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Witness of non‑Markovian 
dynamics based on Bhattacharyya 
quantum distance
Seyed Mohammad Hosseiny  *, Jamileh Seyed‑Yazdi  * & Milad Norouzi 

Non-Markovian effects due to quantum memory in the dynamics of open systems typically correspond 
to information backflows from the surrounding environment to the system. We propose a witness 
to quantify the non-Markovianity of quantum evolutions using the Bhattacharyya distance (BD), a 
specific quantum statistical distance. This witness has the advantage of not requiring the calculation 
of the evolved density matrix and only computes through the initial and final states of the system, 
therefore leading to the improvement of quantum metrology. It means that we calculate the 
quantum angle between two states to detect non-Markovian effects. This proposal is investigated by 
considering several instances of open quantum systems, such as two and three-level atoms interacting 
in single and two-mode fields, respectively, and two effective two-level atoms interacting locally with 
two independent environments. We demonstrate that the suggested BD-based non-Markovianity 
witness identifies memory effects, consistent with well-established witnesses based on Bures 
distance, quantum Fisher information, and Hilbert-Schmidt speed, showing sensitivity to information 
backflows.
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Abbreviations
CP	� Complete positivity
BD	� Bhattacharyya distance
TD	� Trace distance
HSS	� Hilbert-Schmidt speed
CSS	� Classical statistical speed
POVM	� Positive operator-valued measure
QSS	� Quantum statistical speed
BT	� Bhattacharyya distance threshold

Quantum system’s interaction with their surrounding environment causes the exchange of information, poten-
tially resulting in energy dissipation and the loss of quantum coherence1–6. However, the process does not need 
to be monotonic as the quantum system may temporarily regain some of the lost energy or information due to 
memory effects during the evolution7–20. This dynamic behavior, known as non-Markovianity, can manifest in 
different quantum information tasks such as teleportation involving mixed states21, boosting channel capacity 
in quantum systems22, optimal entanglement protocols23–25, and extracting work from an Otto cycle26.

In the context of information flow in open quantum systems, the dynamics involving the system’s interac-
tion with its environment are divided into two categories8,27,28: Markovian and non-Markovian dynamics. If 
information flows continuously from the system to the surrounding environment, it is referred to as Markovian 
dynamics. Conversely, information backflow to the system from the environment at some time intervals due to 
quantum memory effects is known as non-Markovian dynamics.

Research on the non-Markovianity of dynamics in quantum systems has been extensively studied8,9,29,30. 
Some important witnesses of non-Markovianity effects have been proposed based on different dynamical met-
rics such as quantum mutual information31, the flow of quantum Fisher information (QFI)32,33, and simple 
tool of Hilbert-Schmidt speed (HSS)34. Another approach is to probe temporary increases in the entanglement 
shared between the open quantum system and an isolated ancilla via measuring the deviation from complete 
positivity (CP) divisibility of the dynamical map that represents the system’s evolution, which was first suggested 
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by Rivas et al.35. The next key approach relies on assessing the distinguishability of two optimal initial states 
evolving through the same quantum channel or resource and investigating any nonmonotonicity (backflows of 
information) is quantified by the trace distance (TD) as first proposed by Breuer et al.27,36. Moreover, negative 
time-dependent decoherence rates in the standard shape of the master equation37, local quantum uncertainty38, 
coherence39,40, fidelity of the quantum states41,42, channel capacities43, quantum interferometric power44–46, Choi 
states47, changing in the volume of the set of accessible states in the evolved system48, correlation measures49, 
spectral analysis50, quantum evolution speedup51–53, and entropy production rates54. This array of witnesses and 
approaches highlights the diverse nature of non-Markovian behavior, making it challenging to attribute to a single 
system-environment interaction feature, hindering its characterization with a single tool for this phenomenon. 
Therefore, searching for new witnesses to detect non-Markovianity effects in various situations within open 
quantum systems is beneficial.

