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The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical
information of human tissues and it has been used for better tumor volume definition of lung cancer.This paper proposed a robust
method for automatic lung tumor segmentation onPET/CT images.Thenewmethod is based on fuzzyMarkov randomfield (MRF)
model.The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of
observed features in the fuzzyMRFmodel which performs better than the commonly usedGaussian joint distribution. In this study,
the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method.
Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images
were performed, respectively. Segmentation results obtained with the two methods were similar and Dice’s similarity coefficient
(DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung
tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest
wall or mediastinum.

1. Instruction

Combination of positron emission tomography (PET) and
CT images provides complementary functional and anatom-
ical information which has been used for tumor volume def-
inition in radiation treatment (RT) planning for lung cancer
patients [1]. Automatic methods for tumor segmentation on
PET/CT images are highly desired to avoid the inter- and
intraobserver variability caused by manual method.

Many automatic tumor segmentation techniques for
identification and delineation of cancerous tissues have been
reported such as for brain tumor [2], lung tumor [3], and
prostate tumor [4]. The segmentation can be performed
either on a single image set, such as CT [5], PET [6], or
MRI images [7], or on the fused image set of different image
modalities such as CT/PET [8–10] or multiparametric MRI
images [2, 11]. Different types of tumors and imagemodalities
have different image features, and thus different segmentation

strategy should be developed for effective and accurate tumor
segmentations.

CT images provide anatomical information with high
spatial resolution. However, for the lung tumors abutting
or involved in adjacent structures such as chest wall, medi-
astinum, or diaphragm which show intensities similar to
those of tumors on the images, it is difficult to distinguish
them from the adjacent tissues with commonly used autoseg-
mentation algorithms. Lung tumors can be distinguished
from the adjacent tissues on PET images, but the segmen-
tation accuracy is still limited due to the coarser spatial
resolution of the image data andmotion artifacts as the result
of time-consuming procedure of data acquisition. Therefore,
one of the key points of lung tumor segmentation on PET/CT
images is to combine the advantages of the two image
modalities effectively.

Several methods [8–10] are proposed for lung tumor seg-
mentation on PET/CT images. Most of the reportedmethods
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fuse different features extracted from PET and CT images
inside one single 𝑁-dimensional vector. In this paper, we
propose a new strategy for fusing PET and CT information.
The method is based on fuzzy Markov random field (MRF)
model which has shown effective performance for unsuper-
vised image segmentation [12, 13]. Different from traditional
fuzzy MRF method, the proposed method designs a new
joint posterior probabilistic model for effective combination
of PET and CT image information. The new method was
evaluated using image data of 7 patients with lung cancer
in this study and experimental results showed its good
performance in automatic tumor delineation.

This paper is organized as follows. We first present the
basic theory about image segmentation using fuzzy MRF
model in Section 2.1. The framework of lung tumor seg-
mentation on CT/PET images using fuzzy MRF model
is then described in Section 2.2. The evaluation of the
proposed method and quantification results are shown in
Section 3. Finally, discussion and conclusion are presented at
the end.

2. Materials and Methods

2.1. Image Segmentation Based on Fuzzy MRF Model. The
fuzzyMRFmodel is an unsupervised statistical methodology
that takes place in Bayesian framework. Image segmentation
based on fuzzy MRF model requires modeling two random
fields [14]. For the set of pixels 𝑆 = {1, . . . , 𝑁} of an image
to be segmented, 𝑌 = (𝑦

𝑠
)
𝑠∈𝑆

is the observed random field
which represents the observed image and takes its value in
the set of real numbers, while 𝑋 = (𝑥

𝑠
)
𝑠∈𝑆

is the unobserved
random field, which corresponds to the final segmentation
results and takes its value in the set of {1, 2, . . . , 𝑘, . . . , 𝐾},
with 𝐾 being the number of classes. In comparison to the
standard implementation where only a finite number of hard
classes are considered, fuzzy segmentations allow each pixel
to belong simultaneously to more than one class. From this
point of view,𝑥

