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Infection with Aspergillus fumigatus can cause life-threatening diseases in
immunocompromised patients with an unacceptable mortality rate. Angioinvasion
is one of the features of severe invasive aspergillosis. Neutrophils are short-lived
immune cells regulated by colony-stimulating factor 3 (CSF3) that play a key role in
anti-fungal immune responses. To investigate the interactions between A. fumigatus
and the host immune cells, such as neutrophils, we stimulated human umbilical vein
endothelial cells (HUVECs) with the conidia of A. fumigatus, and co-cultured them with
human neutrophils. Apoptosis and functions of neutrophils were analyzed. Our results
showed that HUVECs upregulate the expression of CSF3, which could reduce the
apoptosis of neutrophils while enhancing their functions. Lack of CSF3 was associated
with enhanced apoptosis of neutrophils with impaired function. This work indicated that
the CSF3 is required for neutrophil survival and function, at least in the early stages of
A. fumigatus infection.
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INTRODUCTION

Aspergillosis remains a major health threat despite decades of studies and the availability of a range
of anti-fungal treatments (Bandres et al., 2021). The mortality rate among immunocompromised
patients, such as stem organ transplant recipients, patients with inherited immunodeficiency or
acquired immune deficiency syndrome, can exceed 50% (Beer et al., 2018). Aspergillus fumigatus
is the most common cause of aspergillosis and can be found in soil, air, and carbon-rich
substrates. People usually inhale hundreds of conidia of A. fumigatus each day, but only in
immunocompromised patients can it cause diseases, indicating that the immune system could
recognize inhaled mold and avoid germination. Detailed knowledge about the interaction between
the A. fumigatus and immune system could help develop a new treatment strategy in the treatment
strategies for aspergillosis.

After the spore form of A. fumigatus is inhaled, the mucociliary clearance can clearly the inhaled
conidia in healthy subjects. Recent studies have shown that alveolar macrophage and epithelial cells
are important during the early stage of the A. fumigatus infections as dysfunctions of these cells lead
to lung inflammation (Speirs et al., 2012; Burgel et al., 2016) or even angioinvasion if A. fumigatus
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causes invasive aspergillosis in lung and other organs (Kamai
et al., 2006). If the A. fumigatus conidia colonize the lower
airway, neutrophils are recruited to the fungal infection site
as they are among the first line of defense against pathogens.
In addition, unlike the macrophages, which usually attack
conidia, neutrophils are the primary attackers on hyphae while
phagocytizing conidia directly. Studies have also shown that
neutrophils, but not macrophages, play an essential role in
A. fumigatus infections (Mircescu et al., 2009). The anti-
fungal substances, such as neutrophil extracellular traps (NETs)
released by neutrophils, are required to control the conidia
and germlings of A. fumigatus to prevent the invasive diseases
(Gazendam et al., 2016).

Neutrophils are the most abundant cells among all leukocytes
in the blood stream, and previous studies have shown that
neutrophils play a central role in the immune response against
infections. Not only can neutrophils kill pathogens directly via
phagocytosis, releasing antimicrobial peptides, reactive oxygen
species (ROS), and NETs but also they can initiate indirect
killing via production of cytokines and chemokines to recruit and
activate other immune cells to start a “full size” immune response.
However, over-active or long-lasting activating neutrophils can
cause damage to host tissues or even cause autoimmune diseases
(Lehman and Segal, 2020). So, a well-organized “size” and
“time” of neutrophil activation is critical to eradicating invading
pathogens while avoiding detrimental side effects.

Multiple cytokines/chemokines play important roles in the
recruitment and activation of neutrophils. The key protein that
regulates neutrophil development, proliferation, differentiation,
survival, and function is the granulocyte colony-stimulating
factor (G-CSF), which is encoded by colony-stimulating factor
(CSF) 3 gene (Panopoulos and Watowich, 2008). Although the
protective role of G-CSF during infection-related diseases is
well documented (Stroncek and Leitman, 1998; Hansakon et al.,
2020), the role of G-CSF in A. fumigatus infections remains
controversial (Lauruschkat et al., 2018; Martin et al., 2021).
Therefore, a better understanding of the role of CSF3 during
A. fumigatus infections could provide more insight into the
pathogenesis of invasive diseases caused by A. fumigatus.

