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ABSTRACT

Motivation: The power of a microarray experiment derives from
the identification of genes differentially regulated across biological
conditions. To date, differential regulation is most often taken to
mean differential expression, and a number of useful methods for
identifying differentially expressed (DE) genes or gene sets are
available. However, such methods are not able to identify many
relevant classes of differentially regulated genes. One important
example concerns differentially co-expressed (DC) genes.

Results: We propose an approach, gene set co-expression analysis
(GSCA), to identify DC gene sets. The GSCA approach provides
a false discovery rate controlled list of interesting gene sets, does
not require that genes be highly correlated in at least one biological
condition and is readily applied to data from individual or multiple
experiments, as we demonstrate using data from studies of lung
cancer and diabetes.

Availability: The GSCA approach is implemented in R and available
at www.biostat.wisc.edu/~kendzior/GSCA/.

Contact: kendzior@biostat.wisc.edu

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

Amain goal of microarray experiments is to identify individual genes
or gene sets differentially regulated across biological conditions.
Most often, differential regulation is taken to mean differential
expression; and a number of statistical methods for identifying
differentially expressed (DE) genes or gene sets are now available
(for reviews, see Allison et al., 2006; Barry et al., 2008; Ho et al.,
2007; Newton et al., 2007). Although useful in thousands of studies,
these methods are not able to identify many important classes of
differentially regulated genes. One example concerns differentially
co-expressed (DC) genes.

Two genes are DC if their correlation in one biological condition
differs from that in another; and statistical methods for identifying
DC gene pairs are available (Lai et al., 2004; Shedden and Taylor,
2005). Generally speaking, a DC gene group is defined similarly,
as one in which the correlation structure among the group’s genes
in one condition differs from that in another. However, the exact
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way in which one defines the gene group, specifies the correlation
structure, and quantifies differences varies from study to study.

A number of investigators have proposed approaches that identify
groups of genes where pairwise correlations are necessarily high in
at least one biological condition (Brown et al., 2002; Choi et al.,
2005; Thmels et al., 2005; Kostka and Spang, 2004; Oldham et al.,
2006; Watson, 2006). Most of the methods begin by identifying
modules (Oldham et al., 2006), clusters (Brown et al., 2002; Choi
et al.,2005; Thmels et al., 2005; Watson, 2006) or cliques (Voy et al.,
2006) within biological condition followed by a comparison of the
condition-specific lists. Those modules, clusters or cliques identified
in one condition but not another are of primary interest and often
investigated further to determine if there is evidence of enrichment
of biological function(s) potentially associated with the underlying
mechanisms giving rise to the DC.

In this work, we propose a statistical approach to identify
DC gene groups. Unlike previous work, our approach does not
require that genes within a set are highly correlated in at least
one biological condition; they may be, but differential regulation
can manifest itself in significant but more subtle correlation shifts.
Furthermore, the approach provides a false discovery rate (FDR)
controlled list of interesting groups, and is readily applied to data
from individual or multiple experiments. As detailed in Section
2, the approach requires that gene groups be defined a priori. We
consider groups, referred to hereinafter as gene sets, specified by
Gene Ontology (GO; The Gene Ontology Consortium, 2000) and
the Kyoto Encyclopedia of Genes and Genomes (KEGG; Kanehisa
and Goto, 2000), noting that other annotations or study-specific
biological knowledge could also be used. Pairwise co-expressions
(correlations) are calculated for all gene pairs within a gene set;
and a dispersion index is introduced to quantify the difference
between the resulting gene set co-expression vectors. This gene
set co-expression analysis (GSCA) is illustrated in the context
of a single experiment in Section 2.1; applications to multiple
experiments are provided in Section 2.2. Once DC gene sets are
obtained, it is often of interest to identify the specific genes within
each gene set contributing most to the observed DC. A statistical
test for identifying DC hub genes, or genes with unusually high
contributions, is given in Section 2.3. A small simulation study
and results from analyses of lung cancer and diabetes datasets are
given in Sections 3 and 4, respectively. Section 5 concludes with
a discussion of the advantages and disadvantages of the GSCA
approach, and the similarities and differences to the well-known
gene set enrichment methods.
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2 METHODS

The GSCA approach begins with a collection of gene sets. These can be
defined from GO, KEGG or some other biological knowledge. Of primary
interest is the identification of those gene sets significantly DC across
biological conditions.

