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ABSTRACT

Information exchange in the human brain is crucial for vital tasks and to drive diseases.
Neuroimaging techniques allow for the indirect measurement of information flows among
brain areas and, consequently, for reconstructing connectomes analyzed through the lens

of network science. However, standard analyses usually focus on a small set of network
indicators and their joint probability distribution. Here, we propose an information-theoretic
approach for the analysis of synthetic brain networks (based on generative models) and
empirical brain networks, and to assess connectome’s information capacity at different
stages of dementia. Remarkably, our framework accounts for the whole network state,
overcoming limitations due to limited sets of descriptors, and is used to probe human
connectomes at different scales. We find that the spectral entropy of empirical data lies
between two generative models, indicating an interpolation between modular and geometry-
driven structural features. In fact, we show that the mesoscale is suitable for characterizing
the differences between brain networks and their generative models. Finally, from the analysis
of connectomes obtained from healthy and unhealthy subjects, we demonstrate that
significant differences between healthy individuals and the ones affected by Alzheimer’s
disease arise at the microscale (max. posterior probability smaller than 1%) and at the
mesoscale (max. posterior probability smaller than 10%).

AUTHOR SUMMARY

Capitalizing on network information theory we propose a new framework for the analysis and
comparison of empirical and synthetic human connectomes, in health and disease. We
quantitatively assess the ability of our approach in identifying differences and similarities in the
structural connectivity of the human brain, ranging between microscopic and macroscopic
scales. Relying on two different diffusion processes, namely classic and maximal entropy
random walks, we show that the mesoscale is suitable for capturing differences between
empirical connectomes and their synthetic models, while differences between healthy subjects
and patients affected by Alzheimer’s disease are mostly significant at the microscopic scale.
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INTRODUCTION

The human brain is usually referred to as an emblematic example of efficient complex systems,
where neurons (i.e., the units) process a huge amount of information by signaling through syn-
aptic transmission (i.e., the links). To better understand how information flows within the brain,
imaging techniques are widely used to infer structural and functional relationships between dis-
tinct areas of the brain obtained according to some parcellation in regions of interests (Assaf &
Pasternak, 2007; van den Heuvel & Pol, 2010). The resulting maps coarse grain the brain into
complex networks of much smaller size, typically of the order of a few hundreds or thousands of
areas that are analyzed through the lens of network science (Bassett & Sporns, 2017; Bullmore &
Sporns, 2009, 2012; Deco, Jirsa, & Mclntosh, 2010; Deco, Tononi, Boly, & Kringelbach, 2015;
Fox et al., 2005; Meunier, Lambiotte, Fornito, Ersche, & Bullmore, 2009; Papo, Buldq,
Boccaletti, & Bullmore, 2014; Schirner, Mclntosh, Jirsa, Deco, & Ritter, 2018; Yamamoto
etal., 2018; Zalesky, Fornito, & Bullmore, 2010).

On the one hand, network descriptors are used for a variety of applications, from quanti-
fying the characteristic geodesic distance among units to unravel their mesoscale organization
into functional modules (Betzel, 2020; Sporns & Betzel, 2016), from identifying nodes central
with respect to information exchange to more sophisticated roles such flow attraction and con-
nector hubs (Bertolero, Yeo, Bassett, & D’Esposito, 2018; Bullmore & Sporns, 2012; Hwang,
Hallquist, & Luna, 2012; Lohmann et al., 2010; van den Heuvel & Sporns, 2013), from both
nodal and link perspectives (Faskowitz, Esfahlani, Jo, Sporns, & Betzel, 2020). Recently, more
sophisticated models such as multilayer networks (De Domenico et al., 2013) have been used
to this aim: in that case, the layers encode distinct types of relationships among units, either
accounting for multimodal measurements (Battiston, Cuillon, Chavez, Latora, & de Vico
Fallani, 2018; Cuillon et al., 2019) or for correlations in the temporal (Bassett et al., 2011)
or frequency (Buldi & Porter, 2018; De Domenico, Sasai, & Arenas, 2016; Williamson, De
Domenico, & Kadis, 2021) domains (see De Domenico, 2017, for a review).

Network science has proven to be a powerful analytical tool for unraveling the properties of
the human brain, and several models have been proposed to reproduce the most widely
observed salient features, from small-worldness (Bassett & Bullmore, 2016; Liao et al., 2011;
Muldoon, Bridgeford, & Bassett, 2016), usually related to an amount of triadic closure higher
than chance together with a characteristic geodesic length lower than random expectation
(Watts & Strogatz, 1998), to modularity (Betzel, 2020; Sporns & Betzel, 2016), that is, the
organization of units into groups (Fortunato, 2010) with a biological function, enhancing our
understanding of brain structure and function in both health and disease (A. Alexander-Bloch
etal.,2012; A. F. Alexander-Bloch et al., 2013; Amico & Goni, 2018; Castellanos & Proal, 2012;
De Domenico et al., 2016; de Vico Fallani, Richiardi, Chavez, & Achard, 2014; Fornito &
Bullmore, 2015; Fornito, Zalesky, & Breakspear, 2015; Griffiths et al., 2021; Guillon et al.,
2017; Hernandez, Rudie, Green, Bookheimer, & Dapretto, 2015; Lella & Estrada, 2020; Qiu
etal., 2011; Rubinov & Bullmore, 2013; Rudie et al., 2013). For instance, it has been recently
shown that interareal Euclidean distance plays an important role in shaping the structural orga-
nization of brain networks (Betzel & Bassett, 2018), opening the door to the exploration of
models driven by geometry (see Betzel et al., 2016; Vértes et al., 2012, and references therein)
and latent geometry (Allard & Serrano, 2020; Zheng, Allard, Hagmann, Aleman-Gomez, &
Serrano, 2020).

