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ABSTRACT

High-content imaging and single-cell genomics are
two of the most prominent high-throughput technolo-
gies for studying cellular properties and functions at
scale. Recent studies have demonstrated that infor-
mation in large imaging datasets can be used to es-
timate gene mutations and to predict the cell-cycle
state and the cellular decision making directly from
cellular morphology. Thus, high-throughput imag-
ing methodologies, such as imaging flow cytometry
can potentially aim beyond simple sorting of cell-
populations. We introduce IFC-seq, a machine learn-
ing methodology for predicting the expression pro-
file of every cell in an imaging flow cytometry experi-
ment. Since it is to-date unfeasible to observe single-
cell gene expression and morphology in flow, we in-
tegrate uncoupled imaging data with an independent
transcriptomics dataset by leveraging common sur-
face markers. We demonstrate that IFC-seq success-
fully models gene expression of a moderate number
of key gene-markers for two independent imaging
flow cytometry datasets: (i) human blood mononu-
clear cells and (ii) mouse myeloid progenitor cells. In
the case of mouse myeloid progenitor cells IFC-seq
can predict gene expression directly from brightfield
images in a label-free manner, using a convolutional
neural network. The proposed method promises to
add gene expression information to existing and new
imaging flow cytometry datasets, at no additional
cost.

INTRODUCTION

Extracting actionable knowledge from vast volumes of data
acquired with modern high-throughput single-cell profiling
methods is an intriguing challenge in the field of compu-
tational biology, more so if multiple such methods are to
be integrated for one particular biological question. One
of the most prominent single-cell profiling methods is flu-
orescence microscopy (1), which allows for the acquisi-
tion of information-rich imaging data. Imaging flow cy-
tometry (IFC) (2) is a key extension of fluorescence mi-
croscopy that combines the high-throughput capabilities
of flow-cytometry (3) with imaging at the single-cell level.
IFC datasets have three main characteristics that make
them well-suited for quantitative analysis. First, fluorescent
markers can be used to label distinct cellular characteris-
tics and functions, rendering the generated datasets rich
in information. Second, each cell is imaged separately. As
such, there is no need for a segmentation method in down-
stream analysis steps at the cost of losing information re-
garding the original morphology of the tissue. Third, the
high-throughput nature of imaging flow cytometry allows
for the imaging of a very large number of cells (tens of thou-
sands or more) per experiment in a standardized fashion.
High-throughput image acquisition naturally leads to large
datasets, which calls for contemporary analysis methods in
particular machine learning for analysis and interpretation.

As an extension of flow cytometry, IFC has the potential
to tackle diagnostic applications in a clinical setting. Flow
cytometry is a key technology used to diagnose and evalu-
ate hematopoietic neoplasia (4). While historically, diagno-
sis of such malignancies relied strongly on morphological
changes of malignant cells, modern diagnostics combines
morphological assessment with immunophenotyping and
genetic analysis (5). The large heterogeneity of lymphomas
and leukemias require a precise characterization of neoplas-
tic cells, hence a large panel of specific antibodies is required
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for reliable diagnosis (6). Recently, deep learning analysis
of histology imaging data has gained attention from clini-
cians and pathologists in the diagnosis of cancers. Convo-
lutional neural networks have achieved a success rate in the
classification of certain tumors that match the success rate
of pathologists (7,8). Data obtained by IFC is ideally suited
for deep learning-assisted image analysis and hence can be
a valuable tool in the diagnosis of lymphomas and other
diseases affecting blood cells, such as immunodeficiencies.

IFC allows for imaging of cells and studying cellular
properties through corresponding surface markers. As the
measurement of surface markers occurs via fluorescently la-
beled antibodies, this measurement is naturally limited by
the number of available fluorescent channels. In turn, this
limits the cellular diversity that can be studied using a stan-
dard IFC approach. Additionally, the view of the dataset
is inherently biased since the surface markers are selected
prior to performing the experiment. In contrast, direct ob-
servation of each cell’s molecular properties would allow for
an unbiased view of each cell’s inner workings. A natural
example of such a high-throughput unbiased view of cel-
lular properties is single-cell omics (9). Specifically, single-
cell transcriptomics (SCT) (10,11) corresponds to an addi-
tional modality of information-rich and high-throughput
datasets at the single-cell level. The novelty of SCT methods
lies in their ability to measure the full gene expression pro-
file of each individual cell. As a result, the advent of single-
cell transcriptomics has led to new advancements in several
areas of biology, such as hematopoiesis (12,13), embryo-
genesis (14,15), the airway epithelium (16,17) and the im-
mune system (18–20). With increasing complexity and size
of these data sets (10), these biological advancements have
gone hand-in-hand with the development of novel statisti-
cal and machine learning concepts for analyzing SCT data
(21–24).

