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Abstract

Predictingfitness innaturalpopulations isamajorchallenge inbiology. Itmaybepossible to leveragefast-accumulatinggenomicdata

sets to infer the fitness effects of mutant alleles, allowing evolutionary questions to be addressed in any organism. In this paper, we

investigate the utility of one such tool, called PROVEAN. This program compares a query sequence with existing data to provide an

alignment-based score for any protein variant, with scores categorized as neutral or deleterious based on a pre-set threshold.

PROVEAN has been used widely in evolutionary studies, for example, to estimate mutation load in natural populations, but has

not been formally tested as a predictor of aggregate mutational effects on fitness. Using three large published data sets on the

genomesequencesof laboratorymutationaccumulation lines, we assessed howwell PROVEANpredicted the actual fitnesspatterns

observed, relative to other metrics. In most cases, we find that a simple count of the total number of mutant proteins is a better

predictor of fitness than the number of proteins with variants scored as deleterious by PROVEAN. We also find that the sum of all

mutant protein scores explains variation in fitness better than the number of mutant proteins in one of the data sets. We discuss the

implications of these results for studies of populations in the wild.

Key words: distribution of fitness effects, ecological genetics, essential genes, Saccharomyces cerevisiae, Chlamydomonas

reinhardtii.

Introduction

In a well-adapted population, mutations that are deleterious

will tend to be eliminated by selection, whereas neutral var-

iants may persist. When we compare similar proteins from

different species, we find that variation is unequally

distributed across the amino acid sequence: some sites are

highly variable whereas others are constrained. A lack of var-

iation at some sites among homologous protein sequences is

believed to reflect a history of purifying selection against del-

eterious mutations. A history of selection also implies that
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most new mutations will be neutral or deleterious, with rare

exceptions, because available beneficial changes have already

appeared and become fixed. This framework leads to the

prediction that the frequency of an allele among homologous

sequences should be inversely proportional to its deleterious

effect on fitness (Ohta 1992). Several programs have been

developed to identify deleterious alleles based on this general

framework, and their utility has been validated based on

known disease-causing alleles in humans (Ng and Henikoff

2001, 2006).

Predicting the impact of amino acid substitutions on pro-

tein function and fitness has always been a key goal of mo-

lecular evolution research. An early approach compared

proteins among related species to determine which amino

acids were most substitutable over evolutionary time. Highly

similar proteins were gathered, and the frequency of different

amino acid substitutions in these sequences were used to

determine a substitution matrix. Henikoff and Henikoff

(1992) gathered conserved regions of proteins (blocks) from

the PROSITE database for over 500 protein families to gener-

ate BLOSUM—the Blocks Substitution Matrix. The score for a

certain amino acid substitution in the BLOSUM is a log-odds

ratio, log(H1/H0), where H0 is the probability of seeing the two

amino acids align by chance (frequency of amino acid one

times the frequency of amino acid two) and H1 is the fre-

quency of this amino acid pair in the conserved blocks (for a

primer on BLOSUM, see Eddy [2004]).

Cargill et al. (1999) used the BLOSUM62 matrix to rank

single-nucleotide polymorphisms in human proteins as con-

served or not. This spurred Ng and Henikoff (2001) to develop

SIFT (Separate Intolerant From Tolerant); they argued that the

functional impact of an amino acid substitution cannot be

solely predicted by its score in the BLOSUM matrix. Rather,

one needs to consider the position in the sequence and exist-

ing polymorphisms in highly homologous sequences.

Although BLOSUM62 is based on conserved regions of highly

diverged proteins, SIFT relies on closely related proteins to

predict whether a mutation exists in a functionally important

region, and calculates the probability of substitution for each

position. For any given mutant protein, SIFT can predict

whether it will be deleterious given its probability in the site-

specific matrix.

Concurrently with the development of SIFT, Adzhubei et al.

(2010) presented PolyPhen-2 which, in contrast to their pre-

decessor PolyPhen (Ramensky et al. 2002) and SIFT, combines

multiple predictive features, including structure-based predic-

tors such as the accessible surface area of the protein, as well

as multiple sequence alignment. Other tools that can be used

on nonhuman variants (but in contrast to PolyPhen-2 and SIFT

are not relying on predefined alignments) include MAPP

(Stone and Sidow 2005), GERPþþ (Davydov et al. 2010),

and likelihood ratio tests (Chun and Fay 2011). A lot of focus

has been put on evaluating and comparing the different tools

on testing data sets (Dong et al. 2015; Grimm et al. 2015;

Kono et al. 2018). Those studies have evaluated the tools’

predictive power on individual protein changes, not on the

aggregate effect of multiple proteins with variants. We are

interested in what benefit these kinds of tools can offer to the

eco-evolutionary researcher for quantifying the genetic health

of their (nonhuman) population of study, similar to the studies

done on the cost of domestication (Renaut and Rieseberg

2015; Kono et al. 2016; Moyers et al. 2018).

This paper focuses solely on the Protein Variant Effect

Analyzer (PROVEAN), introduced by Choi et al. (2012) to pre-

dict the effects of not only amino acid substitutions but also

in-frame insertions and deletions. The field of computational

variant effect prediction is under continual development, and

PROVEAN is not necessarily the most widely used tool in all

disciplines. However, PROVEAN has come to be a very popular

tool in genomic inference in ecology and evolution and has

been cited in almost 2,000 research articles as of November

2021 (Web of Science citation report). Though PROVEAN was

developed with and evaluated on human medical data it has

increasingly been used to categorize polymorphisms in a va-

riety of nonhuman species (supplementary table S1,

Supplementary Material online). Notably, eco-evolutionary

studies have applied PROVEAN in comparisons of populations

that differ not in one, but many, proteins. Many studies use

PROVEAN to draw conclusions about relative mutation load,

for example, in different habitats of nocturnal lemurs (Veilleux

et al. 2013), between native and invasive species of

Asteraceae (Hodgins et al. 2015), between domesticated

and wild Compositae crops (Renaut and Rieseberg 2015),

populations of Lake Trout (Perrier et al. 2017), and between

new sex chromosomes in cichlids (Gammerdinger et al.

2019).

Although our focus on PROVEAN specifically was based on

the considerations above, there is overlap between this

method and other programs, most particularly SIFT and

PolyPhen-2, which use sequence comparisons from BLAST

searches and therefore are sensitive to the choice of database

(Choi et al. 2012; Kono et al. 2018). Similar to SIFT, PROVEAN

gathers clusters of highly homologous sequences in the NCBI

nonredundant protein sequences (nr) database. Rather than

producing probabilities of substitution across the protein of

interest, PROVEAN computes an alignment score for both the

query sequence (i.e., wild type) and the mutant to these se-

quence clusters. The difference in the mean alignment score

for the query and mutant protein is called the PROVEAN

score. The BLOSUM62 matrix that is used for protein align-

ment in PROVEAN has blocks aligned from proteins that are

less than 62% identical. A 62% cutoff ensures that the pro-

teins that are being compared are divergent; within these

proteins, only the conserved regions are used in the

BLOSUM matrix, ensuring that their similarities and differen-

ces reflect selection, or a lack thereof.