2.1 Identification of DC gene sets within a single
experiment

Consider first a single two group microarray experiment. To assess the
extent of DC for a given gene set ¢ with n. genes, pairwise co-expressions
(correlations) are calculated for all ("2‘) gene pairs, and a dispersion index is
applied to the co-expression vectors to quantify the extent of DC. A schematic
is given in Figure 1.

The dispersion index for a single study GSCA, Dg, is given by the
Euclidean distance, adjusted for the size of the gene set considered:

Ty T
Ds(pc'.pc?)= (1

where 5,717 :,opTl —pgz, p=1,...,P.=('y) indexes gene pairs within the
gene set ¢ of size n,, and p,f" denotes the co-expression calculated for gene
pair p within condition T, k = 1, 2. For a study with more than two conditions,
Dy is averaged across study pairs.

To identify significant DC gene sets, samples are permuted across
conditions to simulate the null of equivalent correlation between conditions.
The GSCA approach shown in Figure 1 is applied to calculate a DC score
from the permuted dataset. This is repeated on B—1 permuted datasets
to yield gene set-specific P-values. For example, for gene set c, the

b b
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where T 1" and Tf denote samples derived from the b-th permuted dataset. An
estimated FDR is obtained by converting the P-values to g-values (Storey
and Tibshirani, 2003). In our simulations and case studies, we considered
Pearson’s correlation coefficients and B=10000.

2.2 Identification of DC gene sets across multiple
experiments

The GSCA approach can combine evidence from multiple experiments to
identify DC gene sets. We refer to this as a meta-GSCA. As different
experiments use different microarray platforms that often contain different
sets of genes and gene identifiers, the problem of gene matching—identifying
the genes in common across studies—must be addressed prior to meta-
GSCA. Gene matching is generally done by specifying a gene identifier
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Fig. 1. Schematic of the GSCA approach. Shown are expression matrices
for a single gene set with n. genes in two biological conditions, 7 and 7>;
Ni represents the number of arrays in condition k, k=1,2.

common to all experiments, matching on those identifiers, and then removing
genes that are not represented across all experiments. In addition to gene
matching, it is also necessary to summarize transcript-level expression which
is often measured using multiple probes. Common methods include taking
the brightest probe (Mah et al., 2004; Subramanian et al., 2005), the most
variant probe (Dallas et al., 2005; Raghavan et al., 2007; Zhang et al., 2007)
or the average across the probes (Lee et al., 2008; Parmigiani et al., 2004;
Wang et al., 2007). We use the average taken at the log level.

Once a set of common genes is identified, gene sets are defined for the
common genes and meta-GSCA proceeds similarly to that above, with a few
important differences. First, in single study GSCA, it is of primary interest
to identify those gene sets with large differences in correlation between
conditions. This is also important in the meta-GSCA, but equally important
in preservation of the difference across studies. In other words, for a meta-
GSCA combining two studies S| and S, we would like to identify DC
gene sets for which the difference in co-expressions within S, (ﬂpT“Tz )St,
is close to the co-expression differences in S, (,(SI,T"T2 Y52, We use a test

TR - . = 51,8
statistic similar to (1), where ,0,,T"T2 is replaced by d, "> for the two-study
case:
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where d,”"" = (s(0,)"" —5(0)™)%1 — (s(0p)" —5(0)™)%2, s(0,)"¥ repre-
sents the sign of the correlation for gene pair p in condition Ty, k=1,2. For
studies with more than two conditions, Dy, is averaged across study pairs.
Unlike the single study GSCA, the gene sets that are most interesting in
the meta-GSCA are those with unusually small values of the statistic given
by (2), as these are the sets that are most highly preserved across studies.
Note that gene sets containing many uncorrelated genes could appear to be
highly preserved, even if they are not, if p, is used as in (1). This is because
observed correlations for such sets would most often be near zero and, as a
result, the differences in correlations between studies would be necessarily
small. By considering s(pp) instead of p,, Equation (2) helps to ensure that
such sets are not identified. As in the single study GSCA, permutations are
used to calibrate the statistic given by (2). However, in the meta-GSCA

case, the null is that (,O"I,T1 T2)S1 differs from (p"pT‘ T2ySa, Permuting samples

o .. . . ~ 11,12
within each study across conditions results in preservation of (o) across

studies since the values of (,oNI,)T1 2 within each study S will be near zero.
In other words, permuting samples across conditions as in a single study
GSCA breaks the DC structure which simulates the alternative, not the null.
Instead, we permute gene pairs within study across gene sets keeping the
gene set sizes fixed (see Supplementary Fig. S1). This preserves the overall
amount of DC, but breaks the relationship among gene pairs across studies.