𝑠
which is the realization of the randomfield𝑋

for the pixel at location 𝑠 should be associated with a vector
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= 1, where 𝑥
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is the membership degree of the pixel
to class 𝑘. The segmentation problem consists of estimating
x
𝑠
= [𝑥
𝑠1
, . . . , 𝑥

𝑠𝑘
, . . . , 𝑥

𝑠𝐾
]
𝑇 (𝑠 ∈ 𝑆) from the available noisy

observation.
The relationship between𝑋 and 𝑌 can be modeled by the

joint distribution 𝑃(𝑋, 𝑌). According to Bayesian principle,
we have 𝑃(𝑋, 𝑌) = 𝑃(𝑌 | 𝑋)𝑃(𝑋), where 𝑃(𝑋) is the prior
distribution of 𝑋 and 𝑃(𝑌 | 𝑋) is the posterior distribution.
In the fuzzy MRF model, 𝑃(𝑋) is assumed to be stationary
and Markovian.

Image segmentation problem is considered as a maxi-
mum a posteriori (MAP) problem. That is to estimate the
membership degree matrix x = [x

1
; x
2
; . . . ; x

𝑁
]
𝑇 of the

studied image which maximizes probability density function
(PDF) 𝑝(x | y), where 𝑁 is the number of pixels in the
image and y represents the intensity or feature vector of the
image. There is ∧x= argmaxx𝑝(x | y). In Bayesian framework,

𝑝(x | y) = 𝑝(y | x)𝑝(x)/𝑝(y), where 𝑝(y) can be considered
independent of 𝑝(x). Therefore, we have

∧x = argmax
x
𝑝 (y | x) 𝑝 (x)

= argmax
x
[ln𝑝 (y | x) + ln𝑝 (x)] .

(1)

The probabilistic models used for 𝑝(y | x) and 𝑝(x) are based
on the prior knowledge of the studied image. In fuzzy MRF
model,𝑋 is set as Gibbs distribution for the reason that pixels
tend to belong to the same class with their neighbors. For
the posterior distribution 𝑝(y | x), Gaussian distribution is
usually used, since, for a region with common properties in
images, it is reasonable to assume that the intensity or other
feature values are distributed around the mean value of the
class. As long as proper probabilistic models are determined,
the membership degree matrix x can be estimated by solving
the maximization problem in (2).

2.2. Tumor Segmentation on PET/CT ImagesUsing FuzzyMRF
Model. In this subsection, the fuzzy MRF method for tumor
segmentation on PET/CT images is described in detail. For
segmenting tumor on PET/CT images, 𝑥

𝑠
is the membership

degree of the voxel at location 𝑠 to tumor class. 𝑦
𝑠
is related to

some image features of the voxel at location 𝑠 extracted from
PET and CT images. Here, the CT image intensity 𝑦CT and
the standardized uptake value (SUV) 𝑦SUV derived from PET
images are used. Therefore, tumor segmentation on PET/CT
image using fuzzyMRFmodel is actually done to estimate the
membership degree to tumor class of each voxel by solving
the maximization problem as shown in

∧x = argmax
x
[ln𝑝 (yCT, ySUV | x) + ln𝑝 (x)] . (2)

One of the key points about the abovemaximization problem
is to choose proper probabilistic models for 𝑝(yCT, ySUV | x)
and 𝑝(x). Since regions which show tumor features on both
PET and CT images may be tumor regions with higher possi-
bility, we set 𝑝(yCT, ySUV | x) as xmin[𝑝

11
(ySUV), 𝑝21(yCT)] +

(1 − x)max[𝑝
10
(ySUV), 𝑝20(yCT)], where 𝑝11 and 𝑝21 are the

PDFs of the two features given that the studied voxels belong
to tumor class, while 𝑝

10
and 𝑝

20
are the PDFs of the

two features given that the voxels belong to normal tissue
class. 𝑝

21
and 𝑝

20
are set as Gaussian functions, since the

CT intensities of tumor tissues and normal tissues around
the tumor tissues are usually assumed to be distributed
around the mean value of their own class. Besides, it is
reasonable to assume that SUVs of normal tissues have a
normal distribution, so 𝑝

10
is also set as a Gaussian function.

