusion could predict 

functionally related genes the best.
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3.3. The diffusion method robustly predicted human phenotype-related genes

3.3.1. The diffusion method robustly prioritized genes linked to specific 
human drug-induced clinical symptoms—Because the diffusion method robustly 

predicted functionally similar genes, we explored the possibility of using the diffusion 

method to detect phenotype-related genes in biological networks. We compiled genes that, 

when being knocked out, give rise to human-like drug-induced clinical symptoms in mice 

from Mouse Genomics Informatics (MGI) database. We observed that genes associated with 

similar symptoms diffused to each other statistically more than to random genes, whether 

they were degree-matched or uniformly selected (Fig. 4, KS test: p << 0.0001). Interestingly, 

the distribution of diffusion values for symptom-related genes is bimodal, similar to what we 

observed in Gene Ontologies. This is consistent with the fact that clinical symptoms are 

often involved with multiple biological processes. These data show that the diffusion method 

robustly utilized biological network information to detect genes that are involved in not only 

fundamental biological processes but also human phenotypes.

3.3.2. The diffusion method outperformed the shortest path length 
approaches in prioritizing clinical symptom-specific genes—Because the 

diffusion method predicted genes participating in same biological processes more robustly 

than the shortest path length approaches, we hypothesized that the diffusion method could 

also outperform in predicting genes associated with specific human drug-induced clinical 

symptoms. Overall, the predictive performances for symptom-associated genes of all 

methods were not as good as their predictions for pathway-related genes (Fig. 3 and 5). 

However, the diffusion method still statistically outperformed the shortest path length 

methods (Fig. 5, KS test: p diffusion vs non-weighted SPL = 0.032, p diffusion vs weighted SPL = 

5.1e-07), with 48.8% of predictions had AUROC above 0.70. On the other hand, the mean 

AUROC of predictions by the non-weighted shortest path length method is 0.62 while the 

mean AUROC of the weighted shortest path length method is slightly higher at 0.66 (Fig. 5, 

KS test: p non-weighted vs weighted SPL = 3.1e-03). These data show that the diffusion method, 

by combining both the number of steps like the non-weighted shortest path length approach 

and the edge weight like the weighted shortest path length, robustly prioritized relevant 

genes for specific human phenotypes.

4. Conclusions

Validating functionally related genes is one of major tasks of biological network analysis. In 

this study, we proposed using the graph-based information diffusion method, instead of the 

routine shortest path length approaches, in order to prioritize functionally similar genes 

faster and more accurately. While shortest path length methods employ either a single 

shortest path (non-weighted) or purely confidence weights of network edges (weighted), the 

diffusion method considers both edge confidence weights and multiple paths that genes are 

connected to each other in the networks. We demonstrated that the diffusion method 

prioritized pathway-, ontology-, and clinical symptom-specific genes more robustly than the 

shortest path length methods. These data suggest that the diffusion method may detect 

functionally related genes that the shortest path length methods miss. In addition, because 

the diffusion method can quickly explore the whole network, it allows full utilization of 
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network characteristics, such as global topology and local structure, in making predictions. 

The method also supports investigation of more candidate genes simultaneously in the 

networks, up to the maximum of all network nodes, thus generating a greater number of 

hypotheses for novel gene functionality, such as discovery of disease genes and drug targets. 

A limitation of the diffusion method is that it is not as easy to interpret how genes of interest 

interact directly with each other as for using the non-weighted shortest path length method. 

Detailed investigations of the multiple connected paths of genes of interest are necessary to 

fully understand their functional relations.
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Fig. 1. 
The diffusion method robustly prioritized pathway-specific genes. Pathway genes (red) are 

more connected to each other than to degree-matched random genes (blue) (KS test: p << 

0.0001) or uniformly selected random genes (green) (KS test: p << 0.0001) in the STRING 

PPI network.
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Fig. 2. 
The diffusion method robustly prioritized ontology-specific genes. Pathway genes (red) are 

more connected to each other than to degree-matched random genes (blue) (KS test: p << 

0.0001) or uniformly selected random genes (green) (KS test: p << 0.0001) in the PPI 

network.

Pham and Lichtarge Page 12

Pac Symp Biocomput. Author manuscript; available in PMC 2020 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The diffusion method (red) detected functionally related genes statistically better than the 

non-weighted (blue) and weighted (green) shortest path length approaches, as shown in a 

histogram plot (A) and a kernel density estimation plot (B) (KS test: p 

diffusion vs non-weighted SPL = 2.7e-28, p diffusion vs weighted SPL = 2.8e-11, p 

non-weighted vs weighted SPL = 2.7e-10).
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Fig. 4. 
The diffusion method robustly prioritized human clinical symptom-related genes (red) from 

degree-matched (blue) and uniformly selected (green) random genes (KS test: p << 0.0001).
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Fig. 5. 
The diffusion method (red) detected functionally related genes significantly better than the 

non-weighted (blue) and weighted (green) shortest path length approaches as shown in a 

histogram plot (A) and a kernel density estimation plot (B) (KS test: p 

diffusion vs non-weighted SPL = 0.032, p diffusion vs weighted SPL = 5.1e-07, p 

non-weighted vs weighted SPL = 3.1e-03).
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Table 1.

Statistics of pathway and ontology data for validation.

Pathway/Ontology # gene sets Total gene coverage

Reactome 1,530 8,973

KEGG 293 7,010

WikiPathways 437 5,966

GO Biological Process 3,166 13,822

GO Cellular Component 636 10,427

GO Molecular Function 972 10,601

Pac Symp Biocomput. Author manuscript; available in PMC 2020 February 26.


	Abstract
	Introduction
	Materials and Methods
	Data sources
	Biological network information
	References for pathway and ontology data
	References for genes associated with human drug-induced clinical
symptoms

	Network analysis methods
	Graph-based information diffusion method
	Shortest path length (SPL) approaches

	Diffusion method to validate genes in same pathways and ontologies
	Comparisons of predictive performance for prioritizing functionally related
genes
	Diffusion method to prioritize genes associated with drug-induced clinical
symptoms

	Results and Discussions
	The diffusion method robustly prioritized functionally related genes
	The diffusion method robustly prioritized pathway-specific genes
	The diffusion method robustly prioritized gene ontology-specific
genes

	The diffusion method outperformed the shortest path length approaches in
prioritizing functionally related genes
	The diffusion method robustly predicted human phenotype-related genes
	The diffusion method robustly prioritized genes linked to specific human
drug-induced clinical symptoms
	The diffusion method outperformed the shortest path length approaches in
prioritizing clinical symptom-specific genes


	Conclusions
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Table 1.