Hence, these issues need to be investigated. We stimulated
human umbilical vein endothelial cells (HUVECs) and human
neutrophils with conidia of A. fumigatus, and analyzed
neutrophils’ migration, survival, and functions upon stimulation.
This study provides additional insight into the interaction
between neutrophils/stromal cells and A. fumigatus.

MATERIALS AND METHODS

Patients and Patient Samples
The study was approved by the Ethics Committee on Human
Research of the First Hospital of Jilin University (approval No.
2018-250). Lung tissue samples were collected from the archives
of the Department of Pathology at the First Hospital of Jilin
University. There were 110 cases of lung tissue that had been
surgically removed and were diagnosed without metastatic tumor
between July 1, 2019 and July 31, 2020 at the First Hospital of Jilin

University. Among them, 13 subjects were diagnosed with mold
infection in the lung via periodic acid-Schiff (PAS) staining. The
blood test results and basic characteristics of these 13 subjects
were collected from the archives, and no personal data were
collected (Table 1). Hematoxylin and eosin (H&E) stain pictures
and unstained slides were kindly provided by the Department of
Pathology, the First Hospital of Jilin University.

IMMUNOSTAINING

Human neutrophil elastase (ELA2) antibody (MAB91672,
R&D Systems, MI, United States) was used to stain lung tissue
sections, while horseradish peroxidase (HRP) congregated
goat anti-rabbit IgG antibody (bs-0295G-HRP, Beijing
Biosynthesis Biotechnology Co., Ltd., China) was used for
immunohistochemistry (IHC) staining, and Cy3-labeled
goat anti-mouse IgG antibody (6900-250, Biovision, CA,
United States) was used for immunofluorescence staining.
Images were taken using an Olympus CKX53 inverted
microscope or an Olympus FV3000 confocal laser scanning
microscope. Hematoxylin was used for IHC staining as a
counter-stain. Detailed assay procedures were performed as
previously described (Xu et al., 2019, 2021).

Staining for Aspergillus fumigatus
Methenamine silver staining (MST, BA4094, BASO diagnostics,
Inc., China) and Calcofluor white staining (CWS, 4404-43-7,
Shanghai Maokang Biotechnology Co., Ltd., China) were used to
label A. fumigatus. Both procedures were performed according to
the protocol of the manufacturer.

Aspergillus fumigatus Culture
Aspergillus fumigatus strain IFM40808 was used in this study.
This strain was a gift from the Medical Mycology Research Centre
of Japan Chiba University, which was isolated from the lungs of
a 54-year-old female Japanese patient with invasive aspergillosis
and then saved in the laboratory (Zhang et al., 2020). Conidia
were inoculated on potato dextrose agar (PDA) medium (Becton

TABLE 1 | Basic characters of subjects with mold infections.

Sex Age Diagnosis

F 48 Bronchiectasis

F 64 Bronchiectasis

F 62 Bronchiectasis

M 38 Bronchiectasis

F 53 Bronchiectasis

M 70 Bronchiectasis

M 46 Chronic obstructive pulmonary disease

F 41 Lung abscess

F 36 Pneumonitis

F 20 Pulmonary cysts

M 62 Pulmonary fibrosis

M 56 Pulmonary mycosis

F 30 Pulmonary sequestration
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Dickinson Co., Sparks, MD, United States) and grown for 4–
6 days at 37◦C. The fresh conidia were harvested in saline (0.9%
NaCl, 0.01% Tween 20) isolated from mycelia using a cell strainer
(40 µm), and counted using a hemocytometer.

Cell Culture
Wild-type (WT) and CSF3 knockout HUVECs were used in
this study. All cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM, Sigma, MO, United States) supplemented
with 10% heat-inactivated fetal bovine serum (FBS, BI, CT,
US). WT HUVECs were stored in our laboratory (Tian et al.,
2019). CSF3 knockout HUVEC cells were generated using the
CRISPR/Cas9 system, and the sequence for guide RNA (gRNA)
used was CCG ACT TTG CCA CCA CCA TC, with the
control gRNA CCG GGT CTT CGA GAA GAC CT. CSF3
knockdown was achieved by transfection of siRNA against
CSF3 and control siRNA purchased from Guangzhou Ribo
Biotechnology Co., Ltd. (stB0003446B, siN0000001, China).
CSF3 overexpressing was achieved by transfection of CSF3
plasmid purchased from Sangon Biotech (Shanghai) Co., Ltd.
(China). All transfection experiments were performed using
Lipofectamine 2000 Transfection Reagent (11668019, Thermo
Fisher Scientific, MA, United States) according to the instructions
of the manufacturer.

