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Abstract
Recommender systems are highly vulnerable to shilling attacks, both by individuals and

groups. Attackers who introduce biased ratings in order to affect recommendations, have

been shown to negatively affect collaborative filtering (CF) algorithms. Previous research

focuses only on the differences between genuine profiles and attack profiles, ignoring the

group characteristics in attack profiles. In this paper, we study the use of statistical metrics

to detect rating patterns of attackers and group characteristics in attack profiles. Another

question is that most existing detecting methods are model specific. Two metrics, Rating

Deviation from Mean Agreement (RDMA) and Degree of Similarity with Top Neighbors

(DegSim), are used for analyzing rating patterns between malicious profiles and genuine

profiles in attack models. Building upon this, we also propose and evaluate a detection

structure called RD-TIA for detecting shilling attacks in recommender systems using a sta-

tistical approach. In order to detect more complicated attack models, we propose a novel

metric called DegSim’ based on DegSim. The experimental results show that our detection

model based on target item analysis is an effective approach for detecting shilling attacks.

1 Introduction
Recommender systems have become an effective tool to recommend movies, music, news,
books, research articles, social tags, and other items, and have played an important role in
many popular websites, such as Amazon, YouTube, Netflix, and Yahoo!. Recommender sys-
tems predict a rating or preference that a user would give to an item. In general, recommender
systems produce recommendations using two approaches [1, 2]. The first approach is collabo-
rative filtering (CF). CF approaches typically build models from a user’s past behaviour coupled
with similar decisions made by other users. This is then used to build a model to predict items
or ratings for items that a user may be interested in. The second is content-based filtering,
which uses the characteristics of an item to recommend additional items with similar proper-
ties. A key advantage of recommender systems using a CF approach is that it does not rely on
the ability of the algorithms to analyse its content and thus is capable of recommending a
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variety of items, such as movies, without requiring a deep understanding of the content of the
item itself [3, 4]. In contrast, by using a content-based filtering approach we may need addi-
tional information such as genre and actors. CF based recommender systems compare the col-
lected data from a user to similar and dissimilar data collected from other users and calculates
a list of recommended items for the user.

However, due to the open nature of CF recommender systems, they suffer vulnerabilities of
being attacked by malicious users by injecting profiles consisting of biased ratings [5]. These
attacks are carried out in order to influence the system’s behavior, and have been termed “shil-
ling” or “profile injection” attacks, and attackers as shillers [4]. Some extraordinary measures
have be introduced to increase the effort required to create profiles, for example, verification
code that is required to be filled before a rating is made or an increase in the cost of creating a
user account. These methods reduce the number of attack profiles, but also discourage partici-
pation thus decreasing the user engagement. There is the possibility of an attacker launching
an attack as long as ratings can be made in recommender systems.

There may be a monetary incentive when an item is rated highly on a recommendation list. In
some e-commerce websites, there are a team of shillers who can push a specified item to the rec-
ommended list in a short period of time for money [1]. Individuals may be interested in promot-
ing or demoting an item, known as a target item, by manipulating the recommender system.
Most attacks can be implemented as follows. The attacker takes on different identities within the
system, and creates a user profile for each identity, which is referred as attack profiles. Within
each of the profiles created, the attacker would then manipulate the recommendation by rating
or recommending a particular target item. In order to obfuscate themselves and appear as genu-
ine users in the system, the attack profiles will contain ratings for non-target items. These ratings
can be selected in different ways either randomly or more intelligently if the attacker has prior
knowledge of the ratings in the system. The attacker can manipulate the system into producing a
desired recommendation behaviour. Recent work has shown that even modest attacks are suffi-
cient to manipulate the behaviour of the most commonly used recommendation algorithms [6].

There are several hazards of attacks in recommender systems. Attacks can cause different
losses to unprotected systems depending on the purpose of the attackers. The first is it will be
unfair representation of users in recommender systems. The second is that the recommender
systems failed to produce proper recommendations to users. Thus ruin the reputation of rec-
ommendation systems. Under some conditions, a large number of attack profiles can lead to a
breakdown of a system [7]. It is difficult to prevent unscrupulous users from injecting fake data
(profiles) into a system. To ensure the trustworthiness of recommender systems, attack profiles
need to be detected and removed accurately.