In this study, we propose an information-theoretic approach for the analysis of synthetic
and empirical brain networks with a two fold aim. The outcome of our procedure naturally
accounts for the function of a system in terms of the interplay between the underlying structure
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Spectral entropy:

The mixedness of information
streams determined by the Von
Neumann entropy of the density
matrix defining the information
content of the network.

Network Neuroscience

and a dynamical process on the top of it, at different temporal scales, measured in bits of in-
formation required to describe the connectome state (see ). To this aim,
we use two distinct diffusive processes for exchanging information among units: (a) a classical
random walk (CRW), where the walker has no global knowledge of the connectome and per-
forms decisions based only on local knowledge of the connectivity, while keeping a uniform
probability of choosing a connection for jumping ( ); (b) @ maximal entropy
random walk (MERW), where the walker has global knowledge of the connectome and jumps
through a connection, while keeping a uniform probability of choosing any trajectory on the
network ( ). Thanks to these distinct dynamics, we are able
to describe the network state from two distinct perspectives: one where only local knowledge is
used to explore the connectome (CRW) and one where global knowledge is used instead
(MERW).

On the one hand, we use our framework to compare a large set of real connectomes from
healthy subjects against a selected pool of network models, characterized by distinct structural
features and increasing amount of complexity. Specifically, we built 400 synthetic brain net-
works based on four generative models, that is, the Erd6s—Rényi model ( ),
the configuration model ( ), the stochastic block model (

), and the hyperbolic model (

). These generative models ( ) allow for obtaining samples
of synthetic data (networks) while maintaining some specific features of empirical connectome
(see for a more detailed illustration of the generative models consid-
ered for this work). On the other hand, we compare the function in healthy subjects against the
one in patients at different stages of dementia, namely mild cognitive impairment (MCI) and
Alzheimer’s disease (AD), from a network information theory perspective.

Here we use spectral entropy, based in statistical physics and information theory—field de-
voted to the study of transmission, processing, extraction, and utilization of information—to
investigate the structure of human brain networks. In general, the spectral entropy captures
the complexity of a system in terms of the mixedness of information flow through the network.
This method provides a more comprehensive analysis for the comparison of brain networks
than standard techniques, since it is not limited to consider a small set of network indicators
(e.g., centrality, clustering, modularity, and so forth) and their joint probability distribution, as it
accounts for the contribution of the whole network state encoded into a density matrix (

; ), @ mathematical
representation of the system which shares important physical and information-theoretic simi-
larities with its counterpart widely used in quantum statistical physics (see for details).
Moreover, it has been systematically shown that the spectral entropy framework performs better
than the traditional methods, previously introduced to investigate information dynamics within
complex structures, in characterizing the global aspects of complex networks (

).

We find that simple models, like the Erdds—Rényi and configuration models, have smaller
spectral entropy at the mesoscale, where mid- or long-range communications between the
nodes are considered, and, consequently, require a significantly smaller amount of bits (up to
1.5 bits) for their description than empirical human brains from healthy individuals. Conversely,
degree-corrected stochastic block models and hyperbolic models (see ), accounting for
the inferred modular structure of the connectome and its latent hyperbolic geometry, respec-
tively, provide similar descriptions of the network state, with differences smaller than 1 bit. It is
worth remarking that the geometry-driven model exhibits higher information entropy for
increasing temporal scale—that is, moving from the mesoscale to the macroscale—denoting
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Information flow:

Communication of brain areas
happen through the propagation of
(electrochemical) signals. Diffusion
processes are used as a proxy to
determine the flow of information in
the connectome.

Information capacity:

Amount of information allowed to
pass through a communication
channel in a given time period.

Density matrix:

A matrix encoding the state of the
system obtained from the
superposition of information streams
weighted by their activation
probabilities.
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a larger persistence of information flow—that is, entropy tends to decay slower with Markov
time—in this type of networks, at variance with stochastic block models and empirical con-
nectomes. Results are compatible when the two types of dynamics, CRW and MERW, are
considered. In general, p values from statistical tests indicate the mesoscale as the suitable
scale to highlight differences (and similarities) between empirical data and synthetic models.
Moreover, we find out that, considering the MERW dynamics, the stochastic block model can
significantly reproduce the empirical brain across all scales.

When applied to connectomes obtained from healthy and unhealthy subjects, we identify
significant differences between healthy individuals and the ones affected by AD at the micro-
scale (adjusted p value smaller than 0.1%; maximum posterior probability smaller than 1%) and
at the mesoscale (adjusted p value smaller than 1%; maximum posterior probability smaller
than 10%), in the case of CRW. The results are confirmed, at one order of magnitude larger,
for MERW and only at the microscale. Remarkably, our approach is able to capture this differ-
ence despite the fact that the topologies of the two groups exhibit a certain amount of similarity
with respect to more traditional network indicators.