In this article, we aim to introduce a method for witnessing and measuring non-Markovianity using the Bhat-
tacharyya distance (BD)55,56, which is a particular case of the quantum statistical distance57. The advantage of this 
witness is a simple form for computation, as it does not require the calculation of the evolved density matrix. It 
only computes through the initial and final states of the system, thereby leading to an improvement in quantum 
metrology. Moreover, we examine the BD-based non-Markovianity witness detects memory effects, in total 
agreement with witnesses based on the QFI, Bures distance, and HSS therefore identifying system-environment 
information backflows. This proposal is studied based on the two open quantum systems including the two and 
three-level atoms interacting with single and two-mode fields, respectively, and two effective two-level atoms 
interacting locally with two independent environments.

The article is structured as follows: In section “Preliminaries”, the preliminaries of non-Markovianity witnesses 
are discussed, and the suggested BD witness is introduced. Additionally, in section “The physical models”, the 
theoretical models are presented. Finally, in section “Discussion and results”, we outline the key discoveries and 
discussions such that the sensitivity of this measure for identifying memory effects is studied.

Preliminaries
Non‑Markovianity witnesses
Quantum Fisher information (QFI)
One of the most crucial witnesses of non-Markovianity is quantum Fisher information (QFI)32. The QFI can 
serve as a tool for quantum estimation of the desired parameter ϑ . For instance, we can utilize the QFI to estimate 
phase in an open quantum system. Considering the quantum Cramer-Rao bound58, one can obtain the smallest 
resolvable change in the parameter ϑ by

where Fη represents the QFI and for pure states can be simply defined by59

in which |ψ̇� = (∂/∂ϑ)|ψ� . The theory of quantum estimation suggests that an increase in QFI signifies an 
improvement in the optimal accuracy of estimation. Therefore, QFI is a useful measure of the maximum infor-
mation on parameter ϑ that can be obtained from a measurement process.

Hilbert‑Schmidt speed (HSS)
Hilbert-Schmidt speed (HSS) is recognized as another potent tool for improving quantum parameter estimation 
in quantum information theory. As suggested in34,60, the HSS can be utilized as a non-Markovianity witness that 
identifies memory effects.

To introduce the HSS, we can consider the Hellinger distance criteria d(p,  q), defined by 
[d(p, q)]2 = 1
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 . To expand to the quantum case, one can assume a pair of quantum states ρ 
and σ , and define px = Tr[�xρ] and qx = Tr[�xσ ] where these are the measurement probabilities correspond-
ing to the positive operator-valued measure (POVM) {�x ≥ 0} fulfilling 

∑

x �x = I.
To determine the corresponding quantum statistical distance known as the Hilbert-Schmidt distance61 rep-

resented by DHS(ρ, σ) ≡ max{�x} d(p, q) =
√

1
2Tr
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]

 , we maximize the classical statistical distance 
d(p, q) over all possible measurements of POVMs62. In the same way, the related quantum statistical speed (QSS) 
is determined by maximizing the CSS over all possible measurements of POVMs57,63. Hence, assuming the 
quantum state ρ(ϑ) , one can define the HSS as34,57,64
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Bures distance
As mentioned in65, another popular witness for quantifying non-Markovianity is the Bures distance. In a similar 
method for determining the HSS, for an assumed pair of quantum states ρin and ρfi , maximizing the classical 
distance over all possible choices of POVMs, one can define the Bures distance as56,57,66

where f (ρin, ρfi) =
(

Tr
[

√√
ρinρfi

√
ρin

]

)2

 denotes fidelity67,68. It should be noted that we can use the distances 

to quantify the distinguishability between two quantum states.

Bhattacharyya distance (BD)
We now introduce a new distance that then we can use to identify non-Markovianity for pure quantum states. 
Considering two arbitrary probability distributions p and q, one can determine the classical Bhattacharyya 
distance (BD) or geodesic distance as55,56,69,70

The right-hand side of the equation is called the Bhattacharyya coefficient, and it bears a striking resemblance to 
the scalar product in quantum mechanics. Its square is referred to as classical fidelity. Moreover, it is clear that 
the Hellinger distance is a monotone function of the Bhattacharyya distance.