The main contribution of this paper is a proposed hybrid attack detection structure,
RD-TIA, which uses group features of attacks and target item analysis method. Two extended
algorithms based on the RD-TIA detecting structure, RD-TIA(a) and RD-TIA(b) are proposed
to detect different attack models. The second contribution of this research is that we proposed
a novel metric DegSim0 based on DegSim to detect complex attack model attacks in recom-
mender systems. The rest of the paper is organized as follows. In the next section, we examine
previous work in the area of attack detection in recommender systems and background; in the
Section 3 we describe the details of our approaches. Our experimental results are presented in
Section 4. We discuss and summarize our research in Section 5.

2 Related work
The word “shilling” was first coined by [4]. There have been some recent research efforts
aimed at detecting and reducing the effects of profile injection attacks [6, 8–13]. These attacks
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consist of a set of attack profiles, each containing biased rating data associated with a fictitious
user identity. Since “shilling” profiles look similar to genuine profiles, it is difficult to identify
them. Many attack profiles are based on random and average attack models which were intro-
duced originally in [4] and used in [14]. Both of these attack models involve the generation of
attack profiles using randomly assigned ratings to the filler items in the profiles. In a random
attack the assigned ratings are based on the overall distribution of user ratings in the dataset,
while in an average attack the rating for each filler item is computed based on its average rating
for all users. In addition to these standard attack models, several more sophisticated models
have been studied. Intentional attacks can cause the recommender system to become unreliable
and untrustworthy, which can result in user distrust. In this section we concentrate on research
in attack detection in a CF recommender system. There are three categories of attack detection
algorithms: supervised, unsupervised, and semi-supervised.

In the first category, attack detection techniques are modelled as a classification problem. A
lot of research has been undertaken to employ supervised learning for shilling attack detection
[5, 15, 16]. Three classification algorithms, kNN-based, C4.5-based and SVM-based, are used
to improve the robustness of the recommender system in [17]. These supervised algorithms
need a large number of labeled users to enhance the accuracy. Classification-based methods
require balanced numbers of attack and normal profiles to train the classifiers. Most early
detection algorithms exploited signatures of attack profiles. These techniques were considered
less accurate, since they looked at individual users and ignored the combined effect of such
malicious users. Moreover, these algorithms do not perform well when the attack profiles are
obscured. Some of these techniques use nearest neighbours classifiers, decision tree methods,
rule based classifiers, Bayes classifiers, Neural Network classifiers, or SVM based classifiers
[18–20].

In the second category, unsupervised detection approaches address these issues by training
on an unlabeled dataset. These methods involve far less computational effort as compared to
supervised approaches. The benefit of this is that these techniques facilitate online learning and
improve detection accuracy. There has been significant research interest focused on detecting
attack profiles using the unsupervised approach. Some of the techniques use clustering, associa-
tion rules methods and statistical approaches [21–23]. Zhang et al. [23] used a Singular Value
Decomposition (SVD) method to learn a low-dimensional linear model. Hurley et al. [21] uti-
lizes Neyman-Pearson theory to construct both supervised and unsupervised detectors. An
unsupervised shilling attack detection algorithm using principal component analysis (PCA)
was proposed in [24]. Statistical detection techniques [7] are also used to detect profile injec-
tion attacks.

In the third category, semi-supervised detection approaches, such as [25, 26], make use of
both unlabelled and labelled user profiles for multi-class modelling. Cao et al. [25] proposes a
new semi-supervised method called Semi-SAD shilling attack detection algorithm using both
types of data. HySAD introduces MC-Relief to select effective detection metrics, and semi-
supervised Naive Bayes (SNBλ) to precisely separate random-filler model attackers and aver-
age-filler model attackers from normal users.

2.1 Attack Models
An attack consists of attack profiles that are introduced into the system in order to alter recom-
mendation lists of a set of target items. Based on different assumptions about the attacker’s
knowledge and purpose, a number of attack models have been identified, as described in [5].

There are four popular attack models in recommender systems: random attack, average
attack, bandwagon attack, and segment attack models. Ratings in an attack profile can be
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divided into three sets of items: a target item IT; a selected item IS, selected set is a set of widely
popular items or items that have common features, which is usually used to perform group
attacks; and a set of filler items usually randomly chosen IF, filler items in a malicious profile
are a set of items that make the profile look normal and makes a malicious profile harder to
detect. Features of the attack models are shown in Table 1.