Conidia Germination Assay
HUVECs were seeded in a 24-well plate (3 × 105 cells per well)
for an overnight culture under normal tissue culture conditions.
Fresh conidia of A. fumigatus were added to the cultured HUVEC
cells in a 24-well plate as indicated in the manuscript. As
described previously, light optical microscopy took photographs
of spores at different time points (Wang et al., 2016).

RNA Sequencing
HUVECs were seeded in a six-well plate (2 × 106 cells per well)
overnight before the conidia of A. fumigatus were added to the
wells at a cell:spore ratio of 1:2. The cell lysates were harvested in
Trizol (15596026, Thermo Fisher Scientific, MA, United States) 2
and 6 h post-stimulation and shipped to CapitalBio Technology
in Beijing in dry ice for RNA sequencing and analysis. Three
biological replicates were used for each condition.

Neutrophil Isolation
Fresh samples of peripheral blood from healthy volunteers were
collected in EDTA tubes (0102 EDTAK2, Kang Jian Medical,
China) by venous puncture according to the approved protocol
by the Ethics Committee on Human Research of the First
Hospital of Jilin University (approval No. 2018-250). Blood
was utilized within 4 h after the blood draw. Neutrophils were
isolated using the EasySep Direct Human Neutrophil Isolation
Kit according to the protocol of the manufacturer (19666,
STEMCELL Technologies, BC, Canada).

Neutrophil Migration and Co-culture in
Transwell System
Isolated neutrophils suspended in DMEM containing 10% FBS at
106/ml, 250 µl of cells were placed in the upper compartment of

a Transwell chamber featuring an uncoated polyester membrane
with 3- or 0.4-µm pores (3,472 and 3,470, Corning, NY,
United States) after stimulating HUVECs with spores for 2 h
in the bottom chamber. After incubation at the indicated time
at 37◦C and 5% CO2, the cells in the upper chamber of a 0.4-
µm Transwell plate were harvested for quantitative polymerase
chain reaction (qPCR) testing or flowcytometry. The supernatant
was also harvested for the myeloperoxidase (MPO) assay. The
suspended cells in the lower chamber of the 3-µm Transwell plate
were counted using a hemocytometer.

Western Blotting Analysis
Western blotting was performed as previously described (Xu
et al., 2021). HUVECs were lysed in radioimmunoprecipitation
assay (RIPA) buffer to detect G-CSF levels. Antibodies against
G-CSF were obtained from Abcam (ab181053, United Kingdom),
β-actin was obtained from Beijing Ray Antibody Biotech
(RM2001, China), and goat anti-rabbit IgG/HRP and goat
anti-mouse IgG/HRP were obtained from Beijing Biosynthesis
Biotechnology (bs-0295G-HRP, bs-0296G-HRP, China).

Polymerase Chain Reaction
RNA was purified from cells using TRIzol Reagent according to
the instructions of the manufacturer (15596026, Thermo Fisher
Scientific, MA, United States). Reverse transcription (RT) of
RNA into cDNA was performed using a cDNA synthesis kit
(Takara, Japan). Real-time PCR was performed using FastStart
Universal SYBR Green Master (4913914001, Roche, Switzerland)
on a Stratagene Mx3000P system (Agilent, CA, United States)
(Tian et al., 2019). The primers used were as follows:

CSF3 Forward 5′-AAG CTG GTG AGT GAG TGT GC-3′

Reverse 5′-GGC CAT TCC CAG TTC CA-3′

IL1B Forward 5′-GGG CCT CAA GGA AAA GAA TC-3′

Reverse 5′-TTC TGC TTG AGA GGT GCT GA-3′

IL8 Forward 5′-GTG CAG TTT TGC CAA GGA GT-3′

Reverse 5′-CTC TGC ACC CAG TTT TCC TT-3′

NOS2Forward 5′-AGG TCC AAA TCT TGC CTG GG-3′

Reverse 5′-ATC TGG AGG GGT AGG CTT GT-3′

TBP Forward 5′-ACA ACA GCC TGC CAC CTT AC-3′

Reverse, 5′-CTG AAT AGG CTG TGG GGT CA
GG-3′

Flow Cytometry
Neutrophils cultured in the upper chamber with 0.4-µm pores
were harvested and then stained with an apoptosis analysis kit
(AO2001-02A-G, Tianjin Sungene Biotech Co., China) for flow
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cytometry analysis on Guava easyCyte HT System (Luminex
Corporation, TX, United States).

Determination of Myeloperoxidase
Activity
The supernatants from neutrophils cultured in the upper
chamber with 0.4-µm pores and neutrophils cultured without
Transwell inserts were harvested for myeloperoxidase (MPO)
assay as previously described (Li et al., 2014; Xi et al., 2020).

Statistical Analysis
Data are expressed as the means ± standard error of the
mean (SEM). The statistical significance between the two
groups was analyzed by Student’s t-test; one-way ANOVA
followed by Tukey’s multiple t-tests were used when more than
two groups were compared (Prism, GraphPad Software, CA,
United States). The asterisk (∗) represents p < 0.05 and was
considered statistically significant. All experiments were repeated
at least three times.

RESULTS

Increased Recruitment of Neutrophils in
Aspergillus fumigatus Infection Sites
In order to investigate the interaction between the A. fumigatus
and the host immune system, we selected 13 tissue samples
from the archives of the Department of Pathology, the First
Hospital of Jilin University, all of which were cleared from
metastatic tumors (Table 1). Morphology analysis showed
that there were neutrophils surrounding and infiltrating the
fungal infection loci, while in healthy controls, there were
very few neutrophils in the lung interstitium (Figures 1A,G).
We stained the lung tissue sections with anti-ELA2 (human
neutrophil elastase) antibody to confirm that the infiltrated cells
were mainly neutrophils. The IHC and immunofluorescence
results confirmed the observation from H&E staining
(Figures 1B,D). We also used the methenamine silver staining
(MST) and Calcofluor white staining (CWS) to confirm
fungal infection (Figures 1C,D). Interestingly, although there
was significantly higher infiltration of neutrophils in the
lung interstitial tissue from patients with fungal infections
than controls, the blood test showed that the neutrophil
numbers and percentage in the blood remained within the
normal range (Figures 1E,F). These results indicated that
the fungal infection caused more local neutrophilic reactions
than systemic ones.

Germination of Aspergillus fumigatus
Conidia Into Hyphae in Human Umbilical
Vein Endothelial Cells
Stromal cells are the first line of defense against invading
pathogens in the mucosal tissue. A. fumigatus infection-related
lung diseases are usually caused by the colonization of inhaled
conidia of A. fumigatus in the lower airways and germinate into
hyphae which became invasive. Invasive aspergillosis is usually

accompanied by fungal invasion of blood vessels. To investigate
how stromal cells respond to conidia stimulation, we added
conidia of A. fumigatus to HUVECs to test whether stromal
cells themselves could limit the germination of A. fumigatus
conidia. We trialed various doses of conidia (cell:spore ratios
of 2:1, 1:2, and 1:10), added to HUVECs, and monitored the
germination at different time points (2, 6, 8, 12, and 24 h).
The results showed that HUVECs only slightly reduced the
germination of conidia up to 8 h. From 12 h onward, all conidia
germinated with or without the presence of HUVECs (Figure 2).
In addition, the cell:spore ratio of 1:2 was selected for further
experiments as at this ratio, we observed 90% of germinated
conidia (Figure 2C).