In the first step of PROVEAN, a BLAST (Altschul et al. 1990;

Camacho et al. 2009) search is done using the submitted
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query sequence. An Expect (E) value cutoff of 0.1 is used to

find homologous, while still distantly related, sequences. This

typically results in thousands of matches across a wide range

of taxa. To avoid redundancy these sequences are clustered

based on a cutoff of 75% sequence similarity within a cluster.

Then, the top 30 clusters most similar to the query sequence

are used to calculate alignment scores to the query and mu-

tant sequence and finally the PROVEAN score. The supporting

sequence set can be saved and analyzed independently. The

PROVEAN process is summarized in figure 1A (inspired from

figure 10 in Choi et al. [2012]).

Based on the PROVEAN score, the program reports a pre-

dicted functional category, either deleterious or neutral, based

on a pre-set threshold. Though it is possible for a mutant

protein to receive a higher mean alignment score than the

wild type, there is no category for beneficial effects. The de-

fault threshold value is �2.5, and variants with scores below

this threshold are classified as deleterious. This threshold was

chosen to maximize sensitivity (detection) and specificity (ac-

curacy) when assigning functional effects to common versus

disease-causing human protein variants (Choi et al. 2012;

Choi and Chan 2015).

The creators of PROVEAN suggest adjusting the threshold

score for defining deleterious alleles depending on the user’s

needs. However, in the studies summarized in supplementary

table S1, Supplementary Material online, that applied

PROVEAN to nonhuman organisms, nearly all used the default

cutoff value. Although there have been studies evaluating

different methods of functional annotation of mutations,

they do not consider the possibility of species-specific thresh-

olds (Kono et al. 2018). How well does this tool, which was

developed with data from humans, work in predicting fitness

effects in other organisms, when many variants are present?

Experimental systems offer an opportunity to evaluate the

explanatory power of PROVEAN predictions in nonhuman

systems, but such research has been limited. Lind et al.

(2010, 2016) measured the individual fitness effects of 156

mutagenesis-induced mutations in specific genes in

Salmonella. They found that PROVEAN scores correlated

well with the fitness effects of mutations in three genes re-

quired for growth on arabinose. In contrast, PROVEAN scores

for mutations in two ribosomal proteins did not significantly

correlate with fitness effects. Our aim was to take a similar

approach using larger samples of random mutations, with

multiple mutations found on each genetic background, sim-

ilar to many instances where PROVEAN is applied.

Mutation accumulation (MA) experiments attempt to sep-

arate mutation from selection by repeatedly bottlenecking

FIG. 1.—Conceptual figure of project. (A) Outline of PROVEAN process, inspired by figure 10 in Choi et al. (2012). (B) The shapes in the bottom left

represent different proteins within the ancestor. Each MA line (represented by color) has some number of protein(s) mutated compared with the ancestor.

The same protein can have different mutations in different MA lines, causing the score given by PROVEAN to differ (the variant of the rainbow protein carried

by the orange MA line is given a score 0.5, whereas the variant of the rainbow protein carried by the yellow line receives a score of�0.2). All proteins with

variants between the MA ancestor and MA lines were submitted to PROVEAN. Each MA line had the number and PROVEAN scores of their mutant proteins

summarized (table). Finally, we looked for correlations between the fitness of MA lines and their number of mutant proteins (top graph in 3) or the number

of mutant proteins scored as deleterious by PROVEAN (bottom graph in 3).
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replicate populations so that drift rather than selection dom-

inates the probability that a mutation establishes within each

lineage (Halligan and Keightley 2009). With a nearly random

sample of mutations in many MA lines, we can use PROVEAN

to predict the impact of the mutations and compare these

predictions to direct estimates of relative fitness based on

laboratory assays. We can also compare how well the default

parameters work to find homologous sequences in nonhu-

man species.

We analyzed three MA data sets that combine genomic

information with growth rate data, allowing us to evaluate

whether mutations scored as deleterious by PROVEAN corre-

late with measured fitness (fig. 1B): Saccharomyces cerevisiae

data set 1 (Sc1) (Sharp et al. 2018), S. cerevisiae data set 2

(Sc2) (Liu and Zhang 2019), and Chlamydomonas reinhardtii

(Cr) (Ness et al. 2015; Kraemer et al. 2017). These data sets

span different kingdoms, ploidy levels (Sc1), environments

(Sc2), and genetic backgrounds (Cr). We assessed the predic-

tive value of this tool by asking whether incorporating

PROVEAN scores in a regression model provides a better fit

to MA line fitness data than a model that simply predicts

fitness based on the number of mutant proteins.

The PROVEAN method implicitly assumes that large

changes to proteins are deleterious (the more dissimilar to

the query sequence the worse the score). Adaptation to a

new environment requiring significant and novel changes to

a protein could thus be misclassified as deleterious. Some

studies, for example, Yoshida et al. (2016) and Kusakabe

et al. (2017) have used the absolute PROVEAN score to find

function-altering alleles, thereby including variants with scores

substantially above or below zero, and so we also considered

this approach in some of our tests.

Results

In each MA data set, we examined the relationship between

relative fitness and the number of mutant proteins, W. Our

key question is whether the number of variant proteins scored

as “deleterious” by PROVEAN, Wdel, is a better predictor of

fitness than the total number of variant proteins, Wtot, which

does not incorporate information from PROVEAN. We as-

sume that the ancestor of a given set of MA lines has

Wtot¼Wdel¼0 by definition, and a relative fitness value of 0,

such that the model intercepts can be fixed at (0, 0). By in-

corporating the MA controls in this way, we increase power

to detect effects of mutant proteins on fitness generally, but

we later explore whether this approach affects our key

comparisons.

In addition to these key models, we asked whether predic-

tion can be improved by incorporating additional information

from the PROVEAN scores and model systems. For data sets

using S. cerevisiae, where the “essentialness” of each gene

has been determined (Winzeler et al. 1999), we assessed the

predictive value of variant proteins in essential genes only:

Wtot_ess and Wdel_ess. We also considered the number of var-

iant proteins with absolute PROVEAN scores above 2.5 as a

possible predictor (Wabs, Wabs_ess). The distinction between the

Wdel and the Wabs metrics is that the former counts mutant

proteins with scores below a certain threshold, whereas the

latter counts mutant proteins with an absolute value of their

score bigger than the absolute value of the chosen threshold.