The quality of the filler items depends on the existing knowledge gathered from the recom-
mender system. As more knowledge is obtained, an attack generated is more sophisticated. The
major difference of attack models is how the ratings of filler items and the selected items are
determined. The differences among attack models are the variance rating distribution in filler
items and the selected items.

Random attack model is a naive attack in which the injected profile rates the set of randomly
chosen fillers using a normal distribution and the standard deviation around the average rating
of the system, as described in [14]. They then rate the set of target items with the maximum or
minimum allowable rating based on the purpose of the attack. For example if the rating scores
for a recommender system is between 1 and 5, where 1 represents an unfavourable rating and 5
represents a favourable rating, an attacker would rate the target item at 5 for a push attack and
rate the target item at 1 for a nuke attack.

Average attack model is a more sophisticated attack model than random attack model and
requires knowledge of the average rating of each item in the recommender system. Attackers
rate items in the filler set randomly using a normal distribution with average set to the average
rating of the filler items being rated and the standard deviation, as described in [14]. By intro-
ducing the average attack model, attackers disguise themselves and are harder to differentiate
when compared to genuine users, thus, have a larger effect on recommendations. As with the
random attack model, the ratings of target items are set to either the maximum or minimum
allowable rating based on the purpose of the attack.

In addition to random and average attack models, several more sophisticated models have
been studied [7]. In this work we have evaluated two other models, the bandwagon and seg-
ment attacks. Attackers choose items that many users have rated as selected items, in order to
make attack profiles similar to genuine profiles. These profiles have a good probability of being
similar to a large number of genuine profiles, since the high visibility items are those that many
users have rated. Segment attack and bandwagon attack with different selected sets can be seen
as group attacks. The principle behind the group attack, is that the best way to increase the cost

benefit

of an attack is to target one’s effort to those already predisposed towards one’s product. In
other words, it is likely that an attacker wishing to promote a particular item will be interested
not in how often it is recommended to all users, but how often it is recommended to likely
users. The segment attack model is designed to push an item to a targeted group of users with
known or easily predicted preferences. In the bandwagon attack model, the attacker using
Zipf’s law will build attack profiles containing those items that have high visibility. Such

Table 1. Features of the attackmodels.

Attack model IS(Selected Items) IF(Filler Items) IT(Target Items)

Random Attack ; random ratings rmax/rmin

Average Attack ; mean of each item rmax/rmin

Bandwagon Attack rmax random ratings rmax/rmin

Segment Attack rmax random ratings rmax/rmin

doi:10.1371/journal.pone.0130968.t001
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profiles will have a good probability of being similar to a large number of users, since the high
visibility items are those that many users have rated.

2.2 Detecting Metrics
Attack profiles differ from that of genuine profiles in a statistical way. There are two main dif-
ferences. The former is the rating given to the target item (items); the latter is the rating distri-
bution among the filler items. There are different metrics that have been proposed by [14, 27]
to measure the similarity of differences. In this section we will look at two metrics, RDMA and
DegSim.

RDMAmeasures the deviation of agreement from other users on a set of target items, com-
bined with the inverse rating frequency for these items. RDMA can be calculated in the follow-
ing way:

RDMAu ¼
PNu

i¼0
jru;i � �ri j
NRi

Nu

ð1Þ

where Nu is the number of items user u rated, ru,i is the rating given by user u to item i, NRi is
the overall number of ratings in the system given to item i.

The DegSim attribute is based on the average Pearson correlation of the profile’s k nearest
neighbours and is calculated as follows:

DegSim ¼
Pk

u¼1 Wuv

k
ð2Þ

whereWuv is the Pearson correlation between user u and user v. In general the value of k can
be easily determined for most datasets, as we can measure the degree of separability using dif-
ferent separable extension techniques used in computational geometry. Fig 1 shows the RDMA
and DegSim value distribution in the random attack model, with an attack size of 20, filler size
is 5%, and k = 20 in DegSim.