In the final section, we describe the interpretation of our results from a neuroscience per-
spective, highlighting that our approach is well suited to capture the multiscale nature of neu-
ral dynamics that is embedded in the hierarchical modular organization of brain structure.
Furthermore, our method allows us to identify precisely the scale at which abnormalities
can alter information flows when studying brain network in patients with AD.

RESULTS
Information-Theoretic Analysis of Human Brain Networks

Before discussing our results, it is important to introduce a few basic concepts that will be used
in the following. Let us frame our problem in terms of a communication process, where one
encodes the description of a complex network to transmit it through some noiseless commu-
nication channel to a receiver, who has to decode the corresponding information, in bits, in
order to reconstruct the original network. Since the channel is assumed to be noiseless, it has
maximum information capacity, that is, the mutual information between the sent and received
information is maximum. Note that the communication we are referring to should not be con-
fused with signaling or communication among distinct areas of the brain.

One way to quantify the average number of bits required to describe a network state G is to
build the corresponding density matrix p(G) and calculate the spectral entropy S(G), math-
ematically equivalent to the von Neumann entropy of an entangled quantum system (De
Domenico & Biamonte, 2016). Here, the parameter t indicates the Markov time of the dynam-
ical process used to propagate information among nodes (see Materials and Methods for de-
tails): the idea is that an ensemble of signals, whose dynamics is governed by a propagator, is
sent from each node to the others for a time t and contributes to collect information about the
underlying topology, therefore reducing uncertainty about the structure. In fact, at time t = 0,
no signal propagates and, consequently, the entropy is maximum because no information at
all is available about network structure. Recently, it has been shown (Chavasieh et al., 2020)
that the density matrix describes the trajectories of information flow through the network and
the entropy provides a measure of diversity of information dynamics in the system (see Figure 1
for an illustration). Interestingly, one can show that a network’s topological complexity, like
the presence of modularity or hierarchy, can boost the diversity of information dynamics with-
in the system and the functional diversity of nodes as senders of information (Chavasiech et al.,
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Figure 1. lllustrating network information entropy in the case of a human connectome. (A) A schematic view of the human connectome
is presented, as a fully connected network with six nodes. Information dynamics within the connectome is regulated by an ensemble of
information streams, mathematically shown as o ¢=1,2,..6. The way each stream contributes to the flow of information is repre-

sented as a diagram, where blue and red arrows, respectively, represent positive and negative fluxes and the size of each node represents
the amount of field trapped on top of the node. (B) Snapshots of possible functional diversity in a schematic connectome at two different
Markov times (i.e., T = 1 above and t = 2 below). From left to right spectral entropy increases as the overlap of information flows de-
creases. Colored nodes encode the sources of information, shaded areas encode the flows of information, colored arrows the directions of
such flows.

2020)—that is, the modularity separates the groups of nodes from each other and the hierarchy
differentiates between the groups, both making asymmetries between the nodes as senders and
receivers of information and diversifying the trajectories of information flow within the system.
Here, we go beyond the analysis of synthetic networks and investigate real connectomes, in
comparison to null and generative models. To avoid confusion, it is worth remarking that the

Network Neuroscience 835
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entropy is a macroscopic descriptor of the system as a whole, that is, it does not quantify pair-
wise information transfer between nodes.

Another desirable feature of this framework is that one can vary t to characterize the network
state at different scales, from microscopic (t ~ 1) to mesoscopic (t ~ v/N)and macroscopic (T~ N).
Note that the scales we are referring to are topological, but the tunable parameter used to span
from the microscopic to the macroscopic one is of temporal nature, since it is the time required
by a dynamical process defined on the top of the network, such as a random walk, to propagate
information. More specifically, we use the temporal evolution of a statistical field to explore the
topological scales of the connectome, a procedure successfully adopted for the analysis of other
complex systems, from the human proteome (

), to the human microbiome ( ) and to social
and transportation systems ( ).

For instance, a network of size N with no connectivity at all would have an entropy equal to
logaN bits, the maximum attainable value, whereas a fully connected network (i.e., a clique),
would have the lowest possible entropy, tending to 0 bits in the limit of large 7.

We consider two distinct dynamical processes, namely CRW and MERW (see
for details), and use the variation of spectral entropy with Markov time t to charac-
terize synthetic and empirical human brain networks across multiple scales. The persistence of
information flow is characterized by the decay of the spectral entropy: the slower the decay,
the more persistent the flow through the network.

Probing Synthetic Models of the Human Brain

Our first analysis concerns with quantifying the differences between empirical connectomes
from healthy subjects, as measured from 196 individuals within the Nathan S. Kline Institute -
Rockland Sample (see ), and synthetic networks obtained from a pool of
generative models (see for details).