Machine learning approaches have also been developed
for the analysis of IFC measurements, mainly focussing
on the identification and automated sorting of different
cell types (25–28). Nonetheless, recent developments in ma-
chine learning methods have shown that analysis of imag-
ing data can be extended far beyond simple sorting of cell
types. For example, it was recently demonstrated that gene
mutational status can be predicted from imaging data (7).
Moreover imaging data can be used in order to estimate the
cell-cycle stage (27) and to predict cellular decisions such
as differentiation (29) based on morphology information.
Additionally, technologies that offer both IFC and SCT ca-
pabilities are expected in the near future (30,31). Datasets
including both imaging and transcriptomic views of each
individual cell will offer unprecedented quality and quan-
tity of information. As such, they can aid our understanding
of biological systems. Having SCT information available in
IFC experiments would not only alleviate the bias of prese-
lecting surface markers prior to performing the IFC exper-
iment, but would additionally allow studying cellular prop-
erties and functions in unprecedented resolution by provid-
ing expression information for individual cells.

However, at the moment the IFC and SCT modalities
are still acquired separately, in different experiments and
for different populations of cells. In this paper we intro-
duce IFC-seq: a machine learning methodology for predict-

ing the expression profile of each individual cell of an IFC
experiment, based on integrating a corresponding SCT ex-
periment that includes the same cell types of interest. We
demonstrate that our method correctly predicts and local-
izes the expression of key marker genes for each cell type. We
also demonstrate that in some cases, the estimation of gene
expression can be performed in a label-free manner from the
brightfield images only, based on the morphology of each
cell (32). To the best of our knowledge, this is the first study
that aims to computationally augment IFC datasets with an
additional SCT information modality.

The closest method to our approach is (7) where the imag-
ing modality is used to predict the mutation status of select
genes. Nonetheless, IFC-seq differs from (7) in the follow-
ing points: First, unlike the case of (7) where ground truth
mutational status is available for each sample, in the case of
IFC-seq no ground truth expression information is available
for the IFC experiments. Second, IFC-seq predicts contin-
uous expression instead of a binary outcome. Third, IFC-
seq predicts the expression of hundreds of genes that corre-
spond to population markers, instead of predicting a small
number of predetermined genes. The workflow of IFC-seq
is demonstrated in Figure 1.

MATERIALS AND METHODS

Preprocessing the SCT datasets

Each SCT dataset was pre-processed before being co-
registered to its corresponding IFC dataset. First, the sur-
face markers values of the SCT datasets were normalized to
[0,1]. Then, genes that were expressed in fewer than 20 cells
of the SCT experiment were excluded from further anal-
ysis. Next, the expression of all genes was logarithmized
using the natural logarithm. Subsequently, gating was per-
formed by an expert on the surface marker values of the
SCT dataset in order to identify the cellular subpopulations
of interest. It should be noted that gating information is not
used in the predictive model, but is only used to validate the
model’s results. Last, a set of top 100 differentially expressed
marker genes was computed for each cellular subpopula-
tion, using the ‘rank genes groups’ function of Scanpy (24).
As such, differentially expressed genes were identified in a
purely unbiased data-driven manner and no manual identi-
fication of marker genes was performed by an expert.

SCT––human cord blood mononuclear cells

The first SCT dataset corresponds to Cord Blood Mononu-
clear Cells (CBMCs) (33). The original dataset in-
cludes human and mouse cells and the count ma-
trix and surface markers are available as supplementary
files GSE100866 CBMC 8K 13AB 10X-RNA umi.csv.gz
and GSE100866 CBMC 8K 13AB 10X-ADT umi.csv.gz,
respectively. Only human cells were kept by selecting cells
that express more human than mouse genes. To be pre-
cise, human genes in the count matrix are characterized by
a ‘HUMAN ’, while mouse genes are characterized by a
‘MOUSE ’ prefix in the gene name. We identified as hu-
man cells, the cells that express more human than mouse
genes. We considered a gene to be expressed in a cell if it cor-
responds to non-zero counts. Additionally, cells expressing
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Figure 1. IFC-seq predicts gene expression of individual cells in IFC datasets. Given the values of the surface markers of the IFC experiment, IFC-seq
proceeds to predict the gene expression profile of each cell. Expression prediction is achieved via a Random Forest (RF) for regression. In standard mode,
the measured values of the markers are utilized, while in label-free mode the markers are predicted from the cells’ morphology using the brightfield images
and a convolutional neural network (CNN). Learning the correspondence between marker values and expression becomes possible by co-registering an
independent single-cell transcriptomics experiment where the same surface markers are also measured for each cell.

fewer than 200 genes were discarded from further analysis
and highly variable genes were kept using the filter genes dis-
persion method of Scanpy (24) with parameters min mean
= 0.0125, max mean = 3, min disp = −0.15. All subsequent
preprocessing steps were performed as described in the pre-
vious section. After preprocessing, the dataset includes 8017
human cells and 2768 genes, as well as CD3 and CD8 sur-
face marker values measured for each cell. Subsequently,
the cells were sorted into helper T-cell (CD3+CD8-) and cy-
totoxic T-cell (CD3+CD8+) sub-populations based on the
CD3 and CD8 marker values.