3 Detecting Profile Injection Attacks
In this section, a hybrid two-phase detection structure RD-TIA is proposed. RD-TIA is based
on profile feature extraction and target item analysis. Two shilling attack methods, RD-TIA(a)
and RD-TIA(b) are proposed based on the detection structure. RD-TIA(a) is used to detect ran-
dom attacks and average attacks. Considering profile features of group attack models are differ-
ent, a new metric is proposed to extract profile features of group attack models. RD-TIA(b) is
proposed to detect group attacks.

3.1 A Hybrid Detection Structure (RD-TIA)
In order to get a better the cost

benefit
in an attack, overall attackers would have a high influence in

the system in order to promote the target items effectively. However, there are three different
features in attack profiles, which enable us to differentiate between genuine and attack profiles.
In this section, we propose a structure to detect shilling attacks using statistical metrics.

Firstly in attack profiles, filler items are randomly chosen thus the similarity based on these
filler items between attack and genuine profiles should be lower. We choose 20 neighbours that
have the highest similarity in DegSim. Secondly, since shilling attacks usually try to push items
with low ratings or vice versa in nuke attacks, the users mounting such an attack will assign a
rating that deviates from the average rating value assigned by the genuine profiles. We use
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metric RDMA to calculate this. Attackers’ profiles should therefore have relatively high values
for RDMA, as well as very low values in DegSim. Fig 1 shows the distribution of RDMA and
DegSim when average attacks are injected. Last but not least, all target items are assigned a
highest or lowest value, the count number of this value should be bigger than other values
among items. Based on these three reasons, we propose a detection structure called RD-TIA
that uses two metrics, RDMA and DegSim to reveal these distinctive features in the rating pat-
terns. Feature extraction using Eqs (1) and (2). Profiles that have a greater value in RDMA and
smaller DegSim value are suspected of being attack profiles. Since there must be some false pos-
itives in the detecting result. Based on the third reason, we proposed a Target Item Analysis
(TIA) method to filter genuine profiles out. The detection model is shown in Fig 2.

There are two phases in RD-TIA. In the first phase, we extract profile attributes using Eqs
(1) and (2), as shown in Fig 3; determine the suspicious profiles by using two statistical metrics,
DegSim and RDMA. From this process, we get a pool of suspicious profiles SUSRD. The pseudo-
code is shown in Algorithm 1.

Algorithm 1 RD-TIA Phase 1: Find suspicious profiles
Input: Mixed genuine and shilling rating Matrix M;
Output: Suspected profiles, SUSRD;

1: RDMAu Calculate RDMA(M);

Fig 1. RDMA and DegSim value distribution with average attacks. RDMAMetric value and DegSimMetric value of each profile of MovieLens 100k
Dataset.

doi:10.1371/journal.pone.0130968.g001
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Fig 2. RD-TIA Detecting structure based on twometrics RDMA and DegSim. There are two phases in RD-TIA. In the first phase, extract profile attributes
and determine the suspicious profiles by using two statistical metrics DegSim and RDMA.

doi:10.1371/journal.pone.0130968.g002

Fig 3. RD-TIA Detecting structure based on twometrics RDMA and DegSim. There are two phases in
RD-TIA. In the first phase, extract profile attributes and determine the suspicious profiles by using two
statistical metrics DegSim and RDMA.

doi:10.1371/journal.pone.0130968.g003

Shilling Attacks Detection

PLOS ONE | DOI:10.1371/journal.pone.0130968 July 29, 2015 7 / 26



2: DegSimu Calculate DegSim(M);
3: {R1, R2} Classify(RDMAu);
4: {D1, D2} Classify(DegSimu);
5: D = max(D1, D2), R = max(R1, R2);
6: SUSRD {SUSRD jD \R };
7: return suspected profiles SUSRD.

In the second phase, we use the TIAmethod to filter out genuine profiles. Items that could be
suspicious target items in the SUSRD Set from Phase 1 are found. An item is considered a target
item, when it is rated with maximum or minimum score r proportionally higher than the rest.
For example, if 80% of the profiles in SUSRD rated an item with the highest (or lowest) score, we
consider that item as a target item. The intuition behind this is that we believe that the attackers
will have specific target items that they target when they commit an attack. They would rate tar-
get items with the highest or lowest possible rating depending on the type of attack. To detect the
proportion, we use an absolute count threshold θ. If count(r) of Itemi is greater than θ, then Itemi

is regarded as a target item, and the profiles that rated Itemiwith the highest rating are considered
as attackers. We choose the threshold value θ based on the assumption that if attackers want to
make a considerable prediction shift, which is described in [4, 28], to the system and push a target
item up, a certain number of injected attack profiles are required. An average size attack requires
the number of attack profiles injected to be greater than 20 for a prediction shift andMAE shift,
as shown in [4]. From this assumption we can calculate the upper bound threshold that is neces-
sary for a shift to occur. To be conservative we chose a θ of 6 in case of small scale attacks. The
pseudocode in Algorithm 2 shows how we filter out genuine profiles.