Human Umbilical Vein Endothelial Cells
Upregulate Colony-Stimulating Factor 3
Gene Expression in Response to
Aspergillus fumigatus
After establishing that the HUVEC cells alone could not stop the
germination of A. fumigatus conidia, and considering the fact
that most people inhaled hundreds of spores each day without
any symptoms, it must be the immune response A. fumigatus
conidia triggered that protected most people from pulmonary
aspergilloma. To investigate how stromal cells initiate the
downstream immune responses, we stimulated the HUVECs
with conidia from A. fumigatus, harvested the cells at 2 and
6 h time points, and sent them for RNA sequencing. The
RNA-seq data showed that CSF3 is among the upregulated
genes (Figures 3A–C). We also performed qPCR to confirm
this finding (Figure 3D). Interestingly, our first observation
from patient samples revealed that neutrophils are the most
abundant immune cells in and around the A. fumigatus infection
foci (Figure 1G), and G-CSF, which CSF3 encoded, is a key
cytokine in the regulation of the differentiation, migration, and
functions of neutrophils.

Colony-Stimulating Factor 3 Is Not
Required in the Limitation of Aspergillus
fumigatus Hyphae via Human Umbilical
Vein Endothelial Cells
To investigate the role of CSF3 in A. fumigatus infection, we
used siRNA to knockdown CSF3 expression in HUVECs and
repeated the conidia germination assay on these cells. The results
showed that knockdown of CSF3 in HUVECs did not affect the
germination of conidia (Supplementary Figures 1A,D). Next,
we used the CRISPR/Cas9 technique to generate two CSF3
knockout HUVEC cell lines (Supplementary Figures 2, 4).
We also used a plasmid to induce the CSF3 overexpression
in HUVECs. The germination assay performed on these cells
showed that CSF3 knockout or overexpression also did not
affect the ability of HUVECs to prevent the germination of
A. fumigatus conidia (Figure 4). The results showed that CSF3
upregulation in HUVECs after A. fumigatus stimulation does
not contribute to the endothelial cell restriction of A. fumigatus
conidial germination.
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FIGURE 1 | Neutrophils are involved in Aspergillus (A). fumigatus infection. Lung tissues obtained from patients with mold infection in the lungs were stained with (A)
hematoxylin and eosin (H&E) staining, (B) immunohistochemical staining for human neutrophil elastase (ELA2), and (C) methenamine silver staining (MST).
(D) Immunofluorescence staining for ELA2 and Calcofluor white staining (CWS) in lung tissue samples with Aspergillus spp. infections. Leukocyte percentages (E)
and numbers (F) in the peripheral blood of patients with Aspergillus spp. infections. (G) Neutrophil numbers in the lung tissue sections were counted. Ctrl, lung tissue
sections free from Aspergillus spp. Infection; P1 and P2, lung tissue sections with Aspergillus spp. infections. HPF, high power field. *p < 0.05. Original
magnification × 100. The red arrow indicates neutrophils.
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FIGURE 2 | Germination assay of conidia of A. fumigatus co-cultured with human umbilical vein endothelial cells (HUVECs). HUVECs were seeded in a 24-well plate
(3 × 105 cells per well) overnight before the conidia of A. fumigatus were added to the wells at the indicated cell:spore ratio. Representative pictures of conidia at a
1:2 ratio taken at the indicated time with (A) or without (B) HUVECs. (C) The percentages of germinated conidia with added cell:spore ratio at indicated time points
were calculated. *p < 0.05. Original magnification × 100. Black arrow: germinating conidia.

Granulocyte-Colony-Stimulating Factor
Released by Human Umbilical Vein
Endothelial Cells Affects Neutrophils
Functions
We investigated whether the G-CSF released by HUVECs
could affect the abilities of neutrophils. We stimulated the
CSF3−/−, WT and CSF3overerxpress HUVEC cells with conidia
of A. fumigatus, and the neutrophils were added to the culture.
The results showed that neutrophils could prevent most of
the conidia from germinating in the presence of G-CSF. Still,
the ability of neutrophils was dramatically decreased when co-
cultured with CSF3−/− HUVECs, while it was enhanced by
CSF3overerxpress HUVEC cells (Figures 5A–D and Supplementary
Figures 5C,D).

Next, we used qPCR to analyze the gene expression of
IL1B, IL8, and NOS2 in neutrophils. To show that the gene

expression changes depend on the contacts between the conidia
and neutrophils, we used a Transwell chamber to isolate
the neutrophils from the conidia. A comparison between the
gene expression of neutrophils with (co-culture) or without
(Transwell) contact with conidia of A. fumigatus showed that
even in the presence of stimuli, neutrophils still need G-CSF
to upregulate inflammatory genes such as IL1B, IL8, and NOS2
(Figures 5E–J). The MPO assay also showed a similar trend
(Figures 5K,L). These results indicate that CSF3 is closely
correlated to neutrophil activation.