Persistence of information flow is used to this aim: we calculate the average spectral en-
tropy (S«(Gyara)) over the whole set of subjects, as well as the average spectral entropy
(S:(Gmoden)) over the ensemble of different independent realizations of a generative model, for
each generative model separately, and for the two distinct dynamical processes separately.
Results are shown in . Specifically, results shown in have been generated by
considering a sample of 196 subjects. For each subject we generate 100 different realizations of
each generative model, resulting in 19,600 samples that are later used to estimate each synthetic
curve shown in the figure. As expected, when considering the values of spectral entropy varying
with Markov time, 1, the generative models exhibit distinct behavior across scales, and their
ordering with respect to the value of entropy allows one rank them from the simplest to the
most complex one. In fact, as it can be seen in and the Erdés—Rényi model
(ERM) and the configuration model (CM) require a smaller amount of bits for their description
than empirical connectomes, followed by the more complex stochastic block model (SBM) and
finally by the hyperbolic model (HM), for both CRW and MERW dynamics. Interestingly, the
spectral entropy of the empirical brain lies between these last two more complex generative
models, providing an indication of its possible mixed nature, interpolating between the modular
feature encoded by SBM and the latent geometry encoded by HM. This results is robust across
the two type of considered dynamics, CRW and MERW. It is worth noticing that differences
between the spectral entropy of the connectomes and their synthetic counterpart obtained

from generative models are visible while spanning from the micro- to mesoscale (t ~ v/N)
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Figure 2. Persistence of information flow in human brain and generative models. In (A) and (C) we report the average value of spectral
entropy varying the Markov time, 1, for the real data (blue line) and for all the considered generative models (encoded with colored lines),
that is, Erd6s—Rényi model (ERM), configuration model (CM), hyperbolic model (HM), and the stochastic block model (SBM), obtained from
the classic random walk (CRW) and the maximal entropy random walk (MERW) dynamics, respectively. In (B) and (D) we report the ratio
between the average value of spectral entropy—varying the Markov time—of each generative model and the value of spectral entropy of
real data, by considering the classic random walk (CRW) and the maximal entropy random walk (MERW) dynamics, respectively. All the
curves have been generated considering networks of 188 nodes, and each synthetic curve results from a sample of 19,600 realizations of
the network. For all the plots, the x-axis is expressed in logarithmic scale. Shaded areas in (B) and (D) represent the error as one standard

deviation.

Network Neuroscience

and that these differences are amplified at the mesoscale (VN <1 < N), where N is the
number of nodes of each network and is equal to 188 (thus, microscale < V188, /188 <
mesoscale < 188 and macroscale > 188). The fact that spectral entropy values remain higher
for increasing Markov time denotes a larger persistence of information flow, that is, a slower
entropy decay, as in the case of the hyperbolic model. To further appreciate the differences
between the entropy of synthetic and empirical networks we compute the entropic ratio
rd{Gmodet; Gdata|RW) = (S(Cmoden))/{(S(Guaza)) for each value of 1, generative model and ran-
dom walk (RW) process (see and ).

In this case, differences are visible at the mesoscale and are amplified at the macroscale (t >
N). CRW dynamics show an important difference between the empirical brain and the hyper-
bolic model, highlighted by an high entropic ratio. This difference also appears when consid-
ering MERW dynamics, which, in addition, reveals the deviation of the SBM from the
empirical brain at the macroscale, highlighted by a high entropic ratio.

Leveraging on the multiresolution nature of our information-theoretic approach, we tested
if there are significant differences between the empirical connectomes and their pool of gen-
erative models, by considering the values of spectral entropy at (and across) different scales
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defined by 1. Results of t tests between spectral entropy values coming from real data and
synthetic models are provided in terms of adjusted p values and maximum posterior prob-
ability, and are reported in . At the microscale, all generative models are significantly
different from the human brain networks they attempt to reproduce when considering the
CRW dynamics, except for a few values of spectral entropy in HM and SBM. Instead, MERW
dynamics show significant similarity between real data and the stochastic block model not only
at the microscale but also across the mesoscale and macroscale. For T > 30, above the mesoscale
the synthetic networks, except for the ones generated by HM, are significantly similar to the
empirical ones, when considering CRW. In the case of HM, the similarity is well established
in the macroscale. In the case of MERW dynamics, the similarity with HM emerges slightly
before the transition from the mesoscale to the macroscale, and across the macroscale. To
further strengthen our results, we report, as well, the values of maximum posterior probability,
obtained by recalibrating the p values adjusted (see ), in and

. Under some specific assumptions (see ), this corresponds to the
error probability in rejecting the null hypothesis Ho—the generative models reproduce the
real data—from a Bayesian perspective.
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Figure 3. Identifying significant differences between human brain networks and generative models. In (A) and (C) we display the adjusted
p value resulting from the t test between real data and all the considered generative models (encoded with colored lines), that is,
Erd6s—Rényi model (ERM), configuration model (CM), hyperbolic model (HM), and the stochastic block model (SBM), by considering the
classic random walk (CRW) and the maximal entropy random walk (MERW) dynamics, respectively. In (B) and (D) we display the values
of maximum posterior probability recalibrated from the adjusted p values. All plots are expressed in log-log scale. Shaded areas represent
in the order the micro-, meso-, and macroscale coincident with v/N (from micro to meso) and N from meso to macroscale, with N = 188.
It is to be noticed that there is an overlap between the ERM and the CM.
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To sum up, the mesoscale seems to be the suitable scale for distinguishing the differences
(and the similarities) between the empirical brain and its possible generative models, since at
the microscale the real data are significantly different from all the synthetic models, while at the
macroscale there are not significant differences between data and models. Curiously, when
considering the MERW dynamics, the empirical brain can resemble a stochastic block model
across all scales, thus supporting the broad application of community detection algorithms and
stressing their importance for the analysis and the understanding of the human brain.