If the default threshold of �2.5 was used, a mutant protein

that received a score ofþ3 would be included in Wabs but not

in Wdel. There was no score aboveþ2.5 in the haploid lines of

Sc1, which means Wdel¼Wabs and Wdel_ess¼Wabs_ess. In Sc2

there was no score above þ2.5 in the essential genes such

that Wdel_ess¼Wabs_ess. Finally, we examined whether the log-

transformed sum of all PROVEAN scores was a predictor of

fitness (
P

tot and
P

tot_ess).

In all three data sets, we find that both Wtot and Wdel are

significant predictors of fitness (fig. 2). But our main interest is

in whether PROVEAN adds explanatory power, above and

beyond a simpler alternative. For the most part, we find

that models with Wtot as a predictor are preferred over models

incorporating PROVEAN scores, based on Akaike’s informa-

tion criterion (AIC) scores (fig. 2). However, in the Cr data set,

the sum of PROVEAN scores is the preferred predictor of fit-

ness differences. The formula for AIC is 2K�ln(L), where K is

the number of model parameters and L is the log-likelihood of

the model. The reason why the AIC scores of our models are

negative is because we have few (or only one) predictors but

the log-likelihood scores of our models are large. We provide

details of our model results below.

Saccharomyces cerevisiae Data Set 1 (Sc1)

This data set consists of both haploid and diploid MA lines. In

the haploid MA lines, no significant decline in mean fitness

was detected, though genetic variation was present (Sharp

et al. 2018). We therefore used the absolute change in

growth rate relative to the ancestor as the response variable

in linear models for the haploid lines. We found that all our

explanatory variables individually are significant predictors of

fitness (see Supplementary Material online), but that the

model using the total number of mutant proteins Wtot was

preferred. All other models evaluated had a DAIC score higher

than 9 compared with this model.

For the diploid MA lines, we included relative genome size

as a covariate to account for the effects of aneuploidy, which

we previously found shows a strong relationship with fitness

in these lines (Sharp et al. 2018) (aneuploidy was not observed

in haploids). These models showed the same qualitative

results as in the haploids. The model using the total number

of mutated proteins was preferred, and all other models had a

DAIC of 5 or higher compared with this.

Sandell and Sharp GBE

4 Genome Biol. Evol. 14(1) https://doi.org/10.1093/gbe/evac004 Advance Access publication 17 January 2022

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac004#supplementary-data


r � 5.75 � 10�4, p � 10�4 ***
AIC � �932.3

0.000

0.005

0.010

0.015

0.0 2.5 5.0 7.5 10.0 12.5
Number of mutant proteins �tot

C
ha

ng
e 

in
 re

la
tiv

e 
fit

ne
ss

 u
nd

er
 M

A

Sc1 haploid

r � 9.96 � 10�4, p � 10�4 ***
AIC � �922.6

0.000

0.005

0.010

0.015

0 2 4 6
Number of deleterious mutant proteins �del

Sc1 haploid

r � �6.51 � 10�4, p � 10�4 ***
AIC � �868.6

−0.02

−0.01

0.00

0.01

0.02

0 4 8
Residual number of mutant proteins �tot

R
es

id
ua

l r
el

at
iv

e 
fit

ne
ss

Sc1 diploid

r � �1.14 � 10�3, p � 10�4 ***
AIC � �863.2

−0.02

−0.01

0.00

0.01

0.02

0.0 2.5 5.0 7.5
Residual number of deleterious mutant proteins �del

Sc1 diploid

r � �1.02 � 10�3, p � 10�4 ***
AIC � �934.8

−0.04

−0.02

0.00

0.02

0 5 10 15 20
Number of mutant proteins �tot

R
el

at
iv

e 
fit

ne
ss

Sc2

r � �1.76 � 10�3, p � 10�4 ***
AIC � �932.9

−0.04

−0.02

0.00

0.02

0 5 10
Number of deleterious mutant proteins �del

Sc2

AIC = −456.7

0.00

0.01

0.02

0.03

0.04

0 10 20 30 40 50
Number of mutant proteins �tot

C
ha

ng
e 

in
 re

la
tiv

e 
fit

ne
ss

 u
nd

er
 M

A

Cr

AIC = −473.1

0.00

0.01

0.02

0.03

0.04

2.5 5.0 7.5 10.0
Log sum of scores �tot

Cr

Ancestor
1373

1952

2342

2344

2931

2937

A B

C D

E F

G H

FIG. 2.—Partitioning mutations based on their PROVEAN score does not improve our models in yeast (compare A with B, C with D, and E with F). In the

Chlamydomonas reinhardtii data set, the best model uses the sum of PROVEAN scores (compare G with H). Each dot represents one mutation accumulation

line. Ancestral controls are not shown. Gray bands are 95% confidence intervals. In G and H, the black line and gray band show the overall effect of the

explanatory variable, and the colored lines show the random slope for each ancestor.
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Saccharomyces cerevisiae Data Set 2 (Sc2)

This data set involves strains growing in multiple environ-

ments, but we did not find an effect of environment on the

fitness of MA lines relative to controls growing in the same

environment. We also did not detect an effect of aneuploidy

in this data set. We found that all our other explanatory var-

iables individually were significant predictors of fitness (see

Supplementary Material online), but that the model using

the total number of mutant proteins Wtot was preferred.

The model using Wdel was the next best, and in contrast to

the result in Sc1, there was no significant difference in AIC

score between the two top models (the model using Wdel had

a DAIC score of <2).

Chlamydomonas reinhardtii Data Set (Cr)

This data set involves multiple genetic backgrounds, and so

we applied linear mixed-effect models with the ancestral

strain as a random effect on the slope. We found that all

our explanatory variables individually were significant predic-

tors of fitness (see Supplementary Material online), but that

the model using Rtot was preferred (all other models had a

DAIC score larger than 10), in contrast to the yeast data sets.

Some genetic backgrounds show potential increases and

decreases in fitness, but we obtained the same qualitative

results when considering the absolute change in relative fit-

ness as the response variable.

Varying the PROVEAN Cutoff Value

As the PROVEAN creators suggest changing the threshold or

cutoff value depending on the circumstance, we investigated

how the AIC of our model using Wdel changes based on the

cutoff value (fig. 3). The AIC score of the model declines as

Wdel approaches Wtot in both yeast data sets, that is, the more

mutant proteins that are included into the model, the better

the variance in fitness is explained. In contrast, the AIC score

of the model in the Cr data set has a nonmonotonic relation-

ship with the cutoff value; the lowest AIC score is achieved

with a threshold of �2 (fig. 3). These results again imply that

PROVEAN score has some explanatory potential above that of

the total number of mutant proteins in the Cr data set but not

in the yeast data sets.