SCT––mouse myeloid progenitor cells

The second SCT dataset corresponds to a publicly avail-
able dataset of mouse myeloid progenitor cells (13). Af-
ter preprocessing it includes 2730 cells with 3371 genes, as
well as FcgR and CD34 surface marker values for each
cell. The preprocessing steps were performed as described
above. Gating was subsequently performed to sort the cells
into three sub-populations: Common Myeloid Progenitor
(CMP) cells, Granulocyte/Macrophage Progenitor (GMP)
cells and Megakaryocyte/Erythrocyte Progenitor (MEP),
using the same gates as in (13).

IFC––mice

Sex and aged matched (8 weeks) C57BL/6 mice were pur-
chased from Envigo. The permissions for animal experi-
ments were granted by the animal ethics committee of the
Regierung von Oberbayern, Munich, Germany.

IFC––human peripheral blood mononuclear cells

IFC was used to acquire data of human Peripheral Blood
Mononuclear Cells (PBMCs). The resulting IFC dataset
corresponds to 82 109 human PBMCs with CD3 and
CD8 surface marker measurements for each cell. Gating
on the CD3 and CD8 markers was employed to sort the
cells into helper T-cell (CD3+CD8-) and cytotoxic T-cell
(CD3+CD8+) sub-populations.

Data acquisition was performed as follows: Blood from
healthy donors was diluted in Phosphate-Buffered Saline
(PBS) carefully layered onto a Ficoll cushion (Biocoll:
Density 1.077 g/ml). After centrifugation the layer con-
taining PMBCs was collected and washed. 5 × 106 cells
were stained with CD3 PE-Cy7 (clone UCHT1, Biolegend),
CD8a-AF647 (clone RPA-Ta, Biolegend) and live dead fix-
able violet dye (ThermoFischer). After fixation (4% PFA,
10 min) cells were analyzed by imaging flow cytometry. Af-
ter acquisition, TIF-images (32 × 32 pixels, 16-bit, raw) of
live dead-CD3+CD8a−, live dead-CD3+CD8a+ and live
dead-CD3−CD8a− were exported and used for analysis
and the CD3 and CD8 surface markers were normalized
in [0,1].

IFC––mouse myeloid progenitor cells

Two separate IFC datasets were acquired for this study.
The training dataset was used to train a CNN for label-
free marker prediction consists of 65 008 cells. The test set
was used to evaluate the results of IFC-seq and consists of
3137 cells. Both IFC datasets include brightfield, FcgR and
CD34 images of cells, along with the measured CD34 and
FcgR surface marker intensity values. Subsequently, CMP,
GMP and MEP cells were identified by gating on the CD34
and FcgR markers.

The data acquisition process was the following: BM cells
were flushed from femur and tibia with PBS + 2% fetal
calf serum (FCS) using syringes. Erythrocytes were lysed
using an ammonium chloride potassium buffer. Number
of live cells was determined using a CASY cell counter
(OMNI Life Science). 5 × 106 cells were stained with CD117
APC (clone 2B8, eBioscience), CD34 FITC (clone RAM34,
eBioscience), Sca-1 PE-Cy5 (clone D7, eBioscience), FcgR
PE-Cy7 (clone 93, Invitrogen) and Lin-1 BV421 (Biole-
gend) and analyzed on an ImageStreamX MKII imag-
ing flow cytometer (Luminex). TIF-images (32 × 32 pix-
els, 16-bit, raw) of Lin-1-CD117+Sca-1+FcgR-CD34−
MEP, Lin-1-CD117+Sca-1+FcgRintCD34int CMP, Lin-1-
CD117+Sca-1+FcgR+CD34+ GMP cells were exported
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and used for analysis and the CD34 and FcgR surface
markers were normalized in [0,1].

Predicting gene expression

The goal of the proposed IFC-seq method is to augment
IFC datasets with expression information at the single-cell
level. Ideally, that would require data where the imaging
modality and gene expression are available for the exact
same cell. However, while such promising techniques have
been proposed (30,31) they are not yet well established and
broadly available. Thus, IFC-seq overcomes the lack of such
datasets by co-registering an IFC experiment to a corre-
sponding SCT experiment that includes a common subset
of cell-types. The co-registration step is made possible by
aligning the datasets using surface markers that are present
in both the IFC and SCT modalities. That is, we assume that
if a cell in the IFC experiment is close in the space of surface
markers to cells in the SCT dataset, then its expression can
be estimated from the expression of its corresponding cells
in the SCT dataset. To ensure that surface marker values are
comparable across modalities, as part of co-registration we
independently normalize each marker within each modality
so that its range of values extends from 0 to 1.