2.3 Identification of DC hub genes

Given DC gene sets obtained from a single study or meta-GSCA, it is often of
interest to identify specific genes within the gene sets that contribute most to
the detected DC. Consider a gene g within gene set c. For K studies, a simple
ordering ranks g according to the average DC, AvDC=}", Zp’ |5y 128
where k indexes study and p’ indexes the n.—1 gene pairs containing
g. A complementary approach that is less sensitive to outliers considers
the number of gene pairs containing g with co-expression differences that
exceed the median of all co-expressions in ¢ (co-expressions are averaged
across studies in the case of multiple studies). In other words, we consider
m:ZP,[[Zk\p;rT"T2|Sf< >median{Zk|ﬁpT“T2|Sk}] where p indexes the
P. gene pairs within gene set c, as in (1). A hypergeometric distribution
can be used to calculate the probability that j of n.—1 gene pairs chosen
from P gene pairs exceed the median absolute correlation of the P, pairs.
Gene-specific P-values are obtained from the hypergeometric test given in
(3) and adjusted using a Bonferroni correction for n., the total number of
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genes in the set:

o—1 (Pc/2\( Pe/2

2P
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where P = ("5). When P is odd, (P. —1)/2 and (P.+1)/2 are used for the
left and right P./2, respectively, in the numerator. Genes with significant
Bonferroni corrected hypergeometric P-values are referred to as hub genes.

2.4 Comparison to tests for enrichment

Generally speaking, most methods to detect enrichment take one of two
approaches [Newton et al. (2007) and Sartor et al.. (2009) provide detailed
reviews and comparisons of enrichment methods]. The first consists of
identifying DE genes (or genes otherwise significantly associated with a
response), and then evaluating gene sets for which there are more DE genes
than expected by chance. Evaluation proceeds through a hypergeometric test,
or something similar (Falcon and Gentleman, 2007). A second enrichment
approach considers all genes (not just DE genes) and identifies gene sets for
which a set-level statistic looks unusual compared with the same statistic
evaluated following label permutations. Details of this type of approach are
given in Subramanian et al. (2005), who proposed the gene set enrichment
analysis (GSEA), and Barry et al. (2005), who proposed a framework for
the significance analysis of function and expression (SAFE). The single
study GSCA approach is most similar to GSEA (or SAFE) in that a single
statistic is calculated for each gene set and calibrated via permutations across
samples. The results of single study GSCA are therefore compared with
GSEA in Section 4.1. We also compare the single study GSCA results to
those obtained by testing for enrichment among DC gene pairs. In short,
we evaluate condition-specific co-expression for all gene pairs in a dataset,
identify those pairs that are DE between conditions, and test for enrichment
using a hypergeometric test as in Falcon and Gentleman (2007). As each
gene pair has a single co-expression value within a given condition (i.e.
replicate measurements for a pair of genes determine a single co-expression
value), the DE analysis is carried out using EBarrays, an empirical Bayes
approach that shares information across genes (or in this case gene pairs)
and can therefore be applied when replicate measurements are not available
(Newton et al., 2001). Because the GSEA approach does not extend naturally
to multiple studies, meta-GSCA is compared with an alternative approach.
Specifically, we consider the two most common DE meta-analysis methods,
Rhodes et al. (2002) and Choi et al. (2003), to provide lists of DE genes.
The lists are then tested for enrichment using the hypergeometric approach
described in Falcon and Gentleman (2007).