Differences in the Number of Clusters and Supporting
Sequences between Species

Although the accuracy of PROVEAN is reported to be ro-

bust to the number of clusters used for scoring, there is a

significant drop in accuracy for very small cluster numbers

in the original study of human variants (figure S4 in Choi

et al. [2012]). In addition, accuracy decreases if the number

of supporting sequences chosen to make the clusters falls

below 50 (figure 9 in Choi et al. [2012]); 122 of the 1,534

yeast proteins that we analyzed involved fewer than 30

clusters (8%), and 79 proteins had fewer than 50 support-

ing sequences (5%). Even more (13%) of the C. reinhardtii

proteins received fewer than 30 clusters (187 out of 1,444),

and three-quarters of the proteins (1,082 out of 1,444,

75%) had fewer than 50 supporting sequences. This lack

of supporting sequences may reflect an underrepresenta-

tion of algal proteins in the NCBI protein database, which

leads to few homologous sequences passing the E-value

threshold of 0.1. This is also evident from the average E-

value score of proteins, which is an order of magnitude

larger in Cr than in Sc1 and Sc2 (19.9�10�4 compared

with 1.6�10�4 for Sc1 and 2.9�10�4 for Sc2). This means

that the scores for variant proteins in Cr were based on

alignments to fewer sequences with lower similarity, which

is expected to reduce accuracy.

Reference Bias

For all proteins that differed between the laboratory ancestor

and any MA line, we looked for differences between the

laboratory ancestor and the reference genome. Although

we found few mutated proteins with preexisting differences

between the laboratory strain and reference genome in the

two yeast data sets (142 out of 1,880 proteins), most mutated

proteins in Cr already differed between the laboratory strains

and the reference genome (1,136 out of 1,369, table 1).

These protein differences between the MA ancestor and

the reference genome most often were complex, involving

more than one kind of mutation (substitution, insertion, and/

or deletion). We explored how this preexisting natural varia-

tion would be scored by PROVEAN. That is, we coded the

proteins with variants differentiating each ancestral laboratory

strain and the reference genome and submitted these variants

with the protein of the laboratory strain as the query

sequence.

Median scores for the ancestral variants and new muta-

tions in each data set are plotted in figure 4. Unlike new

mutations in MA lines, differences between the reference

and ancestral genotypes have potentially been “screened”

by natural selection, and we therefore expect them to be

less deleterious. This prediction is supported in the two yeast

data sets, where the ancestral variants were less likely than

new mutations to be scored as deleterious under the default

threshold (Fisher’s exact tests; Sc1: P¼ 0.026; Sc2: P¼ 0.026),

and have less extreme (i.e., higher) PROVEAN scores overall

(Wilcox tests; Sc1: P< 1� 10�9; Sc2: P< 1� 10�5). In con-

trast, ancestral variants in the Cr data set were more likely to

be scored as deleterious than new mutations (logistic regres-

sion with random effects of ancestral strain, P< 1� 10�15),

and had more extreme (negative) scores overall (Wilcox test

for each strain background, all P< 1� 10�8).

To boost the predictive value of our models, we leveraged

information from control lines where fitness was measured

and new mutations were absent. Although such “standard”
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FIG. 3.—Varying the threshold for what to call deleterious mutations. The black line shows AIC score (on the left axis), and the gray line shows the

proportion of mutant proteins that is considered deleterious (the right axis). In yeast (A, B, C), the best model uses all mutations, that is, the AIC score of the

model using Wdel as the explanatory variable decreases the closer Wdel gets to Wtot. In Cr, a cutoff of approximately�2 gives Wdel the biggest DAIC compared

with the model using all protein mutants.
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genotypes might be available in some study systems, we

would ideally like to be able to detect a genotype–phenotype

relationship among mutants alone, that is, by not fixing the

model intercepts or incorporating information from

“controls.” In the context of MA data, this approach will re-

duce power, particularly when the variance in the number of

proteins with variants per MA line is small. We re-evaluated

our linear models after removing the fixed intercept. In hap-

loid Sc1, only the sum of scores
P

tot remains a significant

predictor of fitness differences among MA lines, and this per-

forms significantly better than the corresponding model using

Wtot (DAIC¼ 2.62). In diploid Sc1 no predictor is significant

when the intercept is not fixed; whereas Wdel_ess is the pre-

ferred predictor, this does not significantly outperform Wtot

(DAIC¼ 1.88) or Wtot_ess (DAIC¼ 1.27). This pattern was also

the case for the Sc2 data set (see Supplementary Material

online). Similarly, in the Cr data set, predictors are not

significant without a fixed intercept, and the best model

uses Wdel but does not significantly outperform a model using

Wtot (DAIC¼ 0.35).

Discussion

Predicting the impact of mutations on fitness is an important

goal in molecular population genetics. Several tools implicitly

assume that beneficial alleles sweep to fixation and deleteri-

ous mutations are purged, such that neither exist as common

polymorphisms in standing genetic variation, whereas alleles

with nearly neutral effects can be found at higher frequencies.

Such differences in the site frequency spectrum are ultimately

the basis for methods like PROVEAN, which is widely used in

the life sciences (supplementary table S1, Supplementary

Material online). Although efforts have been made to com-

pare approaches to estimate fitness effects computationally

Table 1

Number of Protein-Coding Mutations for MA Lines of a Particular Ancestral Chlamydomonas reinhardtii Line and the Ancestral Line’s Protein-Coding

Mutations

Ancestor Strain ID Number of Mutated

Proteins in MA Linesa

Number of which Had Prior

Mutation(s) in Ancestor

Number of

MA Lines

Number of Protein

Variantsb

1373 381 234 12 390

1952 80 75 14 82

2342 188 171 12 192

2344 239 225 15 244

2931 351 322 14 358

2937 130 109 15 131

Total 1,369 1,136 82 1,397

aEach protein is counted only once, even if several MA lines have mutations in the protein.
bEach change to a protein in any mutant sample is counted. This is the number of protein variants submitted to be scored by PROVEAN.
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(Huber et al. 2020; Chen et al. 2021), few studies compare

the predictions with empirical fitness estimates. MA experi-

ments offer a way to evaluate these methods, as the effect of

mutations on fitness is measured in controlled environments

with consistent genetic backgrounds.

We asked whether the information from PROVEAN could

explain variation in growth rate in three independent sets of

MA lines. In two S. cerevisiae data sets (Sc1 and Sc2), using

PROVEAN to categorize variant proteins as deleterious or neu-

tral did not provide improvements in model fit beyond what

can be achieved by simply considering the total number of

mutant proteins. In the C. reinhardtii (Cr) data set, incorporat-

ing PROVEAN information was useful, especially when con-

sidering the sum of the PROVEAN scores themselves.

There are several possible explanations for why PROVEAN

scores do not always add useful information for predicting

fitness. First, it could be that PROVEAN scores accurately de-

lineate variants whose effects, averaged over many genetic

backgrounds and many generations of evolution, are delete-

rious versus neutral, but that the short-term effects of protein

variants are not always correlated with their long-term effects.