Algorithm 2 RD-TIA Phase 2, Filter out genuine profiles.
Input: The set of suspected profiles SUSRD; highest rating r; item set I;
Output: Final detect result set DetectedResult;

1: DetectedResult = ;;
2: 8i 2 I, counti number of ratings in itemi equal to r;
3: While max(count) > θ do
4: itemt {itemijcounti = max(count)};
5: 8p 2 SUSRD, P p rate itemt with r;
6: DetectedResult P[DetectedResult;
7: SUSRD SUSRD − P;
8: end while
9: return DetectedResult.

Let us take the push attack as an example. Consider Table 2 as the SUSRD Set we obtained
from in Phase 1. Each row in the matrix is the rating for them items by a user. Table 2 shows
genuine user profiles from User1 to Userm and attackers profiles from Attacker1 to Attackerp.
The last row is the count number of rating 5, in this example, Item5 is the target item. In the
example, Attacker1 to Attackerp and User3 are considered as attacks.

Considering different attack models, we proposed two methods based on the proposed
attack detection model RD-TIA. The first one RD-TIA(a) is used to detect random attacks and
average attacks. The second one RD-TIA(b) is used to detect segment attacks and bandwagon
attacks. The main difference between the two methods is that they use different classification
methods to split profiles into genuine profiles and suspected profiles in Phase 1.

3.2 Detecting Random and Average Attacks (RD-TIA(a))
In this section, we proposed a detection method RD-TIA(a) based on the RD-TIA structure to
detect random and average attacks. As discussed earlier, there is a feature in random and
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average attack that differentiate these two attacks. The RDMA value of attack profiles is rela-
tively higher than that of genuine profiles, and the DegSim value of attack profiles is relatively
smaller than that of genuine profiles. So we can consider profiles that have higher RDMA val-
ues and lower DegSim values as attack profiles. In the first phase in RD-TIA(a), we determined
the suspicious profiles by using two statistical metrics RDMA and DegSim. In this phase, the
RDMA value for each profile is calculated. If the RDMA value for a profile u is above a maxi-
mum �RDMA threshold then we consider this profile as a suspicious profile (SPRDMA).

SPRDMA ¼ fujRDMAu � �RDMAg
From this process, we get a pool of suspicious profiles, SPRDMA, that had RDMA values above
the assigned threshold. We also calculate the DegSim value for each of the profiles in the same
way. If the DegSim value for a profile u is below a minimum �DegSim threshold then we consider
this profile as a suspicious profile (SPDegSim).

SPDegSim ¼ fujDegSimAu � �DegSimg

From this process, we get a pool of suspicious profiles, SPDegSim, that had DegSim values below
the assigned threshold. Lastly we consider the intersection between the pool of SPRDMA and
SPDegSim, as our SUSRD.

SUSRD ¼ SPDegSim \ SPRDMA

We set generous thresholds �RDMA and �DegSim, allowing more profiles to be considered as sus-
picious and then filter out the misclassified profiles in the second phase.

3.3 Detecting Group attacks (RD-TIA(b))
In this section, we use the RD-TIA detection model to determine more complex attack models.
There are two major differences between RD-TIA(b) and RD-TIA(a). The first is the metric
used, the other is classification method used. As described earlier, the selected set in attack pro-
files can make attack profiles more complicated than random and average attacks. It is hard to
classify profiles if attackers adjust the selected set in the first phase of the algorithm. Thus we
proposed a new metric call DegSim0 that calculates the similarity of rating independently. The

Table 2. An example of ratingmatrix and attack profiles.