3 SIMULATION STUDY

To assess the performance of the GSCA approach, we performed
two small sets of simulations. The simulations are in no way
designed to capture many of the subtle complexities inherent
in microarray-based co-expression, but rather to provide some
preliminary information on operating characteristics of the GSCA
approach in simple settings. For both sets of simulations, we
considered 20 replicate measurements in each of two conditions.
Log measurements for genes in a given gene set in condition 1
(condition 2) are simulated as multivariate normal with mean vector
zero and covariance matrix X1(X5). X1 is generated as in Schéfer
and Strimmer (2004). Briefly, for a gene set of size n., we start
with an n, x ne matrix of zeros. Off-diagonal positions in the upper
triangular portion of the matrix are filled in with random draws
from a uniform distribution between —1 and 1. The lower triangular
portion is filled in to create a symmetric matrix. Column sums
are computed from the absolute values of matrix entries, and the
corresponding diagonal element is set to the sum plus a small
constant (here 0.0001). This ensures that the resulting matrix is

diagonally dominant and therefore positive definite. For both sets
of simulations, we considered 1000 gene sets, 250 of sizes 3, 5,
10 and 20; 10% (25 sets) of each size are defined to be DC. For
equivalently co-expressed gene sets, X is defined to equal ¥;. In
the first set of simulations, ¥, for a DC gene set is constructed as
follows: each (i,j)-th entry (i #j) of X, is defined as the negative
of the (i,j)-th entry from X. In this case, each gene pair in a gene
set is DC, although we note that for any given pair, the magnitude
of the change may be quite small (e.g. from 0.02 to —0.02). In the
second set of simulations, the proportion of DC gene pairs varies
from 10% to 50%. Specifically, we construct five sets each with
10%, 20%, 30%, 40% and 50% of the (i,j)-th entries changing sign
between X and X,. The upper panel of Supplementary Figure S2
shows that test statistics calculated from simulated data are close
to those observed in the Harvard lung cancer data described in the
next section. The middle and lower panels show that FDR is well
controlled and power increases with the amount of DC, as expected.
In contrast, an enrichment analysis on DC gene pairs found no gene
sets with FDR < 25% for either set of simulations.

4 RESULTS

4.1 Lung cancer

We illustrate the GSCA approach using the three lung cancer
microarray datasets considered in Parmigiani et al. (2004) and
Subramanian et al. (2005) and described in detail in Garber et al.
(2001), Bhattacharjee et al. (2001) and Beer et al. (2002). Briefly,
the three studies referred to here as the Stanford (Garber et al.,
2001), Harvard (Bhattacharjee et al., 2001) and Michigan studies
(Beer et al., 2002), were aimed at characterizing lung tumor gene
expression profiles relative to that of normal lung tissue. The
Stanford and Harvard studies include many subtypes of lung cancer,
while the Michigan study focuses on lung adenocarcinomas, a tumor
subtype included in the other two studies. The Harvard, Michigan
and Stanford studies contain 17, 10, 5 normals and 139, 86, 41 tumor
samples, respectively.

We considered the Entrez Gene ID, Unigene ID and Gene Symbol
for gene matching. The Entrez Gene IDs were used as this ID gave
the biggest inter-study gene coverage overlap for the lung cancer
data. Following gene matching, the 3924 genes that appeared in all
three studies were annotated into 3649 gene sets including 3471
GO categories and 178 KEGG pathways of at least size 3. We
note that GSCA conducted within each study would not require
any gene matching; however, gene matching was done here prior to
all analyses to facilitate comparison of the GSCA results with the
meta-GSCA results that follow.

The GSCA approach was applied to each of the three studies
in isolation. Table 1 shows the total number of DC gene sets
identified within each study at varying levels of FDR. Given the

Table 1. Number of significant DC gene sets (total 3649)

FDR (%) Harvard Michigan Stanford H&M All three
1 0 0 0 0 0
5 312 8 0 0 0
10 1663 1582 0 947 0

2782



Gene set co-expression analysis

Fig. 2. GO:0006955 immune response. The upper (lower) panel shows
the 30 (8) genes most DC between cancer and normal. Edges represent
co-expressions ranging from —1 (blue) to 1 (red). Nodes identified as DE by
Rhodes et al. (2002) or Choi et al. (2003) are shaded.

dispersion index specified in (1), the identification of a given set as
DC could be due to a small number of gene pairs showing large
differences in correlation between conditions, to many gene pairs
showing moderate difference, or both. As a result it is useful to
further investigate the identified gene sets to gain insight into specific
sources of DC.