Information Capacity at Different Stages of Dementia

Here, we wonder if we can use the same framework to identify differences between healthy
subjects and patients at different stages of dementia, namely mild cognitive impairment (MCI)
and Alzheimer’s disease (AD). For details about the dataset used for this analysis, we refer to
Materials and Methods.

To spatially characterize different diffusion processes (i.e., CRW and MERW) on top of the
network in healthy brain (H) and at different stages of dementia (MCl and AD), we provide
brain maps encoding the steady state of the two considered dynamics, corresponding to the
leading eigenvector of the transition matrix defining the process (see Figure 4).

Using the same approach as before, we show the results in Figure 5. At the turn of micro
and mesoscale, when considering CRW dynamics, the values of spectral entropy in the con-
nectome of Alzheimer’s disease patients show some differences from both healthy subjects

A . e9 o9 e 9
QU °'9°OOOO o.b” ° 9°°,o. gy o.9°gg,
iXy KX A%
’ ©® do ©
© 7.8 ¢
° 0“1‘ °°
o el

Figure 4. Brain maps of the steady-state distribution for the CRW and MERW dynamics in healthy brain (H) and at different stages of dementia
(MCl and AD). In (A) we report the steady state for the CRW dynamics, while in (B) the steady state for the MERW dynamics. The size of the node
encodes the value of the steady state corresponding to the leading eigenvector of the process.
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and MCl patients. Intriguingly, the connectome of AD patients exhibits a (slightly) higher spec-
tral entropy than the ones of healthy and MCI subjects, denoting a larger persistence of infor-
mation flow. As in the previous case, to further highlight differences between healthy and
different stages of dementia, we compute the ratio between the corresponding values of
spectral entropy (see plots of and 5D). Differences between AD patients and the
other two considered groups of subjects (healthy and MCI) are visible at the mesoscale and
are amplified at the macroscale, while no differences appear between MCl and healthy. These
results are in agreement for the two dynamics, CRW and MERW.

Also in this case, we tested the significance of the differences between the spectral entropy
of the two stages of dementia and healthy controls by means of ¢ tests; results are displayed in
. According to the adjusted p values obtained when considering the CRW dynamics
(see plot of ), the spectral entropy in AD patients is significantly different from the
one of healthy controls for most of the Markov time values at the micro-, meso-, and mac-
roscale. For what concerns the MERW dynamics (see plot of ), the same is true only
at the microscale. Interestingly, the only significant differences between values of spectral
entropy in MCI and in healthy controls arises at the microscale and only for the CRW
dynamics. Finally, resulting values of maximum posterior probability strengthen the results
at the microscale for the AD patients (probability of the error < 1%) when considering
CRW dynamics.
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Figure 6. Identifying significant differences between human brain networks in health and disease. (A and C) We display the adjusted p value
resulting from the t test between different stage of dementia (MCl in teal and Alzheimer’s disease in red) and healthy subjects for each value of
spectral entropy varying with Markov time, 1, by considering the classic random walk (CRW) and the maximal entropy random walk (MERW)
dynamics, respectively. Horizontal lines mark the p value adjusted at 0.05. (B and D) We display the values of maximum posterior probability
recalibrated from the adjusted p values. All the plots are expressed in log-log scale. Shaded areas represent in the order the micro-, meso-,
and macroscale coincident with v/N (from micro to meso) and N from meso- to macroscale, with N = 90.
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DISCUSSION

We presented a multiresolution analysis of the human brain building on statistical physics and
information theory of complex networks.

Patterns of distributed activity, or modes, of the brain are neural dynamics unfolding on an-
atomical connectivity structures (Honey, Kotter, Breakspear, & Sporns, 2007). The topological
structure of the brain has been investigated using many functional and structural neuroimaging
datasets (Bullmore & Sporns, 2009; K. Friston, Kahan, Razi, Stephan, & Sporns, 2014; K. J.
Friston, 2009; Sporns, Chialvo, Kaiser, & Hilgetag, 2004) that have established that brain regions
have a modular functional organization and are also connected in a way that permits the emer-
gence of whole-brain processes like attention, cognition, and behavior. In other words, function-
ally distinct brain areas have a hierarchical organization that permits integration at different
topological scales (Bassett et al., 2008; Meunier et al., 2009). A typical example of a task that
is implemented at different scales is invariant visual object recognition, which relies on a
hierarchically organized set of visual cortical areas whose competition, biased by attention, is
implemented locally but gradually increases thanks to the hierarchical nature of the network
(Deco & Rolls, 2004, 2005). In this context, to simultaneously capture the state of the network
at different scales is crucial to fully understand a neural process. In this paper we focused on
resting-state structural data but further research, investigating behavioral or cognitive functional
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tasks, can benefit from our approach. In particular, we could investigate how the functional role
of brain regions changes in resting state with respect to specific behavioral or cognitive tasks, or
how functional alterations are displayed at multiple brain scales in nonhealthy subjects.