To expand to the quantum case, we assume two states of |ψin� and |ψfi� . Consider an operator A, and observe 
that it has n+ 1 orthogonal eigenstates |ei� in terms of which we can expand as

where we suppose pi and qi are non-negative real numbers in such a way

It means that our states are normalized. Here, µi , νi represent the phase factors. The probability pi to obtain a 
given measurement outcome is obtained through the standard interpretation of quantum mechanics for the i th 
outcome to happen when the state is |ψin� . According to the mentioned method in56 the BD between the given 
states ψ1 and ψ2 , can be determined from the square roots of the probabilities:

Concerning the definition of distance between quantum states, we should choose operator A so that dB is 
maximized, making the right-hand side as small as possible. However, we have the inequality as follows

Therefore, the quantum BD which is the distance in the space of pure states can be reduced as

This distance is sometimes called the quantum angle between two pure states. Furthermore, the threshold of 
BD is π/2.

Non‑Markovianity measure based on Bhattacharyya distance
It is well known that non-Markovian effects can lead to quicker quantum evolution from an initial state to a 
subsequent state51,71–75. The Bhattacharyya distance criterion can effectively determine memory effects in system 
dynamics. Here, we emphasize exploiting the Bhattacharyya distance55,56,70 as a valuable witness of the non-
Markovian aspect of quantum evolutions, leading to practical benefits in analysis.

Regarding the idea that a nonmonotonic speed (positive acceleration) of quantum dynamics indicates 
memory effects in the system dynamics, a non-Markovianity witness based on BD can be introduced as
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If the system interacts with its surrounding environment, i.e. there is a system-environment information 
exchange, the DBhatt decreases monotonically, then dynamics is known as Markovian. So, we have for some 
time intervals I(t) < 0 . In contrast, every positive value of I(t) > 0 denotes a witness of non-Markovianity.

According to this witness, similar to what has been done for other measures27,34,36,42,76, a determiner of the 
degree of non-Markovianity can be defined as

where the maximization is carried out over all possible parameterizations of the initial state. It is essential to 
note this point that in this article we evaluate the quantity presented in Eq. (12) according to the quantities 
of Bhattacharyya distance, Bures distance, Hilbert-Schmidt speed, and quantum Fisher information, which 
expresses the degree of non-Markovian system dynamics.

We aim to only investigate non-Markovian effects using DBhatt based on the witness, where the actual value 
is irrelevant and no optimization is performed on the initial state parameters.

The physical models
Two‑level atom
We assume the interaction between a single-mode radiation field with frequency v and a two-level atom (as 
illustrated in Fig. 1). Suppose |a� and |b� denote the upper and lower level states of the atom, such that they are 
eigenstates of the unperturbed part of the Hamiltonian H0 with the eigenvalues �ωa and �ωb , respectively. We 
can write the wave function of a two-level atom as the following form

in which Ca and Cb denote the probability amplitudes of finding the atom in states |a� and |b� , respectively. The 
corresponding Schrödinger equation is defined as

with the Hamiltonian of the system

where H0 and H1 are the unperturbed and interaction terms of the Hamiltonian, respectively. Utilizing the 
completeness relation |a��a| + |b��b| = 1 , one can write the unperturbed part as77

such that we used H0|a� = �ωa|a� and H0|b� = �ωb|b� . Also, another term of the Hamiltonian H1 representing 
the atom’s interaction with the radiation field can be expressed as

where ℘ab = ℘∗
ba = e�a|x|b� represents the matrix element of the electric dipole moment and E(t) denotes 

the field at the atom. We suppose the electric field is linearly polarized along the x-axis and in the dipole 
approximation such that E(t) = E cos(vt) , where E depicts the amplitude and v = ck represents the field 
frequency.