Consider a particular gene set, the immune response gene set
GO:0006955, which was identified as DC at FDR 4.2% using the
Harvard study data. To focus on a subset of the 211 genes in
this set, genes were rank ordered by P-values derived from the
hypergeometric test described in (3). The 30 genes with smallest
P-values are shown in the upper panel of Figure 2. A striking
feature concerns the presence of relatively stronger co-expressions
in the normal condition. A closer look at a subset of the network
(lower panel) highlights a few specific differences. For example,
the co-expression between CFP and SKAPI increases in cancer
compared with normal; the opposite holds for CFP and RBM4. CFP,
complement factor properdin, is a member of the properdin family
which is known to play an important role in the immune system
(Ivanovska et al., 2008; Stover et al., 2008) and has been associated
with numerous types of cancer (Rottino et al., 2006).

Similar results are observed in the Michigan and Stanford studies
(see Supplementary Fig. S3), although this gene set did not reach the
same level of statistical significance. Using the Michigan data, the
gene set is identified as DC at FDR 8.3%. With the Stanford data, the
estimated FDR for this gene set is 49%, which is clearly quite high.
However, we note that 0.49 was the smallest g-value observed in
the Stanford DC analysis, largely due to the relatively small sample
size.

When the data are combined in a meta-GSCA, the immune
response gene set GO:0006955 as well as a number of others (48
at 5% FDR, shown in Supplementary Table S1) is identified as
significantly DC. As in the case of GO:0006955, the sets identified
in the meta-GSCA are largely those showing moderate, but not
necessarily statistically significant evidence of DC within each
study. This is shown in Figure 3, where the study-specific GSCA

3-d plots of DC g-values
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Fig. 3. Study specific GSCA g-values are shown for the 3649 gene sets
(upper panels show varying angles of the 3D plot). Red, blue and light blue
values correspond to gene sets for which the meta-GSCA g-values are ¢ <0.1,
0.1<¢<0.3 and ¢>0.3, respectively.

GO0:0006955 immune response

AvDC
an 01 02 0} 04

Fig. 4. The average DC between two biological conditions is shown for
50 of the 211 genes in GO:0006955. The genes are ordered by P-values
obtained from a hub-gene test (see Section 2.3). Red bars highlight genes
with Bonferroni corrected P <0.05.

g-values are plotted for each study, and color-coded according to the
meta-GSCA g-values. As shown, most of the gene sets identified as
statistically significant in the meta-GSCA are those having relatively
small (although not necessarily significant) study-specific g-values.

Figure 4 displays the gene-specific average DCs for 50 of the
211 genes in GO category GO:0006955, rank ordered by the hub-
gene test described in Section 2.3. The most significant hub gene
identified in this set is LCK, lymphocyte-specific protein tyrosine
kinase, a much studied gene that is associated with lung and other
kinds of cancer (Harashima ez al., 2001; Imai et al., 2001; Krystal
et al., 1998; Naito et al., 2007). Slow decay of the average DCs
as shown suggests that there is not a single gene, or a few genes,
driving the DC call for this dataset, but rather many genes showing
a similar amount of DC overall. Investigation of such plots can be
useful when identifying DC gene sets for which there are a few
genes giving rise to a majority of the observed DC.

A similar calculation was carried out for each of the 48 gene sets
identified in the meta-GSCA. The top 10 hub genes (10 genes with
smallest hub-gene test P-values) were recorded for each set and the
12 genes showing up at least five times in the top 10 across the 48
sets are shown in Table 2. There we give the gene name and the
number of sets (out of 48) for which that gene is in the top 10 hub-
gene list. As genes present in many gene sets are favored for over
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Table 2. Common hub genes identified in 48 gene sets

Gene name Top 10 GS 0-GS 0-A-GS
MXI1 10 11 92 314
FADSI 10 10 113 427
RBM4 9 9 165 592
TGFBI 8 30 1 1
BMP7 8 9 165 592
MICA 7 10 113 427
CFP 7 10 113 427
FEZI 7 7 258 1064
CLOCK 7 7 258 1064

Shown are the gene name, the number of times (out of 48) the gene appears in the top
10 hub-gene list (Top 10), the number of gene sets (out of 48) containing that gene
(GS), the number of other genes that appear in GS gene sets (O-GS), and the number
of other genes that appear in at least GS gene sets (O-A-GS).