An extreme demonstration of this was seen in the yeast

knock-out project, where less than half of gene disruptions

had a detectable effect on growth rate in the standard lab

environment (Winzeler et al. 1999), but these genes are nev-

ertheless maintained by selection in the long run. In the data

sets we studied, about half of the proteins with variants were

classified as deleterious by PROVEAN under the standard

threshold; the fact that Wtot tends to be a better predictor

of fitness than Wdel therefore implies that variants scored as

nondeleterious by PROVEAN often have detectable effects in

the lab. Indeed, if we examine models with both Wdel and

Wnondel¼Wtot�Wdel as predictors, we find that Wnondel is a

significant predictor of fitness (in all data sets). This implies

that the effect of an allele in one environment (the lab) might

overestimate its long-term effect. Although the conventional

wisdom is that mutations might have weaker effects in a

simple laboratory environment than they do in putatively

stressful natural environments, there is little support for the

idea that stress consistently increases the strength of selection

(Agrawal and Whitlock 2010).

Despite PROVEAN calling large protein changes

“deleterious,” mutations at phylogenetically conserved sites

can have effects that are both positive and negative. Indeed,

mutations scored as deleterious by PROVEAN have been

found to be adaptive in stressful conditions (Gorter et al.

2017), and many mutations that have improved crops during

plant domestication are scored as deleterious by the program

(Kono et al. 2016). Furthermore, the potential for epistatic

interactions among alleles means that fitness need not be

the sum of its parts, that is, mutations may exacerbate or

compensate for the effects of one another. This may be par-

ticularly relevant when using the presence of deleterious var-

iants to infer high mutation load; in the presence of

deleterious alleles, selection can favor the spread of other

deleterious alleles due to positive epistasis (compensatory ad-

aptation, e.g., Trindade et al. [2009]).

Whenever the effects of alleles depend on the environ-

ment or genetic background, we should expect a weakening

of the association between PROVEAN scores and the realized

impacts of mutations in a given context. By restricting the

analysis to genes that are essential in the standard laboratory

environment in S. cerevisiae, we might expect to find a stron-

ger correlation between fitness and PROVEAN score, though

the size of the data set is reduced. However, the number of

mutant essential proteins was never preferred over the total

number of mutant proteins in our model comparisons.

Since PROVEAN scores are based on patterns that manifest

on an evolutionary timescale, it makes sense that they would

have the greatest predictive value in terms of the long-term

impacts of protein variants. If this framework is correct, it

would imply that tools like PROVEAN are best used to obtain

global, long-term predictions, but would have weaker predic-

tive power in any single genetic or environmental context.

We should also recognize that the standing frequency of a

deleterious allele depends not just on its fitness effect, but also

the rate at which it is generated by mutation. In principle,

alleles classified as neutral by PROVEAN due to their high

frequency could instead have mildly deleterious effects and

a high underlying mutation rate. The potential magnitude of

this effect is unclear, but we do know that single-nucleotide

mutations appearing in the Sc1 MA experiment coincide with

polymorphic sites identified in global samples of yeast

(Schacherer et al. 2009) more often than expected by chance

(Sharp et al. 2018), indicating a detectable level of mutation

rate variation across the genome that persists among genetic

backgrounds.

Our models will also be less effective if there are mutations

among the MA lines that were not detected at all. In the yeast

data sets most of the genome was sequenced to moderate or

high depth, and so it is unlikely that many mutations in

protein-coding regions were missed. In the Cr data set, about

62.8% of the genome was successfully genotyped, so the risk

of undetected mutations may be greater, but this is also the

data set where PROVEAN was most successful. Although we

attempted to account for the effects of structural variation in

the yeast data sets, we did not consider mutations in mito-

chondrial or chloroplast genomes.

In the MA data sets we studied the ancestral protein

sequences are known, but in many eco-evolutionary studies

mutant sequences may instead be compared with reference

sequences. The predicted fitness effect of nonsynonymous

changes is dependent on the query sequence, something

reported on first in human population genetic studies.

Simons et al. (2014) counted the average number of derived

alleles at putatively deleterious sites per individual in

Americans of European or African ancestry to test the muta-

tional load in the two populations in relation to their
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demographic history, using PolyPhen-2 to choose what seg-

regating variants to consider as deleterious. They found a

strong bias in the way the program scored the variants: if

the reference genome carried the derived variant, it was

more likely to be scored as benign than if the reference ge-

nome carried the ancestral version of the protein. To examine

this effect in our study, we conducted an exploratory analysis

of the PROVEAN score of variants differentiating the genomes

of ancestral controls from their respective reference genomes.

We consider this analysis to be closest to the situation in which

it is employed in many eco-evolutionary studies (relative fit-

ness is unknown, and comparisons are made to a reference

genome). Our findings suggest that the laboratory ancestors

used in MA experiments we examined carried deleterious

alleles relative to the reference type, except when closely re-

lated to the reference strain, as in the case of Sc2; these alleles

appear to be less deleterious than spontaneous mutations in

S. cerevisiae, but more deleterious in C. reinhardtii. However,

we only examined proteins in which new mutations arose

during MA, whereas reference and ancestral strains may dif-

fer at many additional loci (Craig et al. 2019). The data un-

derlying C. reinhardtii are also more limited: the mean E-value

for supporting sequences is ten times lower (better) for yeast

than for C. reinhardtii. This could partly be explained by yeast

having shorter proteins on average (Sc1: 777 amino acids,

Sc2: 767, Cr: 1,310). Shorter proteins will have higher E-val-

ues because homology is more likely to occur by chance. Still,

there is a significant difference in the E-value when submitting

protein sequences from the C. reinhardtii reference genome

as compared with proteins of the field isolates used to initiate

MA in the Cr experiment. This may reflect a bias in the

sequences reported to NCBI such that sequences of com-

monly used strains and model organisms compose a large

portion of the database, whereas less-studied taxa and natu-

ral isolates are underrepresented.

These findings indicate that caution should be used when

applying PROVEAN to strains or species that are not common

in the NCBI database. In principle, the use of highly divergent

query sequences is not an issue because PROVEAN uses the

difference in alignment score between query and mutant se-

quence rather than the absolute alignment score. However,

variation shared by all individuals in a study (analogous to the

differences between MA ancestors and the reference ge-

nome) can matter for PROVEAN scores, particularly in the

case of indels. We recommend that researchers first incorpo-

rate any shared differences from the reference into query

protein sequences before evaluating additional polymor-

phisms. For different kinds of reference bias and suggestions

of how to address these we refer the reader to Moyers et al.

(2018).