The motion equations of the system can be written as

(12)N := max

∫

I(t)>0
I(t)dt,

(13)|ψ(t)� = Ca(t)|a� + Cb(t)|b�,

(14)|ψ̇(t)� = − i

�
H|ψ(t)�,

(15)H = H0 +H1,

(16)H0 = (|a��a| + |b��b|)H0(|a��a| + |b��b|) = �ωa|a��a|+�ωb|b��b|,

(17)
H1 = −exE(t)

= −e(|a��a| + |b��b|)x(|a��a| + |b��b|)E(t)
= −(℘ab|a��b|+℘ba|b��a|)E(t),

(18)
Ċa = −iωaCa + i�Re

−iφ cos(vt)Cb,

Ċb = −iωbCb + i�Re
iφ cos(vt)Ca,

Figure 1.   Schematic of the interaction of a two-level atom with a single-mode field.
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where �R = |℘ba|E
�

 is the Rabi frequency, and φ represents the phase of the dipole matrix element 
℘ba = |℘ba| exp(iφ).

To solve for Ca and Cb , we begin by considering the motion equations for the slowly varying amplitudes:

It next obeys from Eq. (18) that

where ω = ωa − ωb denotes the atomic transition frequency. After some straight calculations and ignoring the 
terms exp[±i(ω + v)t] , the solutions for ca and cb can be obtained as

where we have � = ω − v , � =
√

�2
R + (ω − v)2 , and a1, a2, b1, b2 are constants of integration which are deter-

mined from the initial conditions:

Finally, we can write as follows

such that |ca(t)|2 + |cb(t)|2 = 1 . If we assume that the atom is initially in the state |a� the we have ca(0) = 1 and 
cb(0) = 0.

Three‑level atom
We suppose a three-level atom in the � configuration interacting with two electromagnetic fields with frequencies 
ν1 and ν2 . As shown in Fig. 2, two lower levels |b� and |c� are commonly coupled to an upper level |a�.

The system’s Hamiltonian in the rotating-wave approximation is described by Eq. (15), in which

represents the unperturbed Hamiltonian having eigenvalues {�ωa, �ωb, �ωc} , and
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iωbt .
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2
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i(ω−v)t ,
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2
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)
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(
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)
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a1 =
1

2�
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,
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1
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,
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ei�t/2,

cb(t) =
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(24)H0=�ωa|a��a|+�ωb|b��b|+�ωc|c��c|

Figure 2.   Schematic of a three-level atom in the � configuration which are driven by two fields of frequencies 
ν1 and ν2.
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denotes the Hamiltonian that describes the interaction between the atom and fields. Furthermore, �R1e
−iφ1 and 

�R2e
−iφ2 are the complex Rabi frequencies corresponding to the coupling of the field modes with the frequencies 

ν1 and ν2 to the atomic transitions |a� → |b� and |a� → |c� , respectively. Moreover, φ1 and φ2 are phases of the fields 
with Rabi frequencies. We only assume |a� → |b� and |a� → |c� transitions are permissible dipole.

If the system is prepared in the initial atomic state

that is a superposition of the two lower levels {|b�, |c�} , and consider the fields are in the resonant state with 
the transitions of |a� → |b� and |a� → |c� , i.e, ωab = ν1 and ωac = ν2 , then one can write the evolved state of the 
system as77

such that using the probability amplitude method, the probability amplitudes of finding the atom in states |a� , 
|b� , and |c� are given by

in which � =
√

�2
R1 +�2

R2 . where θ and ψ are the amplitude and phase of the initial state. Besides, φ1 and φ2 
are the initial phases of the fields.

Throughout this paper, we consider � = 1 and all parameters are nondimensionalized to plot the figures as 
mentioned in Refs.78,79.