representation, we also report the number of sets (out of 48) that the
gene appears in, the number of genes that appear in that many sets
and the number of genes that appear in at least that many sets. For
example, MXII1 appears in the top 10 genes in 10 of 48 gene sets.
It is present in 11 of the 48 gene sets; 92 other genes are present in
exactly 11 of the 48 gene sets; and 314 genes are present in 11 or
more of the 48 gene sets. MXI1 is a well-known tumor suppressor
gene (Ariyanayagam-Baksh et al., 2003; Eagle et al., 1995; Kim
et al., 1998; Petersen et al., 1998), and has recently been studied
with respect to its interactions with other genes (Corn and El-Deiry,
2007; Dang et al., 2008; Dooley et al., 1995; Tsao et al., 2008). A
number of other interesting genes made the list, including TGFB1
which has been associated with lung cancer risk (Park et al., 2006),
and BMP7, a gene recently identified as a potential therapeutic target
for breast cancer (Yan and Chen, 2007) and metastatic bone disease
(Buijs et al., 2007).

We note that the results discussed here are largely distinct from
those obtained from traditional enrichment methods (for details on
the enrichment methods employed here, see Section 2.4). GSEA
applied to the Harvard data found no gene sets to be enriched for
DE genes at FDR 5% (or 10% FDR; the smallest g-value from the
GSEA analysis was 0.18). The upper left panel of Supplementary
Figure S4 suggests that most of the gene sets show little DE between
tumor and normal. That is not the case for DC (upper right panel of
Fig. S4). Tests for enrichment among DC gene pairs gave analogous
results with only eight gene sets identified at 5% FDR, compared
with 312 gene sets identified by GSCA (Table 1). Two of the eight
are represented in the 312; all eight are represented in the 1663 sets
identified by GSCA at FDR 10%. A similar finding was observed
in the meta-analysis. Rhodes et al. (2002) and Choi et al. (2003)
identified 111 and 1534 of the 3924 genes to be DE at FDR 5%,
with each of the 111 genes contained in 1534. The GO category
GO0:0006955 highlighted in Figure 2 contained five genes identified
as DE using the method of Rhodes et al. (2002); the method of Choi
et al. (2003) identified 86 DE genes. Given these totals, GO:0006955
was not found to be enriched for DE genes using the hypergeometric
approach described in Falcon and Gentleman (2007) at FDR 5%.
Indeed, neither the DE list derived from Rhodes et al. (2002) nor
Choi et al. (2003) showed enrichment for any of the 3649 gene
sets at FDR 5%; and, as shown in Supplementary Figure S5, the

Diabetes Normal

Fig. 5. GO:0007169 transmembrane receptor protein tyrosine kinase
signaling. The six genes most DC between diabetic and normal are shown.
Each pair of nodes is connected by eight edges, one for each of the eight
studies. Edges represent co-expressions ranging from —1 (blue) to 1 (red).

discrepancy between the meta-GSCA and enrichment tests is not
due to the FDR threshold.

4.2 Diabetes

We performed a second meta-analysis with diabetes data obtained
by searching the public repository NCBI GEO (Gene Expression
Omnibus) and DGAP (Diabetes Genome Anatomy Project). As
of February 29, 2008, NCBI GEO returned 79 GEO Series
(GSE) for the search term ‘diabetes’. After removing series only
peripherally related with diabetes, series without Entrez Gene ID
annotation, series with fewer than three biological replicates and
series without raw data files uploaded, 16 datasets from human,
mouse and rat remained eligible for analysis. DGAP provided an
additional six datasets for which the diabetic and normal conditions
were clearly described. A brief summary of the 22 datasets is
given in Supplementary Table S2. After gene matching by NCBI
HomoloGene build 61, the 22 datasets represent 2349 common
genes and 2253 common gene sets defined by GO and KEGG
of size at least 3. We further reduced the collection to include
eight experiments with sample size larger than 5, based on the
shape of the distribution of correlation coefficients obtained from
simulations (Supplementary Fig. S6). The final eight sets are marked
in Supplementary Table S2.