Item1 Item2 Item3 Item4 Item5 . . .. Itemn

User1 5 2 3 0 0 . . .. 5

User2 2 0 4 1 2 . . .. 3

User3 4 2 3 0 5 . . .. 0

User4 0 3 0 3 4 . . .. 3

. . .. . . .. . . .. . . .. . . .. . . .. . . .. . . ..

Userm 2 0 4 1 2 . . .. 3

Attacker1 2 1 0 0 5 . . .. 4

Attacker2 2 2 0 0 5 . . .. 3

Attacker3 1 2 0 0 5 . . .. 2

. . .. . . .. . . .. . . .. . . .. . . .. . . .. . . ..

Attackerp 2 0 0 0 5 . . .. 4

Count(5) 2 2 2 2 9 . . .. 3

doi:10.1371/journal.pone.0130968.t002
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following assumption is used: the DegSim value of genuine profiles follow a Gaussian distribu-
tion, and the value of each rating score also follows the Gaussian distribution. If one rating
score does not follow a Gaussian distribution, we adjust value of these profiles such that it is
larger than genuine ones. DegSim0 can be calculated using Eq (3):

DegSim0 ¼
X

r2R
jDegSimr � DegSimrj ð3Þ

where R is the rating scale of the rating database and r is a rating score, and DegSimr is the
mean value of DegSimr. When calculating DegSimr, all ratings not equal to r are replaced with
0, where 0 means unrated. DegSimr is then calculated with Eq (2) using the new transformed
rating matrix. This method reshape DegSim0 rating score of attack profiles such that it is rela-
tively higher than genuine profiles, as long as there are differences in each rating scale. Thus
whilst there may be no difference between attack profiles and genuine profiles using DegSim,
there would be differences if it was used in DegSim0. Using this method the DegSim0 rating
score of attack profiles will be relatively higher than genuine profiles, when there are differences
in the rating scale. Based on above-mentioned reasons, RDMA and DegSim0 are used to reveal
these distinctive features in the rating patterns in RD-TIA(b).

In the first phase of RD-TIA(b), we multiply RDMAu and DegSim0u together, making low val-
ues lower, and high values greater in the product of RDMAu and DegSim0u. We use k-means to
split the product into two parts. Profiles in the higher part are probably attack profiles. From
this process, we obtain a pool of suspicious profiles. Like in RD-TIA(a), we then use the second
phase to filer out genuine profiles.

4 Experiments and Discussions
In this section, we conduct extensive experiments on different datasets and benchmark detec-
tion methods. Experimental setup and metrics are introduced. Experimental results of the two
detection methods RD-TIA(a) and RD-TIA(b) are introduced respectively, followed by a
discussion.

4.1 Experimental Setup
We now describe datasets we have used in the experiments, and the metrics we have used to
evaluate attributes, followed by experimental results. MovieLens datasets (http://grouplens.org/
datasets/movielens/) published by GroupLens, are mainly used in the experiments. In order to
show the scalability of the method, some other datasets are used, including a subset of Netflix
dataset (http://www.netflixprize.com/) and a subset of Eachmovie dataset (http://grouplens.
org/datasets/eachmovie/). Details of the four datasets is given in Table 3. For the two Movie-
Lens datasets and the subset of the Netflix dataset, all ratings are integer values between 1 and
5, where 1 is the lowest (disliked) and 5 is the highest (liked). While in the Eachmovie dataset,
all ratings are integer values between 1 and 6, where 1 is the lowest (disliked) and 6 is the high-
est (liked). We filter out users who have rated less than 20 movies.

To evaluate the performance of our technique we used several metrics: Detection Rate, False
Positive rate, AUC, Sensitivity and Specificity. Detection rate is defined as the number of
detected attacks divided by the number of attacks.

Detection Rate ¼ #Detection
#Attacks

ð4Þ

False positive rate is the number of genuine profiles that are predicted as attacks divided by the
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number of genuine profiles.

False Positive Rate ¼ #False Positives
#Genuine Profiles

ð5Þ

Sensitivity and Specificity are defined in [29, 30].

Sensitivity ¼ #True positives
#True positivesþ#False Negatives

ð6Þ

The Specificitymeasures the percentage of correctly identified genuine profiles (True Nega-
tives), and the Sensitivitymeasures the percentage of correctly detected attack profiles (True
Positives).