Two effective two‑level atoms
The system contains two effective two-level atoms that are considered as two similar qubits A and B interacting 
locally with two independent environments R1 and R2 , respectively, such that are modeled as bosonic reservoirs 
at zero temperature. The schematic of two two-level atoms at this configuration is illustrated in Fig. 3. We consider 
the qubit system in each environment interacts with the environment’s field through degenerate two-photon 
transitions in the presence of the Stark shift. The transition frequencies of the environment modes ωkj , (j = 1, 2) 
corresponding to R1 and R2 . Besides ω0 represents the transition frequency of the two qubits. In the rotating 
wave approximation, the effective Hamiltonian for the current model is written by (� = 1)80,81:

(25)H1=−�

2
(�R1e

−iφ1e−iν1t |a��b|+�R2e
−iφ2e−iν2t

∣

∣a�
〈

c|)+H .C.
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2
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2

)

|c�,

(27)|ψfi(t)� = ca(t)e
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ca =
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2

[
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−iφ1 cos(

θ

2
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−i(φ2+ψ)sin(
θ

2
)
]

,

cb =
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�2
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�2
R2 +�2

R1cos

(
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2
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(

θ

2

)

− 2�R1�R2e
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(

�t

4

)
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(

θ

2
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,

cc =
1

�2
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(

�t

4

)
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(

θ

2

)

+
[
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(
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e−iψ sin

(

θ

2

) }

.

Figure 3.   Schematic of the configuration of two effective two-level atoms (qubits A, and B) interacting 
independently with their reservoirs R1 , and R2 . There is no interaction between the two subsystems.
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where σ̂A,B
±  denote atomic raising and lowering operators of the qubits A, and B. Besides, â†kj and âkj represent 

the creation and annihilation operators of the k th mode of the j th environment (j = 1, 2) . Moreover, gk1 and gk2 
determine the effective two-photon strength of the qubit environment corresponding to the modes k1 and k2 , 
respectively. Furthermore, βkj and ηkj are the effective Stark shift coefficients82. Rewriting the previous Hamilto-
nian in the interaction picture is convenient:

We assume the system is in the initial state as:

in which χ ∈ [0, 1] , where 
∣

∣

∣
0kj

〉

Rj
 represents the vacuum state of the j th environment, and |0�j , |1�j(j = A,B) 

denote the ground and excited states of the two-level atoms. The number of excitations in the total system is 
preserved, thus the time evolution of the total system can be obtained by

where 
∣

∣

∣
2kj

〉

Rj
 denotes   excitations of two photons in the mode k for the j th environment. It’s worth noting that 

the two-photon process is considered, and then the j th environment has only two states 
∣

∣

∣
0kj

〉

 and 
∣

∣

∣
2kj

〉

 . Using 
the probability amplitude method, Laplace technique, and the similar method given by Refs.80,81, the probability 
amplitude coefficients can be written as:

with

and

We are facing two regimes, i.e. weak ( γ0 < �/2 ) and strong ( γ0 > �/2 ) coupling regimes83. In the weak coupling 
regime, the relaxation time is more than the reservoir correlation time, where the behavior of the qubit-reservoir 
system is Markovian and a decay process arises in the time. In contrast, when the reservoir correlation time 
exceeds the relaxation time, non-Markovian dynamics emerge, leading to a strong coupling regime. The entan-
glement revival, accompanied by oscillations due to the reservoir memory effect, becomes observable.

Consider the Hermitian matrix Ĥ = ρ̂ρ̂s , in which ρ̂ indicates the reduced density matrix of the pair of qubits 
A, B and ρ̂s =

(

σ̂A
y ⊗ σ̂B

y

)

ρ∗
(

σ̂A
y ⊗ σ̂B

y

)