Consequently, we treat expression prediction as a regres-
sion problem and predict thousands of genes per cell, given
the values of the corresponding surface markers. Specif-
ically, the scikit-learn (34) implementation of a Random
Forest for regression (35) was employed. The Random For-
est was configured to minimize the mean absolute error,
‘max features’ was set to ‘sqrt’ and the ensemble consisted
of 50 trees. The Random Forest was trained separately for
the human and mouse test cases. In the case of mouse
data the CD34 and FcgR markers are used as input while
CD3 and CD8 were used for the human data. Addition-
ally, surface marker CD4 is directly predicted for the hu-
man data along with gene expression, since surface CD4 is
a known helper T-cell marker but the correlation between
the measured protein and transcript CD4 levels is low (33).
Each SCT experiment is split into a 70% training set and a
30% test set. No validation set was used when training the
Random Forest, since no hyperparameter tuning was per-
formed. The trained Random Forest model is trained on the
SCT dataset, it is then employed to predict the expression
of the corresponding (human or mouse) IFC dataset.

Predicting surface markers in a label-free manner

In the label-free mode of IFC-seq, a Convolutional Neural
Network (CNN) (36) was employed to predict the surface
marker values based only on the 32 × 32 brightfield image
of each cell in the IFC experiment. Since network architec-
tures that perform well on natural images have been shown
to perform well on IFC data (27), we based our approach
on the popular residual CNN architecture which achieves
state of the art results on natural images (36). It should be
noted that label-free prediction is only expected to work if
there is sufficient morphological information in the bright-
field images of the cells. As such, we will demonstrate the
label-free mode IFC-seq in the case of the mouse dataset,
since there is no sufficient morphological difference between

the helper and cytotoxic T-cells of the human dataset. The
CNN was trained using Adam (37) for 50 epochs using a
batch size of 64 on the IFC training dataset of 65 008 mouse
myeloid progenitor cells, while 10% of the IFC dataset was
randomly left out of training and was used for validation.
The best model according to the validation loss was saved.
Additionally, early stopping with a patience parameter of
five epochs was employed during training. Moreover, data
augmentation was employed on the training set. Such aug-
mentation corresponds to flipping the images along the ver-
tical, horizontal, or both axes. The network consists of 17
convolutional layers and ∼700 000 parameters. Each acti-
vation layer, except the last, is preceded by a batch normal-
ization layer (38). The neural network was implemented in
Keras. An overview of the CNN architecture is presented
in Figure 2 and the trained model is available online at
https://github.com/theislab/ifcseq.

RESULTS

Overview

Next, we will proceed to demonstrate the results of IFC-seq
on the human and mouse test cases. For each of these two
test cases, the process is the following: First, we will eval-
uate the predicted expression on the left out test set of the
SCT dataset. This is helpful since we have ground truth ex-
pression that we can compare to. Thus, this will allow for
the quantification of the model’s predictive capability and
provide an upper bound for its expected performance when
applied to the IFC data. In both cases, we will demonstrate
that while IFC-seq can be used to predict all genes that are
included in the SCT experiment, prediction performance is
not uniform across all genes. Specifically, gene expression is
only predicted successfully for marker genes of the cellular
subpopulations of interest.

Furthermore, we will apply IFC-seq and predict expres-
sion for the corresponding IFC seq experiment. Since no
ground truth expression is available for each cell in the
IFC data, we need to employ a different validation ap-
proach. That is, we will assess the predicted expression at
the population level and quantify to what extent the pre-
dicted expression of population-specific marker genes fol-
lows the same pattern as observed in the SCT experiment.
That is, if IFC-seq is successful, then the expression pat-
terns of population-specific marker genes should be consis-
tent across the IFC and SCT modalities. As mentioned in
the previous section, we will also demonstrate the label-free
capability of IFC-seq and predict gene expression directly
from the brightfield images in the case of mouse cells. On
the other hand, IFC-seq label-free mode is not supported
in the case of human blood cells, since the T-cell subpopu-
lations of interest cannot be distinguished by morphological
features alone.

Human blood mononuclear cells

IFC-seq was employed to predict gene expression of human
blood mononuclear cells, based on the measured CD3 and
CD8 markers for each of the SCT and IFC modalities. It
should be noted that the SCT dataset consists of CBMCs
while the IFC dataset consists of PBMCs. However, they

https://github.com/theislab/ifcseq
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Figure 2. Overview of the architecture of the CNN for regression used to predict the surface markers in the mouse data. Given the brightfield image of
each cell, the network predicts the value of the CD34 and FcgR surface markers, whose values are continuous and lie in [0,1]. After the initial input stem,
the network employs residual blocks whose architecture is visualized on the top part of the figure. Every convolutional layer employs zero padding. Thus,
the spatial dimensions of the intermediate tensors are only reduced via pooling operations. Tensors are visualized as arrows, along with their dimensions
(height × width × channels).

both include helper and cytotoxic T-cell subpopulations.
Additionally, the bulk of ‘other’ cells is considered as a sub-
population where T-cell specific markers are not expected to
be expressed. As such, the results of IFC-Seq are assessed
with respect to these three cellular subpopulations.