Importantly, PROVEAN and similar alignment-based tools

are designed to annotate individual variants but are frequently

applied to genotypes with multiple variants. The aggregate

result of multiple variants on fitness is indirect and will depend

on patterns of dominance and epistasis (Henn et al. 2015,

2016) that we cannot evaluate here. Although our results

do indicate that counting the number of proteins with derived

variants can serve as a proxy for fitness, at least in MA lines,

using this approach to measure the relative health or muta-

tion load of populations in the wild may be less effective,

particularly if adaptive protein changes are common.

Conclusion

Although bioinformatic tools that assign genetic variants to

binary fitness effect categories may be attractive for their sim-

plicity, care should be taken when applying these tools in

contexts where they have not been tested and calibrated.

We find that the information provided by PROVEAN has pre-

dictive value, but that better accuracy can often be obtained

by simply considering the total number of variant proteins as a

proxy for fitness change. However, we also find evidence that

there can be value in the PROVEAN scores themselves, be-

yond a binary classification, based on some of the cases we

studied. We encourage further studies evaluating the appli-

cability of mutation scoring algorithms in eco-evolutionary

settings.

Materials and Methods

Data Processing

Saccharomyces cerevisiae Data Set 1 (Sc1)

This experiment is described in detail in Sharp et al. (2018). In

short, 220 replicate yeast lines were propagated under re-

laxed selection for up to 100 days (�1,500 generations per

line on average). The 220 lines were roughly equally distrib-

uted among four groups: haploids and diploids, with either

their copy of the RDH54 gene (responsible for homologous

recombination and repair during mitosis) deleted or intact. At

the end of the experiment, the growth rate of 218 of these

lines and 182 replicates of their ancestors (equally distributed

among the four groups), were measured in two Bioscreen C

machines. The growth rate assay was done 11 times, over

consecutive days. The growth rates from one machine on one

day was omitted from the data analysis because of a shaking

malfunction, such that the number of observations varies be-

tween 10 and 11 for each line. There was a reduction in the

mean growth rate of diploid, but not haploid, MA lines com-

pared with controls. Nevertheless, there was significant ge-

netic variation in all groups of MA lines, but in no group of the

control lines (evaluated by likelihood ratio test of mixed effect

model with or without line identity as an explanatory factor;

Sharp et al. 2018). The genomic analysis revealed dozens of

cases of aneuploidy in the diploid lines, accounting for a large

part, but not all, of the reduction in fitness in this treatment.

We used the mutations reported in the supplementary

data of Sharp et al. (2018). There were 1,474 genic mutations

Sandell and Sharp GBE

10 Genome Biol. Evol. 14(1) https://doi.org/10.1093/gbe/evac004 Advance Access publication 17 January 2022



in the data set, occurring in 1,219 unique genes across 218

MA lines. We extracted the nucleotide and protein sequence

of the genes affected using YeastMine (Balakrishnan et al.

2012). From the same database, we downloaded the location

of introns in these genes. The reference nucleotide sequence

was then mutated in silico to represent the mutant sequence,

which was then transcribed and translated, using the seqinr

package (Charif and Lobry 2007) in R (R Core Team 2021).

Additionally, we analyzed VCF files to obtain a table of muta-

tions in the ancestral line as compared with the yeast refer-

ence genome (version R64-2-1). In cases where the ancestor

and reference strain differed for a mutated gene (126 genes),

we separately computed the ancestral protein and used it for

comparison to the MA lines. We wrote a script to produce

protein variants in the format PROVEAN requires. From 1,474

genic mutations, 1,126 protein variants were computed (in

961 unique proteins). Two samples (lines 113 and 206) had

no nonsynonymous mutations. When an MA line had more

than one nonsynonymous mutation in a particular gene both

mutations were considered when altering the protein and the

number of mutant proteins is reported once. Out of 961 al-

tered proteins, 126 already differed between the S288C ref-

erence genome and the laboratory ancestor, in which case

the latter was used as the query sequence.

The growth rates reported in the supplementary data of

Sharp et al. (2018) include all replicate measurements for each

line. We evaluated the percentage of variation in growth rate

explained by line identity in the ancestor and MA lines. In the

control group, where each line was an isogenic copy of the

ancestor, 2% of variance could be attributable to line identity.

In the MA lines, 15% of variance was attributable to differ-

ences among lines. The intraclass correlation for MA line was

0.169 (computed with the “performance” package [Lüdecke

et al. 2021] in R [R Core Team 2021]). Unless otherwise noted,

we used all replicate measurements of each MA line to create

one response variable that we call relative fitness: the average

growth rate of each MA line compared with the average

growth rate of the ancestral line with the same mating

type, ploidy (haploid or diploid), and RDH54 gene, accounting

for random block effects. There were two lines for which

there was no growth rate data; these lacked mitochondrial

function (petite) by the end of the MA experiment and were

excluded from the analysis (lines 110 and 189).

Saccharomyces cerevisiae Data Set 2 (Sc2)

This experiment is described in detail in Liu and Zhang (2019).

In short, 168 diploid yeast lines were propagated under re-

laxed selection for around 60 bottlenecks under continuous

growth (�1,000 generations per line). The 168 lines were

equally distributed among seven treatment groups that

were grown on different kinds of media. Two lines were

lost during MA, likely due to lethal mutations. At the end of

the experiment, the growth rate of frozen samples from the

beginning of the experiment and evolved MA lines were mea-

sured through cell counts of single colonies (one colony per

line) on the same medium as that on which they evolved.

There was a general reduction in mean growth rate of the

MA lines compared with controls. The genomic analysis

revealed multiple aneuploidy events and segmental duplica-

tions in two environments, which could explain a large part,

but not all, of the reduction in fitness.

We used the mutations reported in the supplementary

data of Liu and Zhang (2019). Additionally, the authors sup-

plied us with a table of mutations in their ancestral line relative

to the S288C reference genome. We used the same method

as described above for data set Sc1. There were 1,147 genic

mutations, occurring in 968 unique genes, across 165 MA

lines. From 1,147 genic mutations, 877 protein variants

were computed (in 754 unique proteins). Out of 754 altered

proteins, 16 already differed between the S288C reference

genome and the laboratory ancestor, in which case the latter

was used as the query sequence.

Growth rates in five different media environments were

reported in the supplementary material of Liu and Zhang

(2019). Because each line was measured only once, we can-

not produce a repeatability estimate. However, we can see

that the variance among measurements of the ancestors (23–

24 measurements in each condition) is smaller than the var-

iance among MA lines (F value¼ 28.23, P< 10�5). We com-

puted the relative fitness of each evolved MA line by

subtracting the mean initial growth rate of the starting strains

in that focal medium from the final growth rate of each line in

that medium.

In addition, we used the information on chromosome

aneuploidies and segmental duplications and deletions from

the supplementary table of Liu and Zhang (2019) to compute

a relative genome size for each strain.