 , with ρ∗ as the complex conjugate of ρ̂ and σ̂A
y , σ̂

B
y  as the usual Pauli 

matrices for the qubits. Assuming the atomic basis {|1�A|1�B, |1�A|0�B, |0�A|1�B, |0�A|0�B} , one can calculate the 
time-dependence of the reduced density matrix as80,81:
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†
k2
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â†k1 âk1
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Discussion and results
Here we display that memory effects can be extracted by faithful witnesses of non-Markovianity based on the 
Bhattacharyya distance. As illustrated in Fig. 4, using straightforward expressions in Appendix A, we compare 
the qualitative behaviors of the Bhattacharyya distance ( DBhatt ), the Bures distance ( DBures ), Hilbert-Schmidt 
speed ( HSSφ ), and quantum Fisher information ( Fφ ) with respect to the phase of the dipole matrix element for 
a two-level atom scenario. We can clearly see that the qualitative behavior of DBhatt is completely similar to other 
quantities so that the maximum and minimum points of the curves coincide with each other. As mentioned in 
Refs.32,34, a flow of QFI and HSS, i.e., d(Fφ)

dt > 0 and d(HSSφ)dt > 0 , in which the QFI and HSS have been calculated 
with respect to the phase φ , can detect the non-Markovianity effects. Hence the positive changing rate of the 
Bhattacharyya distance, i.e., d(DBhatt )

dt > 0 , can also detect the memory effects. This non-Markovianity witness is 
in total agreement with other witnesses based on Bures distance, QFI, and HSS thus identifying the information 
backflows.

Next, we expand the efficiency of our witness to the system with higher dimensions. In Fig. 5, the qualitative 
behaviors of the Bhattacharyya distance ( DBhatt ) and the Bures distance ( DBures ) for the three-level atom scenario 
are demonstrated. Here we see that the general agreement of the similar behaviors of the two quantities DBhatt 
and DBures for a three-level atom system still stands.

Furthermore, we show the comparison between time evolutions of the DBhatt , DBures , HSSφ1 , and Fφ1 with 
respect to the phase of the fields for the three-level atom scenario in Fig. 6. The result that can be obtained from 
this figure is that the qualitative behaviors of the DBhatt , DBures , HSSφ1 , and Fφ1 in high dimensions systems are 
exactly similar. These results are also valid for other different values of the system parameters. In addition, these 
results can be extended to other models.

(34)ρ(t) =









0 0 0 0

0 |c1(t)|2 c1(t)c
∗
2 (t) 0

0 c∗1 (t)c2(t) |c2(t)|2 0

0 0 0 1− |c1(t)|2 − |c2(t)|2









.

Figure 4.   Comparison between the dynamics of the Bhattacharyya distance ( DBhatt ), Bures distance ( DBures ), 
Hilbert-Schmidt speed ( HSSφ ), and quantum Fisher information ( Fφ ) with respect to the phase of the dipole 
matrix element for the two-level atom scenario when �R = 0.5 and � = 1.

Figure 5.   Comparison between the temporal variations of the Bhattacharyya 
distance ( DBhatt ) and Bures distance ( DBures ) for the three-level atom scenario when 
�R1 = 1,�R2 = 2,ωa = ωb = ωc = 1,ϕ = 2π ,φ1 = φ2 = ψ = π and θ = π/2 . Here, BT = 1.57 represents 
the Bhattacharyya distance threshold.
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In Fig. 7, we investigate the qualitative behaviors of the DBhatt , DBures , and concurrence for the two effec-
tive two-level atoms system. The concurrence measure84 is employed as an entanglement criterion defined as 
Concurrence = max

{

0,
√
�1 −

√
�2 −

√
�3 −

√
�4

}

 where �i (i = 1, . . . , 4) represents the eigenvalues of the 
evolved density matrix Eq. (34). In Fig. 7, we observe that the qualitative behaviors of the DBhatt , DBures , and 
concurrence are similar such that the minimum and maximum points of the behaviors coincide. This allows 
DBhatt to examine the entanglement dynamics of the system along with non-Markovian effects, making it highly 
beneficial in quantum computing. In a weak coupling regime ( γ0 < �/2 ), Fig. 7a, the monotonicity decrease of 
DBhatt , DBures , and concurrence is obvious. Here, the relaxation time is more than the reservoir correlation time, 
where the behavior of the qubit-reservoir system is Markovian and a decay process arises in the time. While 
in a strong coupling regime ( γ0 > �/2 ), Fig. 7b, the DBhatt , DBures , and concurrence revivals, accompanied by 
oscillations due to the reservoir memory effect, becomes observable. It means that the reservoir correlation time 
exceeds the relaxation time, leading to non-Markovian dynamics emerging.