As seen in Figure 3, IFC-seq successfully predicts gene
expression in the case of marker genes for the subpopula-
tions of helper and cytotoxic T-cell. These marker genes
correspond to the differentially expressed genes identified
during preprocessing (see Materials and Methods). Over-
all, the median Pearson correlation between the predicted
and true expression is 0.46 when considering only the top
100 genes per subpopulation, while it drops to 0.03 if all
genes in the SCT dataset are taken into account. Moreover,
the top marker genes are predicted with low uncertainty,
as quantified by the standard deviation of the Pearson cor-
relation achieved by individual trees in the Random For-
est ensemble, which equals to 0.03. Table 1 summarizes the
median Pearson and Spearman correlations, as well as the
mean squared error achieved by the Random Forest, as well
as a linear regression baseline model. Last, the correlation
between the CD3 and CD8 surface markers and their corre-
sponding coding genes is visualized in Supplementary Fig-
ure S1 in the supplement.

When applied to the IFC dataset, IFC-seq correctly pre-
dicts that the CD3D and CD3E are highly expressed in the
helper and cytotoxic T-cells. This is to be expected since
both CD3D and CD3E correspond to proteins necessary
for T-Cell receptor signalling (39). Moreover, surface CD4,
a known helper T-cell marker, is predicted to be highly ex-
pressed in the helper T-cells. It should be noted that CD4
was not included in the set of markers measured exper-

imentally for the IFC experiment, so this successful pre-
diction of IFC-seq is exclusively data-driven. Nonetheless,
while CD4 is predicted to be less expressed in the cyto-
toxic and other cells, it should ideally be predicted to be
closer to zero for these subpopulations. Moreover, CD8A
and CD8B are two known cytotoxic T-cell markers (40)
that IFC-Seq predicts to be highly expressed almost exclu-
sively in this subpopulation. The above results are visualized
in Figure 4(A-D).

Additionally, IFC-Seq correctly predicts the expression
patterns of several other genes that are known to be asso-
ciated with the subpopulations of interest. These marker
genes include: S100B which is associated with T-cells and
natural killer cells (41), TNFAIP3 which is related to im-
mune response (42), CD27 which associated with T-cell im-
munity (43), ITM2A which is involved in T-cell activation
(44), IL7R which is known to be expressed in naive T-cells
(45), TRBC2 and TRAC which are related to the T-cell re-
ceptor (46), CD69 and SELL, associated with both helper
and cytotoxic T cells (47) and finally SOX4 which is associ-
ated with helper T-cells (48).

Figure 4E and F visualizes the expression profiles of the
aforementioned markers across the SCT and IFC modal-
ities. While gene expression is predicted at the single-cell
level, the figure visualizes the average expression per popu-
lation in order to highlight patterns at the population level.
By observing these patterns it is straightforward to distin-
guish the helper and cytotoxic T-cells from each other, as
well as from the bulk of other cells. To be precise, CD8A,
CD8B, S100B and TNFAIP3 only mark cytotoxic T-cells,
while the remaining markers separate helper T-Cells from
the bulk of other cells. Additionally, the transcriptional sim-
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Figure 3. IFC-seq results on SCT data of human blood mononuclear cells. (A) The SCT dataset and corresponding helper and cytotoxic T-cell gates plotted
on top of the CD3 and CD8 markers. The population of ‘other’ cells corresponds to all unknown cell-types that are not included in the population-specific
gates. (B) The predicted gene expression is more accurate for the differentially expressed population-specific marker genes than for all genes present in the
SCT dataset, as quantified by the Pearson correlation between the true and predicted expression values for each cell in the SCT test set. (C) Looking at
the population-specific marker genes shows that they are predicted with low uncertainty, as quantified by the standard deviation of the per-gene Pearson
correlation computed over the trees in the Random Forest ensemble. Individual points correspond to distinct population-specific marker genes. Genes are
colored according to the respective population they are markers for. Select population markers are overlaid on top of the scatter plot.

Table 1. Predictive performance of Random Forest regression and Lin-
ear Regression on the SCT test of human blood mononuclear cells. The
median value of each statistic across all cells is reported

Method
Pearson

correlation
Spearman
correlation

Root mean
squared error

Random Forest 0.46 0.46 0.52
Linear regression 0.38 0.35 0.52

ilarity of populations is quantified as the Pearson correla-
tion of the population-average expression of all top marker
genes across the populations. That is, the helper and cyto-
toxic T-cells are expected to be transcriptionally more sim-
ilar to each other, than to the bulk of other cells. That is
indeed the case when the similarity is predicted with true
expression in the SCT experiment and with IFC-seq pre-
dicted expression for the IFC data, as shown in Figure 4G
and H. However, in the case of predicted expression for the
IFC data the differences in population similarities are not
as pronounced. Nonetheless, by calculating the 95% con-
fidence intervals for the Pearson correlations via Fisher’s
transformation (49), we see that the similarity of cytotoxic
and helper T-cells is at least 0.979 (low confidence inter-
val). On the other hand, the similarity of cytotoxic T-cells
to other cells is at most 0.975 and the similarity of helper
T-cells to other cells is at most 0.953 (high confidence inter-
vals). As such, cytotoxic and helper T-cells are significantly
more similar to each other than to the bulk of other cells,
even when looking at the predicted expression profiles of the
IFC data.