Chlamydomonas reinhardtii Data Set (Cr)

This experiment is described in detail in Morgan et al. (2014).

In short, 15 replicate lines from each of six different

C. reinhardtii strains (for a total of 90 MA lines) were propa-

gated under relaxed selection for around 85 bottlenecks un-

der continuous growth (�1,000 generations per line).

Following MA, the experimenters measured growth rates of

replicates of the ancestor and MA lines and found an increase

in variance in fitness as well as a reduction in mean fitness in

the MA lines. The genomic analysis of these lines was pre-

sented in Ness et al. (2015). Competitive growth rates of the

MA lines and ancestors were reported in Kraemer et al.

(2017), where they found significant correlations between

the number of nonsynonymous mutations in coding regions

and the growth rates of MA lines.

We received an annotated table of the mutations reported

in Ness et al. (2015) as well as VCF files containing the muta-

tions in their six ancestral lines compared with the reference
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genome. We downloaded an annotated table for all tran-

scripts in the Chlamydomonas reference genome from

Dicots PLAZA 4.0 (version 5.5, Van Bel et al. 2018) to identify

mutations in coding sequences. Out of the original 6,843

mutations, 3,889 affected protein sequence, representing

1,439 mutated proteins after combining mutations. We

found that most transcripts that were mutated during MA

already had existing variants in the ancestral strain, relative

to the reference (table 1). About 1,397 out of the originally

predicted 1,439 protein variants remained once ancestral var-

iation had been considered (table 1). As in the other data sets,

we use the ancestral protein as the query protein.

We found two cases in the C. reinhardtii data set where the

reported reference nucleotide deviated from that found in the

Dicots PLAZA 4.0 sequence; in each case, the differences be-

tween the two reference sequences were synonymous. This

discrepancy was likely due to the two different reference

genomes used (Ness et al. used v5.3; Van Bel et al. used v5.5).

To test the accuracy of our sequence-mutating code, we

mutated the coding sequence to the reference nucleotide

given by the C. reinhardtii data set and verified that this pro-

duced the reference transcript. We converted the proteins

carrying variants into the format PROVEAN requires. In cases

with alternative transcripts, we treat these as separate pro-

teins in PROVEAN and then report the minimum score given

to any protein variant of a gene. This occurred in 42 unique

cases, involving all genetic backgrounds. Although the differ-

ence in scores between transcripts in general was small, we

found two cases where the score for one affected transcript

was below the default threshold of �2.5 whereas the other

was above it, and six cases where the scores fell above and

below zero. Six out of the total 1,397 proteins carrying var-

iants failed to receive a score from PROVEAN, likely because

the changes to the protein were too large to compute align-

ment scores between the clusters gathered and the mutant

protein and were ignored in the analysis (these occurred in six

different samples across five ancestral backgrounds).

Growth rates for each MA line were found in the DRYAD

repository for Kraemer et al. (2017). MA lines were measured

in a benign environment and in medium supplemented with

2.5 g/l of NaCl (referred to as moderate stress). We followed

Kraemer et al. (2017) and excluded three lines for which they

estimated extreme mutation rate values; 72 MA lines

remained. Because the researchers did not find an effect of

media treatment on competitive fitness of their lines (table 3

of Kraemer et al. [2017]), we used the estimated fitness in the

benign environment for our analysis. Kraemer et al. (2017)

report competitive fitness (calculated as the growth rate of

the focal strain minus the growth rate of the competitor

strain) for all replicate measurements for each MA line and

ancestor. The percentage of variance in competitive fitness

attributed to line identity in the MA lines was 39%. The intra-

class correlation for line identity was 0.40 (computed with the

performance package [Lüdecke et al. 2021] in R [R Core Team

2021]). We used all replicates to create one response variable

that we refer to as relative competitive fitness: the average

growth rate of each MA line compared with the average

growth rate of its ancestor, accounting for the random block

effect of plate.

Running PROVEAN

We ran PROVEAN on the ComputeCanada cluster. As the

program failed to run with the recent BLAST software (version

2.9.0), we configured PROVEAN to run with PSI-BLAST and

BLASTDBCMD (Altschul et al. 1997) from BLAST version

2.4.0. We used version 4.8.1 of CD-HIT. We ran our variants

with the NCBI nr database from November 11, 2019, which

holds 142 GB of nonredundant sequences (229,636,095

sequences). We ran a subset of variants using the 2012 data-

base, on which PROVEAN was developed (the first 5 GB),

without radical changes to the PROVEAN scores of variants.

The supporting sequence sets used to compute the alignment

scores for all proteins were saved.

We supplied the protein of the ancestor as the query se-

quence. It should be noted that PROVEAN has not been val-

idated for frameshift or nonsense mutations. We have several

proteins carrying variants that cause large changes to the pro-

tein. These all received very negative scores (table 2). One

variant protein also received a large positive score (þ1,342,

which PROVEAN calls neutral). This happened in line

CC1373_7 in the Cr data set, where a frameshift that had

caused a premature stop codon in the ancestral line CC1373

was reverted.

Statistical Analyses

We fit linear models of relative fitness with a fixed intercept at

zero (representing the fitness of the control lines that did not

Table 2

Summary of Protein Mutations and Scores in Sc1, Sc2, and Cr Data Set

Type Number Max Score Min Score

Sc1 Single aa substitution 1,015 5.22 �14

Duplication 5 0.57 �3.74

Deletion 71 0.81 �4,000

Insertion 2 1.64 �4.78

Complex 37 �0.75 �2,650

Sc2 Single aa substitution 721 7.37 �14

Duplication 24 2.08 �9.54

Deletion 62 �1.48 �5,978

Insertion 1 �0.17 �0.17

Complex 61 4.07 �2,910

Cr data set Single aa substitution 1,263 5.18 �12.7

Duplication 27 1.5 �6.84

Deletion 74 0.58 �4,259

Insertion 19 1.83 �8

Complex 141 1,343 �6,620

NOTE.—Complex mutations refer to cases where more than one kind of muta-
tion (substitution, insertion, or deletion) occur in the same protein.
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carry mutations). In our analysis, we use several summary

statistics. The first is the number of mutant proteins per

line, Wtot. This simply reflects the number of altered proteins

in a line regardless of their PROVEAN scores. The second sum-

mary statistic is the number of mutant proteins classified as

deleterious using the default cutoff of �2.5 by PROVEAN,

Wdel. Because some studies have used the absolute departure

from zero (Yoshida et al. 2016, 2019; Kusakabe et al. 2017),

we also investigate the number of proteins with variants

scored below �2.5 or above 2.5, Wabs. We also investigated

whether there is any quantitative information in the

PROVEAN score itself, beyond the categorical information

(neutral or deleterious), by fitting models using the sum of

PROVEAN scores. However, since very misaligned sequences

receive extreme scores leading to a skewed distribution, we

decided to log-transform the values of the scores:
P

tot¼log(1�sum of scores).