For 𝑝
11
(ySUV), a uniform distribution is used, which means

that voxels with a SUV value greater than a threshold have
the same possibility to be tumor class. The parameters of 𝑝

11
,

𝑝
21
, 𝑝
10
, and 𝑝

20
are estimated by fitting the histogram of the

region obtained from 𝐶-means clustering with the selected
distributions. The prior distribution of 𝑝(x) is set as Gibbs
distribution as in other fuzzy MRF methods [13]. As a result,
the final maximization problem can be noted as

∧x = argmax
x
𝐶 (x) , (3)
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(a) (b)

Figure 1: Fused PET/CT images of two patients with lung tumors delineated by radiation oncologist shown in red lines.

with
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where 𝑖 and 𝑗 are the image indexes, 𝑥
𝑖
is the membership

degree of the 𝑖th voxel belonging to tumor class, 𝑅
𝑖
is

the neighborhood (5 × 5 × 3) of the 𝑖th voxel, and 𝛽 is
the smoothing parameter which affects the smoothness of
segmentation results. Besides, 𝑝
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with the following function:
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where 𝜇
10

and 𝜎2
10

are, respectively, the mean and variance
of the Gaussian function in (5). The function 𝑝
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(𝑦
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shown as follows;
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where 𝑎 is a SUV threshold to distinguish tumor tissues from
normal tissues and 𝑏 is the maximum SUV value of the PET
image studied.

Gradient decent algorithm is used to solve the opti-
mization problem in (3). The iterative form of the proposed
method can be summarized as follows.

(1) Initialize the vector of membership degree x(0) =

[𝑥
1
(0), 𝑥
2
(0), . . . , 𝑥

𝑁
(0)].

(2) Update x(𝑛 + 1) = x(𝑛) − 𝛼Δx(𝑛), where Δx(𝑛) =
and Δ𝑥

𝑖
(𝑛) = 𝜕[−𝐶(x(𝑛))]/𝜕𝑥

𝑖
(𝑛).

(3) Repeat step (2) until ‖x(𝑛 + 1) − x(𝑛)‖
2
≤ 𝜀, where

‖ ⋅ ‖
2
represent 2-norm and 𝜀 is the stopping threshold

set as a small positive real number.

Figure 2: An axial CT slice of a patient with the region to be seg-
mented marked.

In the proposed method, the step size 𝛼 and the smoothing
parameter 𝛽 need to be selected. A large step size may make
the algorithm divergent, so using a small step size is common
practice. 𝛽 should be selected according to the smoothness of
tumor tissues on images. Once themembership degree vector
x is estimated, we determine the final tumor regions using a
simple threshold method.

3. Experiments and Results

The PET and CT simulation images of 7 non-small cell
lung cancer (NSCLC) patients were used to evaluate the
proposed method. PET and CT fusion results of studied
images using MIM 5.2 (MIM Software) were exported to in-
house-developed software for the study. Gross tumor volume
(GTV) delineation with the proposed MRF method and
manual method by an experienced radiation oncologist on
the fused images were performed, respectively. The manually
contoured GTVs were checked and confirmed by another
experienced radiation oncologist. The robustness of MRF
method was evaluated by comparing the overlap of the
two delineations using Dice’s similarity coefficient (DSC)
expressed as 2(V1 ∩ V2)/(V1 + V2), where V1 is the manually
delineated GTV volume and V2 is the GTV volume obtained
with the new automatic method.
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(a) (b)

Figure 3: Membership degrees to tumor class of the selected region in Figure 2 obtained with fuzzy𝐶-means clustering; (a) only CT intensity
feature is used; (b) only SUV feature is used.