Specificity ¼ #True Negatives
#True Negativesþ#False Positives

ð7Þ

AUC is the area under the ROC curve. ROC is a graphical plot which is created by plotting false
positive rate (FPR) and true positive rate TPR. FPR is the fraction of true positives out of the
total actual positives and TPR is the fraction of false positives out of the total actual negatives.
Accuracy is measured by the area under ROC curve. An area of 1 represents perfect results and
an area of 0.5 represents insignificant results.

4.2 Performance of RD-TIA(a)
In this section, performance of RD-TIA(a) is introduced. Single-targeted item and Multi-tar-
geted items attacks are detected using RD-TIA(a). Single-targeted item detection, that is, there
is only one target item in one attack. Multi-targeted items detection, that is, there are more
than one target items in one attack. Performance of RD-TIA(a) is compared with a SVD-based
attack detection.

In order to simulate real attacks in recommender systems, attack profiles generated by ran-
dom and average attack models are injected. In the experiments, two different variables: the
attack size and the filler size are varied. We vary the attack size from 2% to 14%. We also vary
the filler size from 3% to 9%. The experiments in Section 4.2 are based on the ML100K dataset.
In order to get the accurate result, we repeat our tests 100 times.

In choosing the threshold values of RDMA and DegSim, we would like to get values that
have high separability, because it is easier to distinguish between genuine and attack profiles
when there is high separability. We adjusted parameters so that it produced low false negatives
and low false positives. In these experiments we noticed that the intervals between DegSim

Table 3. Datasets used in the experiments.

Dataset ML100K ML1M Netflix Eachmovie

#Users 943 6,040 4,334 2,000

#Movies 1,682 3,952 3,558 1,623

#Ratings 80,000 1,000,209 552,054 137,425

Sparseness 94.96% 95.81% 94.42% 95.77%

Rating scale 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 6

doi:10.1371/journal.pone.0130968.t003
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values for the profiles were smaller when compared to the intervals between RDMA values for
the profiles.

We set the thresholds for �RDMA and �DegSim as:

�DegSim ¼ l
Xn

u¼1

DegSimu

n
ð8Þ

and

�RDMA ¼ g
Xn

u¼1

RDMAu

n
ð9Þ

We choose a different weight for λ and γ. In the experiments we carried out we used λ = 1 and
γ = 0.6. Setting these weights we notice that the false negative rate is lower and there are fewer
positives. As we pointed out previously the threshold value of RDMA and DegSim are generous
thus allowing false negative profiles into the SUSRD set.

4.2.1 Single-Targeted Item Detection. There are four types of attack in single-targeted
attacks, single random push, single average push, single random nuke and single average nuke.
The false positive rate and AUC value of the four attack models are similar when the filler size
varies, so we show the comparisons between attack models when the filler size is 5%.

Fig 4 and Fig 5 show the detection result of false positive rate and AUC when injecting ran-
dom attacks and average attacks. We notice that the false positive rate in all four types of detec-
tion is smaller than 0.02%. The false positive rate remains stable as attack size changes, and
there are no big changes when the filler size varies. On the other side, false positive rate in nuke
attack types are lower than that of push attack types. Fig 5 shows the AUC values for different
attack models. AUC values are greater than 0.9999, which is near to a perfect result. AUC values
of nuke detection type is slightly higher than that of push detection type. In conclusion, the
performance of RD-TIA(a) on random and average attacks is good with only one target item in
one attack, with high detection rate and low false positive rate. Detection result of nuke attack
is better than that of push attack using RD-TIA(a) in the same condition.

4.2.2 Multi-Targeted Items Detection. In order to check the performance when the num-
ber of target items varies in one attack. A test is designed with the number of target items varies
from 1 to 10, and 20 profiles for each target item. We also compare four attack models when
filler size is 5%. We considered the result as false positive and AUC value when the numbers of
targeted items are different to that of the ground truth.

We notice in Fig 6 that the false positive rate increases when the number of target items
increases. There is no big difference in false positive rate between random and average detec-
tion when the attacks are the same purpose. On the other side, the false positive rates of nuke
attacks are smaller than that of push attacks. AUC values are compared in Fig 7 of different
attack models. AUC values of different attack models decline when the number of target items
increases. There is no big difference in AUC values between random and average detection
when the attacks are the same purpose (push or nuke). In conclusion, the performance of
RD-TIA(a) on random and average attacks with multi target items in one attack is not as good
as single target items attack. Detection result of nuke attack is better than that of push attack
using RD-TIA(a) in the same condition.