Mouse myeloid progenitor cells

Next, we present the results of IFC-seq on mouse myeloid
progenitor cells where gene expression was predicted based
on the CD3 and CD8 markers for each of the SCT and IFC

modalities. In the case of IFC, we present the results when
the measured marker values are employed, as well as the
case where IFC-seq is performed in label-free mode and the
markers are predicted from directly from the brightfield im-
ages.

Similar to the case of human cells, the predicted gene ex-
pression is more closely correlated to true expression when
focusing only on population-specific marker genes, instead
of all genes in the SCT dataset. That is, when looking only
at markers the median Pearson correlation between true
and predicted expression is 0.32, as opposed to 0.08 when
looking at all genes. Additionally, the population-specific
marker genes are predicted with low uncertainty, as the me-
dian standard deviation of the per-gene Pearson correla-
tion is only 0.03. The aforementioned results are presented
in Figure 5, while the relationship between the CD34 and
FcgR markers and their respective coding genes is presented
in Supplementary Figure S2 of the supplement. Interest-
ingly, the prediction quality of the model appears to be
population-specific, contrary to what was observed for the
human data. However, unlike the human data where helper
and cytotoxic T-cells correspond to distinct clusters in the
space of the surface markers, the subpopulations of the
mouse data correspond to a continuous differentiation pro-
cess. Gene expression is best predicted for the MEP marker
genes, which agrees with the observation that MEP cells
yield more distinct expression profiles (Figure 6D). On the
other hand, gene expression is not predicted as well for the
CMP marker genes. This could be explained by the fact that
the CMP cells lie in a smaller range of the surface markers
than the GMP and MEP cells, which could result in reduced
sensitivity of the model in that area of the feature space.
Last, the median Pearson correlation, Spearman correla-
tion and the mean squared error achieved by the Random
Forest, as well as a linear regression baseline model are pre-
sented in Table 2.
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Figure 4. IFC-seq predicts gene signatures of helper and cytotoxic T-cell subpopulations in human blood mononuclear cells. (A) IFC dataset and corre-
sponding gates for helper and cytotoxic T-cells on the CD3 and CD8 markers. The population of ‘other’ cells corresponds to all unknown cell-types that
are not included in the population-specific gates. (B) CD3E, a known T-cell marker is predicted to be highly expressed in both helper and cytotoxic T-cells.
(C) Surface CD4, a helper T-cell marker, is predicted to be predominantly expressed in helper T-cells. (D) CD8B, a cytotoxic T-cell marker, is predicted
to be almost exclusively expressed on cytotoxic T-cells. (E, F) The expression profiles between marker genes agree across the SCT and IFC experiments.
Each row of the heatmap corresponds to a population while each column corresponds to the expression of a gene averaged across all cells in a population.
(G, H) The transcriptional similarity of populations is similar across the SCT and IFC modalities. That is, cytotoxic and helper T-cells are more similar to
each other than the bulk of other cells.

We subsequently apply IFC-seq on the corresponding
IFC dataset two times, in standard and in label-free mode
and compare the results. In label-free mode, the CD34 and
FcgR markers are predicted with a CNN (see Materials
and Methods). The performance of the CNN on the IFC
dataset, corresponding to the Pearson correlation between
the true and predicted marker values, is 0.38 ± 0.16 for
CD34 and 0.5 ± 0.016 for FcgR. The standard deviation
was calculated using 10 000 bootstrap iterations (50).

Examining the results on the mouse data shows that IFC-
seq successfully predicts the expression of key marker genes
for the subpopulations of interest in the IFC dataset, purely
in a data-driven manner. Specifically, IFC-seq is successful
at predicting the expression of known CMP markers, such
as Serpina3f (51,52) and Gpr56 (53). Next, IFC-seq predicts
the expression of GMP markers, such as Napsa, Ly6c2,
Alas1, Hp, as well as known GMP markers Coro1a (54),
Ly6c2 (55), Vim (56) and Prtn3 (55). Additionally, some
GMP markers like Coro1a and Vim are also expressed in
the progenitor populations of CMP cells. Next, MEP mark-
ers predicted by IFC-seq include Mt2, Fam132a and known
MEP markers Blvrb (54) and Klf1 (57).