Granulocyte-Colony-Stimulating Factor
Is Involved in Interactions Between
Neutrophil and Aspergillus fumigatus
To investigate the interactions between neutrophils, HUVECs,
and A. fumigatus, we used flow cytometry to analyze the
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FIGURE 3 | RNA-seq data of HUVECs after stimulation with conidia of
A. fumigatus. HUVECs were seeded in a six-well plate (2 × 106 cells per well)
overnight before the conidia of A. fumigatus were added to the wells at a
cell:spore ratio of 1:2. The cell lysates were harvested 2 and 6 h
post-stimulation and sent for RNA sequencing. The heat-map (A) and volcano
plots of 2 h (B) and 6 h (C) are shown. (D) The RNA expression of
colony-stimulating factor 3 (CSF3) was analyzed by quantitative polymerase
chain reaction (qPCR). *p < 0.05.

apoptosis of neutrophils after stimulation with A. fumigatus
conidia. More neutrophils became apoptotic in response to
conidia, and this was further enhanced when co-cultured
with CSF3− − HUVECs but reduced by CSF3overerxpress
cells (Figures 6A,B and Supplementary Figures 5A,B).
Neutrophil migration was also enhanced by G-CSF released by
HUVECs (Figure 6C).

One of the critical methods used by neutrophils to
eliminate pathogens is releasing of NETs. As NETs released by
neutrophils mainly contains DNA, histone proteins, fiber, etc.,
we analyzed the extracellular DNA via staining of propidium
iodide (PI). As shown in Supplementary Figure 3, there
were more extracellular DNAs in the CSF3 overexpression
group and fewer extracellular DNAs in the CSF3 knockout
group. In addition, the neutrophils seemed to be less clustered
in co-culture with CSF3−/− HUVECs than WT HUVECs
(Figure 6D). These results indicate that CSF3 is one of the crucial
cytokines in regulating neutrophil function during anti-fungal
immune responses.

DISCUSSION

In this work, we showed that HUVECs produce G-CSF in
response to A. fumigatus conidia stimulation. In addition, G-CSF
produced by HUVECs is required for neutrophils to perform
their function to prevent the conidia from germinating into
invasive hyphae. In response to conidia and G-CSF stimulation,
neutrophils can directly kill conidia by phagocytosis and releasing
NETs, while producing inflammatory cytokines to recruit and
activate other immune cells.

Aspergillosis, which is caused mainly by A. fumigatus,
is still associated with unacceptable mortality rate despite
recent advances in medical research and the availability
of new anti-fungal medication (Bandres et al., 2021). This
might be due to co-infection with other pathogens such as
P. aeruginosa, S. aureus, S. pneumoniae, etc., which were
not unusual in immunocompromised patients. These co-
infected pathogens might release cytotoxic substances that
cause damages to the epithelium, favoring the colonization
and germination of A. fumigatus. The medicine used for
other co-infected pathogens might also counteract anti-
fungal medicine (Lv et al., 2021). In this study, we found
that A. fumigatus could stimulate G-CSF production, which
contributed to the activation of neutrophils with lower apoptosis
rate (Figures 6A,B and Supplementary Figures 1B,C),
which implies a pleiotropic role of G-CSF and neutrophils
during infections.

Neutrophils are the first leukocyte type to arrive upon
infection, and their proliferation, migration, and functions
are tightly regulated by G-CSF (Martin et al., 2021).
Neutrophils might be the most important immune cells
in terms of the control of A. fumigatus infections in
healthy subjects (Lehman and Segal, 2020). A healthy
immune system has many negative regulatory mechanisms
to constrain the activation and life-span of neutrophils
(Azcutia et al., 2017; Silvestre-Roig et al., 2019). This is
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FIGURE 4 | (Continued)
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FIGURE 4 | Germination assay of conidia of A. fumigatus co-cultured with HUVECs with different expressions of CSF3. HUVECs were seeded in a 24-well plate
(3 × 105 cells per well) overnight before the conidia of A. fumigatus were added to the wells at a cell:spore ratio of 1:2. The protein level of
granulocyte-colony-stimulating factor (G-CSF) in HUVECs was measured by Western blotting (A), and the mRNA expression of CSF3 were measured by qPCR (B).
Representative pictures of spores taken at indicated times with WT (C), CSF3-/- (D) or CSF3overexpressing (E) HUVECs. The percentage of germinated spores was
then calculated (F). WT, wild type HUVEC; KO, CSF3 knockout HUVEC (described in Supplementary Figure 2); OV, HUVECs transfected with CSF3 plasmid 48 h
before stimulation with conidia. *p < 0.05 compared with WT. Original magnification × 100. Black arrow, germinating conidia.