We exploited the information flow among system units restricted by the underlying connec-
tions to gain insights into the different functional role of brain regions at multiple scales. Here
we used classical and maximal entropy random walk processes to explore the topological
scale of the networks, but other types of dynamical processes (such as synchronization pro-
cesses) on the top of the system may be considered in further works, since the framework is
very flexible. We first use our method to compare network models that have been widely used
in the literature to describe brain organization and we found that at the microscale, all the
tested models are not suitable to describe real data. We hypothesize that, although MRI reso-
lution preclude analysis about functional specialization within the dendritic tree or cortical
macrocolumn ( ), their layered structures could strongly affect the results at
low spatial scale. On the contrary, the mesoscale is the most suitable resolution to compare
network topologies. We found that real connectomes have features of the stochastic block
model and the hyperbolic model, where the former is representing the aforementioned brain
modular organization of brain areas and the latter takes into account latent geometry in the
communication flows among them.

Several previous studies have explored the mechanisms that control communication dy-

namics in brain networks ( ; ;

). Some models suggest that neural units

have a knowledge of the whole network topology and convey information from a source to a
predetermined target using (multiple) shortest paths ( ;

). Other models, instead, do not make assumptions about global knowledge of net-
work topology and propose that communication flows are ruled only by local knowledge of
the distance between cortical regions ( ). In our work
we explore both frameworks using two different diffusive processes to describe information
flows among units: in the classical random walk we assume that communication dynamics
only require local knowledge of the connectivity, whereas in the max-entropy random walk
process we hypothesize that the walker uses global knowledge of the connectome to explore
it. We found that the two approaches are compatible and that spectral entropy values are sim-
ilar when we consider the two types of dynamics on top of stochastic block model and hyper-
bolic model. Those results are in agreement with the aforementioned study that shows how
specific brain topological and geometrical properties lead to comparable efficiency in network
communication with or without centralized knowledge.

Finally, our approach was used to investigated alterations in brain network topology in pa-
tients with AD. Here we can avoid any assumption regarding the network generative model
that better describes real data and we can focus on changes in information flows that charac-
terize AD brain networks at different scales. Previous studies used standard network analysis
indicators to report abnormalities in the connectivity between different brain areas, and spe-
cifically found an increased connectivity at spatial scales lower than brain lobe and postulated
a mechanism of compensation associated with cognitive impairment (

). Our results are in agreement with the aforementioned studies, since they show a sig-
nificant increase in persistence of information flows at microscopic scales in AD patients with
respect to healthy subjects. Furthermore, by taking simultaneously into account the whole net-
work state, they suggest that compensation mechanisms may act at smaller topological scales
than previously hypothesized.
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Structural connectivity:

Topological interconnection of brain
regions as identified through
diffusion tensor imaging (DTI)
techniques and summarized in
adjacency matrices according to
some specific indicator (e.g.,
fractional anisotropy).

Fractional anisotropy:

Degree of anisotropy in a diffusion
process bounded between 0 and 1,
where 0 means isotropic diffusion
and 1 represents a diffusion
occurring only along one axis.
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We conclude by outlining some limitations of our approach. Statistical physics of complex
information dynamics has been shown to be a powerful framework to attack a range of prob-
lems in the domain of complex systems. Yet, it is worth mentioning that the computational cost
for calculating spectral entropy is still relatively high, being of the same order of the complex-
ity of an eigenvalue problem. Therefore, our method would perform slower than more stan-
dard techniques in the case of very large networks, that is, for sizes above 10,000 nodes; for
smaller networks, the method is fast enough. The robustness of our analysis should be assessed
also by analyzing other empirical datasets to further clarify how our entropy measures can be
affected by the definition of distinct brain areas and can evolve when considering nonstation-
ary (no resting state) brain activities. Finally, although the results presented in this work are
promising for the investigation of dementia, the clinical usability of our approach requires fur-
ther investigation.

MATERIALS AND METHODS
Data

In this work we rely on two structural connectivity data sets:

1. A structural connectivity data set provided by the Nathan S. Kline Institute - Rockland
Sample (NKI-RS), consisting of 196 healthy subjects (USC Multimodal Connectivity
Database: ).

2. A structural connectivity data set of 71 subjects from , among which 22
with Alzheimer’s disease, 23 affected by mild cognitive impairment, and 26 healthy
controls.

The first data set (
physical structure of brain networks, of 196 healthy subjects at rest without any mental or phys-
ical disorder. The sample is made up of 114 males and 82 females and the age range is rather
large: the youngest person is 4 and the eldest is 85. By looking at the age variable distribution,
the first quartile is equal to 20, and the third quartile is equal to 47; for this reason, the sample
can be considered representative of age variability. The NKI-RS has been designed as a
community-ascertained sample and the representativeness is maximized according to demo-
graphic characteristics of the United States. Brain structural networks are mapped with diffusion
tensor imaging measures (137-direction, 2 mm isotropic), provided by the Center for Magnetic
Resonance Research at the University of Minnesota for the Human Connectomes Project. All
data were publicly shared through the Collaborative Informatics and Neuroimaging Suite
(COINS) developed by the Mind Research Network.