Figure 6A–C visualizes gene expression averaged per
population, while the gating strategy for the IFC data is
shown in Supplementary Figure S3. Visual inspection of
the gene expression heatmaps highlights agreement between

the population specific gene expression patterns across the
modalities of true SCT expression and predicted expres-
sion for the IFC experiment (both in standard and label-
free modes of IFC-seq). That is, it is straightforward to
separate the CMP progenitor cells from their descendant
populations of GMP and MEP cells, as well as GMP and
MEP cells from each other, based on the population-specific
markers mentioned above. As expected, there is loss of in-
formation when IFC-seq is performed in label-free mode.
Nonetheless, it is still possible to easily distinguish GMP
and MEP cells based on expression predicted from morpho-
logical information alone. It is also possible to distinguish
CMP cells from their two descendant populations. How-
ever, in label-free mode the predicted expression profile of
CMP cells is close to the profile of the background popula-
tion of other cells. Nonetheless, it should be noted that the
CMP cells and background population have similar expres-
sion profiles even in the case of true expression in the SCT
experiment, as seen in Figure 6D.

DISCUSSION

In this paper, we introduced IFC-seq: a machine learning
methodology which can augment IFC datasets by predict-
ing an additional modality of single cell transcriptomics
for each cell at no additional cost. Predicting the expres-
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Figure 5. IFC-seq results on SCT data of mouse myeloid progenitor cells. (A) SCT data plotted on top of the CD34 and FcgR markers, along with gates
for the CMP, GMP and MEP populations of interest. The population of ‘other’ cells corresponds to all unknown cell-types that are not included in the
population-specific gates. (B) The gene expression is predicted more accurately for the population-specific marker genes, compared to the bulk of all genes
in the SCT experiment. Specifically, the median Pearson correlation between the true and predicted expression iis 0.32 for the marker while it drops to 0.08
when all genes are considered. (C) The population-specific marker genes are predicted with low uncertainty of 0.04, as quantified by the standard deviation
of the Pearson correlation achieved by individual trees in the Random Forest ensemble. Individual points correspond to distinct population-specific marker
genes. Genes are colored according to the respective population they are markers for. Select population markers are overlaid on top of the scatter plot.

sion profile of key marker genes for each single cell in the
IFC experiment is made possible by coupling it to a cor-
responding independently acquired SCT experiment using
common surface protein markers. Additionally, we showed
that for the SCT datasets, where ground truth expression
is available, IFC-seq is successful at predicting the expres-
sion of population specific marker genes with low uncer-
tainty. Naturally, since the model’s predictions are based
on surface markers, it performs better for genes associated
with populations characterized by these markers. Last, we
also showed that in some cases, such as the mouse bone
marrow cells where morphology is informative, it is possi-
ble to directly predict the gene expression of population-
specific marker genes for each cell in a label-free manner.
This label-free mode of IFC-seq is made possible by using
the brightfield images of the IFC experiment and leverag-
ing a convolutional neural network as an additional step.
The main goal of this study is to provide a proof of con-
cept that demonstrates the feasibility of predicting gene ex-
pression of key marker genes in IFC data by aligning an in-
dependent SCT experiment with overlapping cellular sub-
populations. To this extent, we provide the code for IFC-
seq and all data used in this publication online at https:
//github.com/theislab/ifcseq.

In both test cases of human blood, as well as mouse bone
marrow cells the proposed IFC-seq methodology success-
fully predicted key gene markers of the populations of in-
terest. These results are promising considering the underly-
ing limitations, such as the low resolution of the IFC images
(32 × 32 pixels) and the complexity introduced by the co-
registration step used to couple the independent SCT and
IFC experiments via a limited subset of common surface
markers. The similar predictive performance of the Ran-
dom Forest and linear regression within the SCT modal-
ity suggests that non-linear effects are not a bottleneck in

model accuracy. Such a bottleneck is potentially posed by
the fact that gene expression was predicted only from two
available markers in each dataset. Since the performance of
IFC-seq depends on the selection of surface markers, it is
only applicable in cases where markers for the cellular pop-
ulations of interest are known and available during model
training. Additionally, IFC-seq is sensitive to batch effects
related to intra-modality variability across independent ex-
periment replicates (58), as well as inter-modality variability
of the surface markers across the SCT and IFC modalities.
In this study, we alleviated the inter-modality variability by
marker normalization. Moreover, we expect that upcom-
ing batch effect correction methods (59,60) will further al-
leviate challenges related to both intra- and inter-modality
variabilities. While performance of IFC-seq is bound by the
co-registration step, we expect that if more relevant surface
markers become available, the predictive capability of IFC-
seq will improve. Moreover, augmenting IFC datasets with
information of gene expression at the single-cell level, can
substantially increase the depth of available information,
supplementing the measured surface protein markers. In
fact, cell states are often determined by biological processes
that might not be identified by surface markers alone, yet
show distinct transcriptional signatures. It is worth noting
that augmenting IFC datasets with the proposed method
comes at zero additional cost, assuming that the markers
coupling the IFC to the corresponding SCT experiment are
available or that morphological information is sufficient in
order to apply IFC-seq in label-free mode.