Meta-GSCA on the eight datasets identified 47 gene sets
significantly preserved across studies at 5% FDR (sets are shown
in Supplementary Table S3). The approach again identifies what are
likely biologically meaningful gene sets. For example, the KEGG
pathway for mitogen-activated protein kinase (MAPK) signaling
was identified. This pathway is known to play a key role in both
types I and II diabetes (Evans er al., 2003; Wellen and Hotamisligil,
2005). NR4A1, nuclear receptor subfamily 4, group A, member 1 in
particular, included in this and many other significant sets, has been
reported to be a regulator of hepatic glucose metabolism (Pei et al.,
2006). PDK4, pyruvate dehydrogenase kinase, isozyme 4a, well
known to be associated with diabetes (Cadoudal et al., 2008; Kim
et al., 2006), is another gene that also appears in many significant
gene sets.

A particularly interesting gene set among the 47 is GO:0007169.
Figure 5 shows a subset of six important genes selected from
GO0:0007169 as done for the lung cancer results shown in the lower
panel of Figure 2. The gene set contains ERBB4, a gene known
to be involved in pancreatic islet cell development (Huotari et al.,
2002; Kritzik et al., 2000; Miettinen et al., 2000), which our group
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has recently shown to be predictive of type 2 diabetes (Keller
et al., 2008). In the normal condition, ERBB4 is non-negatively
correlated with CRYAB and PRKCA in seven of the eight studies;
the correlations are largely negative in the diabetic condition.

5 DISCUSSION

Statistical methods for identifying DE genes were among the
first developed for microarray data, with methods for detecting
enrichment following soon thereafter. Many methods to detect
enrichment (e.g. hypergeometric test) involve identifying DE genes
and then gene sets for which there are more DE genes than expected
by chance; others (e.g. GSEA; SAFE) consider all genes and
calibrate set-level statistics via label permutations. The single study
GSCA approach proposed here is most similar to GSEA (or SAFE) in
that a single statistic is calculated for each gene set and calibrated via
permutations across samples. A major difference is that unlike GSEA
(or SAFE), the GSCA statistic evaluates pairwise co-expression, as
opposed to gene-specific expression, across a gene set. The gene sets
identified as a result are those showing distinct correlation profiles
across conditions, which may or may not be related to differences in
average expression. As a result, the GSCA provides complementary
information to traditional GSEA approaches and should be done in
addition to, not in lieu of, a GSEA.

Implementation of GSCA requires that a number of decisions
be made. The most important ones concern choosing measures of
correlation and dispersion. The results reported here were obtained
using Pearson’s correlation coefficients, although we note that a
number of other measures could prove useful. For the lung cancer
data considered, GSCA using Spearman’s correlation coefficients
resulted in an increased number of gene sets identified (specific
results not shown). For example, 1055 gene sets were identified
for the Harvard study data (268 agree with the 312 identified using
Pearson’s coefficients). A consideration of transformed correlation
coefficients as well as alternative forms of the test statistic could also
prove useful in the context of GSCA, particularly if the identification
of specific correlation structures is of interest. Further simulation
studies are required to provide general guidelines on the advantages
and disadvantages of various implementations.

As with many dispersion indices one could consider, the ones
proposed in Equations (1) and (2) can achieve significance for gene
sets with a few highly DC gene pairs as well as those showing
moderate evidence of DC across many pairs. As a result, it is
interesting, informative and important to closely investigate the DC
gene sets identified. The graphical summaries presented here can
provide some insight into the gene pairs most DC across conditions.

In summary, the GSCA approach provides an FDR controlled
list of gene sets DC between two or more biological conditions.
Unlike previous work (Brown er al., 2002; Choi et al., 2005;
Ihmels er al., 2005; Kostka and Spang, 2004; Oldham et al.,
2006; Watson, 2006), the GSCA approach does not require that
groups of genes be highly correlated in at least one biological
condition. This feature is an important one, as gene pairs in known
regulatory pathways often show relatively low correlations overall
(see Supplementary Fig. S7). A second important feature of GSCA
is that multiple studies are naturally accommodated. In particular,
the consideration of co-expression facilitates combining data across
potentially different platforms since the measurements for analysis
(i.e. co-expressions) are necessarily on the same scale. Finally,

the computational simplicity of the GSCA lends itself to larger
problems. We have here considered two group analyses, but are
currently working on applications to gene set mapping, where groups
are defined by genotypes at a genetic marker.

6 CONCLUSIONS

The GSCA approach provides an FDR controlled list of gene sets
DC between two or more biological conditions. It does not require
that groups of genes be highly correlated in at least one biological
condition and can be applied within a single study or across multiple
studies. It should prove useful as a complement to traditional
enrichment methods.
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