In an attempt to account for the importance of a protein to

fitness, we used a previously published list of essential genes

in yeast (Winzeler et al. 1999, downloaded from the Yeast

Deletion Web Pages, http://www-sequence.stanford.edu/

group/yeast_deletion_project/deletions3.html, last accessed

June 2019) and added the “essentialness” of a protein as

an explanatory factor in our models of the yeast data sets.

Summary variables by the essentialness of the proteins are

labeled Wtot_ess, Wdel_ess, Wabs_ess, and
P

tot_ess. We compared

models using the R package AICcmodavg (Mazerolle 2020).

We used this package to produce model selection tables

based on second order AIC.

Saccharomyces cerevisiae Data Set 1

We analyzed haploids and diploids separately, given that mu-

tational effects may differ between them due to masking in

diploids, using linear models. In the diploids, relative genome

size was included as a predictor variable. Because haploid MA

lines did not experience an overall decrease in growth rate

(but still showed genetic variance in fitness), we used models

with the absolute value of relative fitness (a decrease and

increase in fitness of the same magnitude will count the

same). 18% of the proteins with variants occurred in essential

genes (197 out of 1,130).

Saccharomyces cerevisiae Data Set 2

We used linear models of relative fitness as a function of each

predictor. We combined our analysis of the strains from the

different environments as we found no significant effect of

environment on the effect of MA (F¼ 1.38, P¼ 0.22).

Similarly, we did not find a significant effect on fitness of

relative genome size (P¼ 0.766, computed by adding or sub-

tracting potentially lost or gained chromosomes or large seg-

mental deletions or insertions), and chose to ignore these

large-scale genomic changes in our analysis. 20% of the pro-

teins with variants occurred in essential genes (178 out of

877).

Chlamydomonas reinhardtii Data Set

We used linear models of relative fitness as a function of each

PROVEAN predictor and included ancestral background as a

random effect on the slope. Because competitive fitness only

decreased significantly after MA in two out of six ancestral

backgrounds (CC2342 and CC2931), our models use the ab-

solute value of competitive fitness as the response variable.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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Lüdecke D, Ben-Shachar MS, Patil I, Waggoner P, Makowski D.

2021. performance: An R Package for Assessment, Comparison

and Testing of Statistical Models. J Open Source Softw.

6(60):3139.

Mazerolle MJ. 2020. AICcmodavg: model selection and multimodel infer-

ence based on (Q)AIC(c). R package version 2.3-1. Available from:

https://cran.r-project.org/package=AICcmodavg. Accessed November

2020.

Morgan AD, Ness RW, Keightley PD, Colegrave N. 2014. Spontaneous

mutation accumulation in multiple strains of the green alga,

Chlamydomonas reinhardtii. Evolution 68(9):2589–2602.

Moyers BT, Morrell PL, McKay JK. 2018. Genetic costs of domestication

and improvement. J Hered. 109(2):103–116.

Ness RW, Morgan AD, Vasanthakrishnan RB, Colegrave N, Keightley PD.

2015. Extensive de novo mutation rate variation between individuals

and across the genome of Chlamydomonas reinhardtii. Genome Res.

25(11):1739–1749.

Ng PC, Henikoff S. 2001. Predicting deleterious amino acid substitutions.

Genome Res. 11(5):863–874.

Ng PC, Henikoff S. 2006. Predicting the effects of amino acid sub-

stitutions on protein function. Annu Rev Genomics Hum Genet.

7:61–80.

Ohta T. 1992. The nearly neutral theory of molecular evolution. Annu Rev

Ecol Syst. 23(1):263–286.

Perrier C, Ferchaud A-L, Sirois P, Thibault I, Bernatchez L. 2017. Do genetic

drift and accumulation of deleterious mutations preclude adaptation?

Empirical investigation using RADseq in a northern lacustrine fish. Mol

Ecol. 26(22):6317–6335.

R Core Team. 2021. R: a language and environment for statistical com-

puting. Vienna, Austria: R Foundation for Statistical Computing.

Available from: https://www.r-project.org/. Accessed November 2021.

Ramensky V, Bork P, Sunyaev S. 2002. Human non-synonymous SNPs:

server and survey. Nucleic Acids Res. 30(17):3894–3900.

Renaut S, Rieseberg LH. 2015. The accumulation of deleterious muta-

tions as a consequence of domestication and improvement in sun-

flowers and other Compositae crops. Mol Biol Evol.

32(9):2273–2283.

Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L. 2009. Comprehensive

polymorphism survey elucidates population structure of

Saccharomyces cerevisiae. Nature 458(7236):342–345.

Sharp NP, Sandell L, James CG, Otto SP. 2018. The genome-wide

rate and spectrum of spontaneous mutations differ between

haploid and diploid yeast. Proc Natl Acad Sci U S A.

115(22):E5046–E5055.

Simons YB, Turchin MC, Pritchard JK, Sella G. 2014. The deleterious mu-

tation load is insensitive to recent population history. Nat Genet.

46(3):220–224.

Stone EA, Sidow A. 2005. Physicochemical constraint violation by missense

substitutions mediates impairment of protein function and disease

severity. Genome Res. 15(7):978–986.

Trindade S, et al. 2009. Positive epistasis drives the acquisition of multidrug

resistance. PLoS Genet. 5(7):e1000578.

Van Bel M, et al. 2018. PLAZA 4.0: an integrative resource for functional,

evolutionary and comparative plant genomics. Nucleic Acids Res.

46(D1):D1190–D1196.

Veilleux CC, Louis EE, Bolnick DA. 2013. Nocturnal light environ-

ments influence color vision and signatures of selection on the

Sandell and Sharp GBE

14 Genome Biol. Evol. 14(1) https://doi.org/10.1093/gbe/evac004 Advance Access publication 17 January 2022

https://cran.r-project.org/package=AICcmodavg
https://www.r-project.org/


OPN1SW opsin gene in nocturnal lemurs. Mol Biol Evol.

30(6):1420–1437.

Winzeler EA, et al. 1999. Functional characterization of the S. cerevisiae

genome by gene deletion and parallel analysis. Science

285(5429):901–906.

Yoshida K, et al. 2016. Whole-genome sequencing reveals small

genomic regions of introgression in an introduced crater lake

population of threespine stickleback. Ecol Evol. 6(7):

2190–2204.

Yoshida K, et al. 2019. Functional divergence of a heterochromatin-

binding protein during stickleback speciation. Mol Ecol.

28(6):1563–1578.

Associate editor: Kirk Lohmueller

Assessing the Predictive Value of PROVEAN Scores Using Mutation Accumulation Data GBE

Genome Biol. Evol. 14(1) https://doi.org/10.1093/gbe/evac004 Advance Access publication 17 January 2022 15