Predicting gene expression reduces the need for surface
markers in certain use cases and that is useful for two main
reasons. First, the number of available fluorescence chan-
nels is always limited. By being able to predict genes (or
additional markers) directly from a few known markers, or
from brightfield images in the label-free case, some of the

https://github.com/theislab/ifcseq
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Figure 6. IFC-seq predicts gene signatures of mouse myeloid progenitor cells. (A–C) Heatmaps of average gene expression for population-specific marker
genes. The true and predicted expression profiles for (A) SCT and (B) IFC, respectively, are in agreement. (C) In the case where IFC-seq is performed in
label-free mode, it is still possible to distinguish CMP, GMP and MEP cells from each-other, but it is harder to separate CMP cells from the background
of all other cells in the experiment. (D–F) The transcriptional similarity of populations shows the same picture as the previous heatmaps, in a quantified
manner. (D) CMP cells are transcriptionally similar to the background population of other cells even when considering the true expression of the SCT
experiment. Additionally, CMP cells are more transcriptionally similar to GMP than to MEP cells. A similar pattern is visible in the case of predicted
expression for the IFC data using the true marker values (E) and is still noticeable although noisier in the case of label-free mode (F).

Table 2. Predictive performance of Random Forest regression and linear
regression on the SCT test of mouse myeloid progenitor cells. The median
value of each statistic across all cells is reported

Method
Pearson

correlation
Spearman
correlation

Root mean
squared error

Random Forest 0.32 0.35 0.40
Linear regression 0.32 0.35 0.39

fluorescence channels become redundant. Thus, they are
freed and can be used with different stains in order to study
other cellular properties and functions. This was the case
in the human data, where for example CD4 was not mea-
sured in the experiment but CD4 positive cells were identi-
fied by IFC-seq. Second, there are cases where avoiding cer-
tain fluorescent stains may be a goal in itself due to potential
side effects of the staining process. The above advantages
become especially pronounced in the label-free case, where
analysis methods rely on cellular morphology (25,27), sub-
cellular structures (61) or other label-free modalities (62).
Moreover, label-free cell phenotyping has the potential to

speed up and significantly lower the costs of routine di-
agnostics (63) Last but not least, it should be noted that
the mouse myeloid progenitor dataset used to showcase the
label-free mode of IFC-seq is a particularly challenging use-
case, since it has been previously shown that most CMP cells
are nearly indistinguishable from their offspring GMP and
MEP populations based only on morphological informa-
tion, with the exception of CMP cells that are close to be-
ing differentiated (29). Supplementary Figure S4 shows ex-
emplary brightfield images of CMP, GMP and MEP cells,
along with guided saliency maps (64) visualizing the pix-
els of each input image influencing the CNN’s predictions.
The saliency maps were computed with keras-vis (https:
//raghakot.github.io/keras-vis) and suggest that all parts of
the input image contribute equally to both CD34 and FcgR
predictions and that the network mainly bases its predic-
tions on regions near the cellular boundary and in some
cases on regions deeper inside the cell.

To quantitatively validate the performance of the pro-
posed method we need to be able to experimentally assess
how accurately the predictions generated by IFC-seq re-
flect the ground truth gene expression at the single-cell level.

https://raghakot.github.io/keras-vis
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To this extent, we would need an experimental procedure,
which performs imaging and sequencing on the exact same
cell in a high-throughput manner and results in a dataset in
which both the IFC and SCT modalities are simultaneously
measured for each cell. To the best of our knowledge, no
such dataset exists at the moment but recent developments
in next generation imaging and sorting techniques such as
(30,31) suggest that this is only a matter of time. We expect
that these new datasets where IFC and SCT modalities are
simultaneously present will not only allow us to properly
validate, but also improve the performance of the proposed
methodology. Additionally, lower-throughput experimental
methods capable of imaging and sequencing individual cells
are currently available (65). Such methods are not practical
in the label-free case where large datasets are required to
train a CNN, but could be used to train and validate the
performance of IFC-seq using the measured marker values.
Having access to the expression values of key marker genes
would be crucial for the validation of IFC-seq, especially in
label free mode where the expression of key marker genes
could be used as a control. Nonetheless, this requires some
familiarity with the cellular populations at hand. Last, IFC-
seq can also be extended to be useful in additional imaging
modalities, other than IFC. That is, we expect IFC-seq will
benefit from the advent of spatial transcriptomic methods
(66,67) for spatially resolved transcriptional information in
tissues. Using these next generation datasets it will be pos-
sible to predict gene expression directly from the imaging
modality, without the need of an additional step of coupling
different datasets using common surface markers.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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