because the ROS, NETs, and other substance neutrophils
released to eradicate pathogens could also cause damage
to self-tissue (Mantovani et al., 2011; Papayannopoulos,
2018). In immunocompromised patients, the immune
system also loses some of its abilities to self-regulate,
and the dysfunctional immune responses and prolonged
infections combined together may be the reason why
they are actually more prone to autoimmune related
diseases (Arason et al., 2010; Roe, 2021). This cannot be
overlooked during the treatment of immunocompromised
patients. This work showed enhanced neutrophil migration
and functions by the G-CSF released by HUVECs,
which indicated that local instead of systematically
administration of G-CSF might eliminate invading
A. fumigatus with limited side effects, at least during the
early stages of infection.

Neutrophils account for approximately 60% of nucleated cells
in the bloodstream, and they play a pivotal role in immune
responses against invading pathogens, such as bacteria and fungi.
Patients with neutrophil disorders always suffer from recurrent
or severe bacterial or fungal infections (Martin et al., 2021).
One common example is pulmonary aspergillosis, which can
only be seen in patients with immune system dysfunctions,
such as patients with neutropenia and hematopoietic stem
cell transplantation (HSCT) recipients. Neutrophils use several
tools to combat invading fungi, such as phagocytosis via the
activation of FcγR, CR3, or PRRs; the release of reactive
oxidants and non-oxidants, and generation of NETs with web-
like structures (Lehman and Segal, 2020). However, over-
activated neutrophils can cause some non-specific damage
to self-tissues, as observed in gout (Vedder et al., 2020),
asthma (Ray and Kolls, 2017), pustular psoriasis (Marzano
et al., 2019), and rheumatoid arthritis (Thieblemont et al.,
2016); neutrophils also could mediate hyper-inflammation
accompanied by infections, including SARS-CoV-2 (Cavalcante-
Silva et al., 2021). Thus, the activation of neutrophils must
be well calibrated and terminated quickly once the pathogens
have been eradicated (Lehman and Segal, 2020). In the
present study, our results showed that the conidia from
A. fumigatus could stimulate stromal cells to secrete cytokines
to activate neutrophils, leading to tissue damage after long-term
exposure to fungi.

G-CSF, a ∼20-kDa glycoprotein encoded by the CSF3
gene, is the most essential cytokine in the development of
neutrophils. In the bone marrow, granulocyte–macrophage
progenitor cells require G-CSF to differentiate into neutrophils
(Mehta and Corey, 2021). Recombinant human G-CSF has been
used to treat severe congenital neutropenia (Skokowa et al.,
2017), chemotherapy-induced neutropenia (Mehta et al., 2015),

and in HSCT recipients as well. However, this treatment
has mixed outcomes (Gupta et al., 2021; Mouchemore and
Anderson, 2021). In this study, we found that the stromal cells
could release G-CSF upon stimulation with A. fumigatus. The
increased neutrophil numbers were only seen locally rather
than systemically in patients with pulmonary A. fumigatus
infections. We also observed that G-CSF reduced neutrophil
apoptosis. These findings are particularly interesting since CSF3
is reported to be selectively highly expressed in the lung
(Amemiya et al., 2019).