) consists of resting-state structural data, that represent

The second data set consists of structural networks reconstructed from diffusion tensor im-
aging data. In particular, to reconstruct the networks, Lin et al. applied a streamline-based fiber
tracking algorithm on voxelwise diffusion tensors with these set parameters: random whole-
brain seeding, 200,000 reconstructed streamlines, anisotropy threshold of 0.15, angular
threshold of 45°, and streamline length between 30 and 300 mm (for more details about this
data set please refer to ). Here, the nodes of the brain networks correspond to
the 90 cerebral regions from the automatic anatomical labeling (AAL) template (

), while the edges are quantified by computing the fractional anisotropy

(FA) along the interconnected streamlines between two different AAL regions. According to
, measurements obtained from tract-specific metrics (e.g., fractional anisotropy and
diffusivity) reveal themselves to be more sensitive and interpretable than those obtained from
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metrics based on streamline count. These findings motivate our choice to rely on data obtained
from a fractional anisotropy tract-specific metric for building the empirical brain networks.

Fractional anisotropy ranges from 0 to 1, where 0 means that diffusion is isotropic and 1
that diffusion occurs along one axis. To establish the presence of links in a binary way, and to
avoid, at the same time, using arbitrary thresholds, the links of the networks used in this work
are the result of a sampling assuming that the probability of existence of each link is uniformly
distributed. Specifically, we defined the link between i and j in the FA dataset as w;; and, inter-
preting w;; as a probability, we extract a random number r from a uniform distribution U(0, 1)
and we assign the binary link according to the Heaviside © as a; = ©(w;; — r). In other words,
when the value of FA is greater than the corresponding random value the link exists, otherwise
it is discarded. In this case, the sampling is well suited given the FA values bounded between 0
and 1 and can be safely interpreted as the probability of a link to exist. In fact, since FA values
measure the degree of anisotropy of diffusion occurring on a given tract and being such values
bounded between 0 and 1—where 0 means isotropic diffusion and 1 anisotropic diffusion—
they can be safely interpreted as the probability to have a structural connections among brain
regions. The choice of avoiding to adopt a specific threshold is motivated by recent studies
showing that, in the case of probabilistic or correlation networks, it is desirable to account for
the intrinsic uncertainty in the existence of each link ( ).

Generative Models

Generative models are statistical processes allowing one to obtain a sample of synthetic data.
The synthetic networks obtained through such processes can share some properties with the
observed data, and this procedure is guaranteed by the use of parameters that are usually ob-
tained by fitting the observed data. In this study, we consider four different types of generative
models; for each type, we fit the underlying parameters of each model for each empirical con-
nectome separately, and generate 100 independent realizations, to obtain an ensemble of syn-
thetic networks for each connectome. Therefore, we have a total of 400 synthetic networks for
each empirical network.

The Erdés—Rényi model (ERM) generates random graphs with the same number of vertices
and the same number of edges of the real network. These topological features are preserved
each time the model is produced, whereas the network structure randomly changes.

The configuration model (CM) reproduces the degree distribution of the real network, pre-
serving the the degree of the nodes while avoiding multiple edges; in the literature, this model
is also known as degree-preserving random rewiring model ( ).
Parameters used to fit this data-driven model are as many as the number of nodes N, and each
represents the corresponding node degree k; (i =1, 2, ..., N). From each node, k; stubs (edge
halves) start and, by changing the connectivity pattern, link to different nodes, obtaining a
network with no topological correlations which preserve the observed connectivity.

The stochastic block model (SBM) allows one to define an ensemble of random models that
reproduce the mesoscale organization present in the real network. A block consists of a group
of nodes that have a higher likelihood of being connected among them than making external
connections with nodes from other groups. Here, we use graph-tool ( ), an effi-
cient Python module for statistical analysis of graphs and network manipulation, to fit the
degree-corrected SBM.

The hyperbolic model (HM) is based on two important parameters, the popularity and the
similarity ( ), whose trade-off is responsible for the network structure:
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the two parameters are physically formalized and geometrically interpreted, and their product
is optimized in order to obtain connections in the network. To fit this model, we use the
Mercator method ( ), which maps real complex
networks into a hyperbolic geometric space, which is able to provide a more accurate inter-
pretation of the connectome structure than Euclidean geometry. We use Mercator (

) to generate this class of synthetic networks (

Random Walks on Connectomes

Information flow in complex networks, such as human connectomes, has been modeled by
diffusive processes like random walks ( ). As Markovian pro-
cesses, different types of random walks are defined in terms of transition matrices encoding the
probability of jumps from nodes to neighbors. In this work, we use two important types, in-

cluding the classical random walk (CRW) ( ) and maximal entropy random
walk (MERW) ( ).
For both types of dynamics, the Laplacian matrix is defined by £ =1 — T, where T is the

transition matrix governing random walk dynamics and I is the identity matrix. Let us assume
that the i-th components of the vector p(t) indicate the probability to find the random walker in
node i at time 1. The evolution of the probability vector is governed by the master equation

p(t+1) =pOT. M
In the continuous-time approximation, Equation 1 reduces to:

0

P e =0, @

with solution given by p(t) = p(O)e"E.

In a classical random walk on a binary network, the transition matrix is defined as T,.(jCRW> =

Aji/ki, where k; is the degree of i-th node and A is the adjacency matrix. In MERW the transition
matrix is defined in terms of the largest eigenvector of the adjacency matrix. Assume the ei-
genvalues of the adjacency matrix are ordered as a,, £ = 1, 2, ..., N, where ay has the max-
imum value, and their corresponding eigenvectors are given by q“. The transition matrix, in

N)
TMERW) _ Ay G,

(
this case, is given by T; 2.~ One of the interesting features of MERW is that the
q;

probability of a transition from one node to another within t steps of time is independent of
the intermediate transitions and all trajectories from i-th to j-th node with the length of t are
equiprobable.