Therefore, it can be easily stated that Bhattacharyya quantum distance can well detect the non-Markovian 
dynamics caused by quantum memory effects. As stated in Appendix A, it can be seen that this distance does 
not require heavy calculations in pure states, and only by having the initial and final states of the system, the 
effects of quantum memory can be detected. This point is important in high-dimension systems because of dif-
ficult calculations.

Conclusion
In this article, we have determined a relation between the positive changing rate of the Bhattacharyya distance 
(BD), a particular type of quantum statistical distance, and the non-Markovian dynamics of open quantum 
systems. The concept behind this suggestion is based on the idea that the nonmonotonic speed (positive accel-
eration) of quantum evolutions indicates memory effects in the dynamics of the system interacting with its 

Figure 6.   Comparison between the qualitative behaviors of the Bhattacharyya distance ( DBhatt ), 
the Bures distance ( DBures ), Hilbert-Schmidt speed ( HSSφ1 ), and quantum Fisher information ( Fφ1 ) 
with respect to the phase of the fields in terms of scaled time for the three-level atom scenario when 
�R1 = 0.3,�R2 = 1,ωa = 0.9,ωb = ωc = 1,ϕ = φ1 = φ2 = ψ = π and θ = π/4.

Figure 7.   Comparison between the temporal variations of the Bhattacharyya distance ( DBhatt ), the Bures 
distance ( DBures ), and concurrence for two effective two-level atoms system for (a) Markovian reservoir when 
� = 10,β = 0, γ0 = 1,χ = 1√

2
 , (b) Non-Markovian reservoir � = 0.1,β = 0, γ0 = 1,χ = 1√

2
.
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environment. Through the introduction of a BD-based quantifier, a quantitative witness of memory effects in 
system dynamics can be defined.

In an extensive case study analysis, we have demonstrated that the suggested witness is as useful as the well-
known witnesses of quantum Fisher information (QFI), Bures distance, and Hilbert-Schmidt speed (HSS) in 
identifying non-Markovianity. The models analyzed in our paper include various paradigmatic open quantum 
systems (two and three-level atoms interacting single and two-mode fields, respectively, and two effective two-
level atoms interacting locally with two independent environments) and provide proof of the sensitivity of our 
BD witness to system-environment information backflows. We note that non-Markovianity witness of the BD 
does not require the computation of the density matrix, but only determines it from the initial and final states 
of the system thereby leading to the improvement of the quantum metrology. One crucial finding in this article 
is that the BD measure can be used as a measure of entanglement like the Bures distance. Therefore, a quantifier 
with this characteristic would be highly sought after.

This article motivates further analysis of the role of non-Markovian effects in different open quantum systems 
and their relationship to quantum statistical distances.

Data availability
All data generated or analyzed during this study are included in this paper.

Appendix A: Straightforward expressions
Two‑level atom
By inserting Eqs. (13) and (23) in Eq. (2) and with using ( ρfi = |ψfi��ψfi| ), one can obtain the straightforward 
expression of quantum estimation with respect to phase φ with employing QFI in two-level atom scenario as

Moreover, using the same method for Eq. (35) and utilizing Eq. (3), one can calculate the straightforward 
expression for quantum estimation with respect to phase φ with employing HSS in two-level atom scenario as

Furthermore, using Eq. (4), we have the straightforward expression for Bures distance between initial density 
matrix ρin and evolved density matrix ρfi as follows

At final, utilizing Eq. (10) and initial state |ψin� and evolved state |ψfi� , one can calculate the straightforward 
expression for BD by

It should be noted that due to the cumbersome form for the expressions in the three-level atom scenario, we 
refrain from reporting them here.
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