Nevertheless, the roles of G-CSF and neutrophils during
infection are very complicated. G-CSF is reported to be
beneficial in a mouse model of A. fumigatus airway infection
(Polak-Wyss, 1991; Ralph et al., 2021). However, G-CSF
might not simply associate with similar protective effects
in humans. Although neutrophil killing of A. fumigatus
and R. arrhizus, but not C. albicans, was enhanced by
G-CSF for neutrophils from healthy donors (Roilides et al.,
1993; Liles et al., 1997) in vitro, neutrophil swarming
was rescued for neutrophils from immunocompromised
patients (Barros et al., 2021) or from healthy donors but
during ROS or MPO inhibition (Hopke et al., 2020), which
promoted the usage of G-CSF for immunocompromised
patient against opportunistic fungi. Other studies indicated
that G-CSF-activated neutrophils might contribute to the
allergic reactions in aspergillosis (Patel and Greenberger,
2019). In neutropenic patients, granulocyte transfusion
after G-CSF treatment exhibited no beneficial effect against
infections (Price et al., 2015). G-CSF treatment provides no
significant improvements in cases of pneumonia (Cheng
et al., 2007) or sepsis (Bo et al., 2011). In recent SARS-
Cov-2-induced COVID-19, treatment with G-CSF is not
recommended even though COVID-19 is associated with
neutropenia because of G-CSF-induced inflammation outcomes
(Lazarus and Gale, 2021). G-CSF treatment for tumor
patients with chemotherapy-associated neutropenia raises
more questions as well, as new evidence suggests that G-CSF
might exacerbate the immune suppression environment in
tumors (Mouchemore and Anderson, 2021). These findings
indicate that systematic administration of G-CSF might cause
detrimental effects than beneficial effects, especially in terms of
prolonged exposure.

In summary, this study revealed that the G-CSF and
neutrophil activation did have a role in preventing the
germination of conidia of A. fumigatus to hyphae. However,
the inflammatory cytokines produced by neutrophils and the
reduced apoptosis rate of neutrophils themselves raised more
questions that require further investigation. We believe that, a
detailed understanding of the role of G-CSF and neutrophils in
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FIGURE 5 | (Continued)
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FIGURE 5 | Germination assay of conidia of A. fumigatus co-cultured with HUVECs and neutrophils. HUVECs were seeded in 24-well plate (3 × 105 cells per well)
overnight before the conidia of A. fumigatus were added to the wells at a cell:spore ratio of 1:2. Neutrophils (2 × 105 cells per well) were added 2 h after adding
conidia. Representative pictures of conidia were taken at indicated time with WT (A), CSF3-/- (B) or CSF3overexpressing (C) HUVECs and neutrophils. The percentage
of germinated conidia was calculated (D). (E–L) Neutrophils (2 × 105 cells per well) were added to a 0.4-µm Transwell chamber (E,G,I,K) or without the Transwell
chamber (F,H,J,L) 2 h after adding conidia, and both the neutrophil cells and supernatant were harvested 6 h later. The gene expression of IL1B (E,F), IL8 (G,H),
and NOS2 (I,J) were tested by qPCR, and granulocyte-colony-stimulating factor (MPO) was also analyzed (K,L). WT, wild type HUVEC; KO, CSF3 knockout HUVEC
(described in Supplementary Figure 2); OV, HUVECs transfected with CSF3 plasmid 48 h before stimulation with conidia. *p < 0.05 compared with WT. Original
magnification × 100. Black arrow, germinating conidia.
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FIGURE 6 | G-CSF has effects in neutrophil functions. HUVECs were seeded in a 24-well plate (3 × 105 cells per well) overnight before the conidia of A. fumigatus
or control saline were added to the wells at a cell:spore ratio of 1:2. Neutrophils (2 × 105 cells per well) were added to a 0.4-µm Transwell chamber (A,B) or a 3-µm
Transwell chamber (C) 2 h after adding conidia. Neutrophils were analyzed by flow cytometry for apoptosis, representative dot plots are shown (A), and the
percentage was calculated (B). Neutrophils that migrated into the lower layer of the well were also quantified (C). Representative pictures of conidia, HUVECs, and
neutrophils obtained by light optical microscopy are also shown (D). w/out, without the conidia; with, conidia were added; WT, wild-type HUVEC; KO, CSF3
knockout HUVEC (described in Supplementary Figure 2); OV, HUVECs transfected with CSF3 plasmid 48 h before stimulation with conidia. Original
magnification × 100 (D). *p < 0.05.
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fungal infections may help develop more treatment strategies
against fungal infection induced diseases.
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