The Laplacian matrix for CRW is LRV~ = TCRM) \while for MERW it is defined by
LMERY) — | — TMERW) Therefore, each dynamical process can be obtained from Equation 2
by choosing the relevant Laplacian matrix.

Statistical Physics of Information Dynamics

Characterizing the flow of information between nodes in a complex network is challenging,
requiring a deep understanding of the network topology, relevant dynamical processes, and
the interplay between them. Recently, a statistical field theory has been introduced to describe
the information flow between the components of complex systems in terms of the dynamics of
a field on top of the network, moving among nodes. In this framework, for a network denoted
as G, the dynamical process governing the flow can be described in terms of a general
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Information streams:

Operators (i.e., matrices) obtained
from eigen-decomposition of
propagator, responsible for directing
information flow through the system.

Partition function:

The summation of the stream sizes,
encoding each stream contribution to
the overall flow, that is used to
normalize the density matrix.

P value calibration:

Recomputing the p value so that it
can be interpreted as the probability
of Ho, under some specific
assumptions.
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differential equation, which, after linearization, reduces to a Schrodinger-like equation with a

quasi-Hamiltonian H(G) and the propagator e ™€ that determines the flow trajectories at
time t. Furthermore, the propagator can be eigen-decomposed to obtain an ensemble of
operators acting like information streams, directing the flow of the field from unit to unit
( ). The topological factors, the type of the quasi-Hamiltonian and t affect
the size of the streams and, consequently, each stream can be active or nonactive (i.e., having
negligible size) under a specific system configuration.

To study the macroscopic properties of these microscopic interactions between the nodes,
it has been shown that a superposition of the information streams, weighted by their activation
probabilities, provides a Gibbsian-like density matrix describing the state of the system:

e—rﬂ(G)

p(C) = 70

&)
where Z(G) = Trle”™ )] plays the role of the partition function and is related to the transport
properties of the network ( ). Using the above density matrix, one
can quantify the mixed-ness of the information streams in terms of the von Neumann entropy as

S:(G) = =Tr[p(G) log,p.(C)], €))

which is also a measure of diversity of the flow dynamics. The maximum value for the von
Neumann entropy of the system is log, N corresponding to the state where all information
streams are active with the same size and to capture the dynamics, one needs to consider all
the streams. At large temporal scales 1, the entropy of a connected network is expected to decay,
as the distribution of the field becomes less dependent on the initial conditions. Interestingly, it
has been shown that the von Neumann entropy can be used to measure the functional diversity
of nodes as senders of information ( ). Infact, in a system where the overlap
between the flow distribution originated from different nodes is high, we get lower values for the
entropy.

It is worth noting that if the dynamical process is continuous diffusion governed by the com-
binatorial Laplacian, the von Neumann entropy obtained from the above statistical field theory
is equal to the spectral entropy ( ), introduced to analyze com-
plex networks from an information-theoretic perspective.

Here, we consider random walk dynamics as a proxy for information transport in human
connectomes. Therefore, the quasi-Hamiltonian equals £“*" for classical random walk and
LMERY) for maximal entropy random walk.

Maximum Posterior Probability

To quantify the statistical significance of the differences (or similarities) within the connec-
tomes coming from two distinct groups (e.g., empirical data vs. model, control vs. disease,
etc.) considered for this work, we performed pairwise t tests, adequately corrected for multiple
test comparison. In particular, we tested two distinct null hypotheses (Ho): (a) the generative
models reproduce the real data (dataset 1) and (b) the spectral entropies in healthy and non-
healthy brains are equal (dataset 2). Since we are performing multiple tests, that is, we tested
real data against the four generative models and the healthy controls against different stages of
dementia, we adjusted the resulting p values by means of the Bonferroni-Holm method. All
pairwise t tests are performed by considering a 95% confidence interval.

To avoid confusion in the interpretation of the p values, here we use a Bayesian approach
for p value calibration proposed by , so that p values can be
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interpreted from both a frequentist and a Bayesian perspective. Specifically, we compute the
Bayes factor as:
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and Hy, the latter being the alternative hypothesis. If we consider the frequentist error proba-
bility of rejecting Hy when it is true (type | error), the calibration is given by
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where, in this case, p is the adjusted p value. Therefore, we have two possible interpretation
for the outcome of this calibration. From a frequentist perspective, it precisely coincides with
the error probability of rejecting a true null hypothesis. From a Bayesian perspective, it is the
(maximum) posterior probability of Hy provided that the Bayes factor corresponds to the one
expressed in Equation 5 and assuming that Hy and H; have equal prior probabilities of 1/2.
The results of t test thus can be either interpreted as the probability of rejecting the null
hypothesis when it is true and as the probability of the null hypothesis itself. In other words,
lower recalibrated p values are indicative of lower accordance between the samples that we
are testing—lower maximum posterior probability—while higher recalibrated p values can be
interpreted as higher probability of accordance between the samples under consideration.
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