(a) (b)
Figure 4: Probabilities of tumor class of the voxels within the selected region in Figure 2, (a) 𝑝

21
(𝑦CT); (b) 𝑝11(𝑦SUV).

Some lung tumors in the studied cases locate near other
organs with similar intensities to tumor tissues in PET and
CT images (such as the chest wall or the mediastinum),
and it is difficult to segment these lung tumors. Figure 1(a)
shows a fused PET/CT image of a patient with lung cancer;
the tumor locates close to the mediastinum and has image
features similar to those of the mediastinum. Figure 1(b)
shows another case in which the tumor is close to the chest
wall.

The proposed segmentation algorithm performs on a
manually selected region rather than the whole volume
enclosed by the image set. Lung tumors locate in the selected
regions, as shown in Figure 2. There are much fewer tissue
components in the selected region than in the whole volume
which makes the segmentation easier. In order to obtain the
probabilisticmodel parameters of 𝑝

10
,𝑝
11
,𝑝
20
, and𝑝

21
in (3),

the fuzzy 𝐶-means clustering [15] is applied to the regions of
interest in the studied PET and CT images. Figure 3 shows
the estimated membership degrees of the selected region
in Figure 2 to tumor class with fuzzy 𝐶-means clustering.
It is assumed that the voxels which have the membership
degrees greater than 0.1 belong to tumor class. Then, we can
have a rough segmentation of the selected region. According

to the segmentation result, the desired probabilistic model
parameters, such as the means and deviations of Gaussian
models in (5), can be estimated. Figure 4 shows the prob-
abilities of tumor class of the voxels in the selected region
of Figure 2, which are computed based on the probabilistic
model parameters estimated in the previous step.

Figure 5 shows the tumor segmentation results of 3
patients obtained, respectively, with the manual method,
fuzzyMRFmethod using only PET images, and the proposed
method using CT/PET images. As shown in Figure 5, lung
tumors in these cases are close to other tissues with similar
image features. We can also see that GTVs determined by
using only PET images are bigger than the ones obtained
with the other two methods in most cases, while GTVs
obtained with the manual method and the proposed method
are similar. For the other cases, we obtained the same results.

In our work, the traditional MRF model method in [13]
and fuzzy 𝐶-means clustering are also used to segment lung
tumors. CT/PET image based segmentation results obtained
with the two methods are much worse than the results of
the two methods using only PET images. The DSCs of the
two methods for all the studied cases were 0.59 ± 0.034 and
0.62 ± 0.029, respectively. It means that the two methods
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(b)

(c)

Figure 5: GTVs in axial CT slices of patient (a), (b), and (c). GTVs in blue are the results with fuzzy MRF method using only PET images
and GTVs in red and green are the results with the new method and manual method, respectively, using both PET and CT images.

cannot effectively combine CT and PET image information
to achieve accurate lung tumor segmentation. DSC of the
proposed method for all the studied cases was 0.85 ± 0.013.
Therefore, the proposed method is able to effectively utilize
CT and PET image information and achieves good lung
tumor segmentation.

4. Conclusions

CT/PET images provide complementary functional and
anatomical information of human tissues and lead to better
lung tumor definition. This paper proposes a fuzzy MRF
model basedmethod for automatic lung tumor segmentation
on CT/PET images. Different from traditional fuzzy MRF
model method, it utilizes a new joint posterior probabilistic
model, which can effectively take advantage of both CT and
PET image information for the identification and delineation
of tumor volume. Experimental results show its good perfor-
mance. For lung tumors which locate near other tissues with
similar intensities in PET and CT images, such as when they
extend into the chest wall or the mediastinum, this method
was able to achieve more effective tumor segmentation. In
future work, we will further test the reliability of this method
with more clinical data.
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