4.2.3 Comparisons with SVD-based method. We compare our results of single random
detection using RD-TIA(a) with a SVD-based algorithm in [28]. For a fair comparison we carry
out the following experiments with the same parameter settings as the experiments used in the
SVD-basedmethod.
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Table 4 shows the detection result of random attacks when the attack size varies. Three
parameters are compared in the test, AUC, detection rate and false positive rate. AUC value of
SVD-basedmethod is better than that of RD-TIA(a); False positive rate of SVD-basedmethod
decrease with attack size increases, while false positive rate of RD-TIA(a) is lower in push attack
detection. False positive rate of SVD-basedmethod in nuke attack detection is better than that
of RD-TIA(a) when attack size is over 50. Detection rate of RD-TIA(a) is 100%, which is better
than that of SVD-basedmethod.

Table 5 shows detection results of random push attacks with an attack size of 100 while
varying rated filler items. AUC value of RD-TIA(a)method is better than that of SVD-based;
False positive rate of SVD-basedmethod decrease with filler size increases, while false positive
rate of RD-TIA(a) increases when number of rated items increases. False positive rate of
RD-TIA(a) is not as good when all items are rated. Detection rate of RD-TIA(a) is 100%, which
is better than that of SVD-basedmethod. Table 6 shows the detection result of random push
attacks with an attack size of 100 and the number of target items varies. AUC value and detec-
tion rate of SVD-basedmethod decrease when the number of target items increases. RD-TIA(a)
gets better results than that of SVD-basedmethod. Detection rate of RD-TIA(a)method is bet-
ter than that of SVD-basedmethod. AUC value of RD-TIA(a)method is higher than that of
SVD-basedmethod. False positive rate of RD-TIA(a)method is lower than that of SVD-based
method.

Fig 4. Comparison of false positive rate in single-targeted detection when attack size varies. There is only one target item in each attack, comparison
of false positive rate in random push attack, average push attack, random nuke attack and average nuke attack.

doi:10.1371/journal.pone.0130968.g004

Shilling Attacks Detection

PLOS ONE | DOI:10.1371/journal.pone.0130968 July 29, 2015 13 / 26



Table 7 shows the detection result of average push attacks with an attack size of 100 when
the number of rated items in each profile varies. All three parameters of RD-TIA(a) are better
than SVD-based method. From the results it can be seen that our technique outperforms SVD-
based algorithms.

RD-TIA(a) is a group detection method. Since attack profiles work together to perform an
attack, RD-TIA(a) can capture group features of profiles. All profiles rate the target item with
maximum or minimum score to push or nuke a target item. The idea is first find the target
item of an attack, and then filter out genuine profiles rate on the target item. Metric RMDA
and DegSim are used to concentrate all suspicious profiles into a set. In the rating matrix con-
sist of suspicious profiles, TIAmethod is used to find target items, if the target items are found
right, all profiles that rate on the target item with maximum or minimum score can be found,
this is why the detection rate is almost 100%. The false positive rate is low because the matrix is
sparse. False negatives exist because attack profiles are lost in first phase of RD-TIA(a), so
threshold value of RMDA and DegSim are set as low as possible.

4.2.4 Discussions. From the results we notice that the detection rate of random attack is
higher than that of average attack. The false positive rate of nuke attack is lower than that of
push attack. Table 8 shows the rating distribution in ML100K Dataset. Rating score of 1 is
6.07% of the rating distribution, whereas rating score of 5 is 21.07% of the rating distribution.
Due to this the false positive rate is lower in nuke attacks as compared to push attacks. When

Fig 5. Comparison of AUC value in single-targeted detection when attack size varies. There is only one target item in each attack, comparison of AUC
value in random push attack, average push attack, random nuke attack and average nuke attack.

doi:10.1371/journal.pone.0130968.g005
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nuke attacks are carried out a target item is usually rated low (usually 1), however due to the
lower distribution of rating 1’s within the dataset, it is easier to differentiate a nuke attack as
compared to a push attack whereby a target item is rated high (usually 5) and the distributions
of rating 5 are higher. On the other side, AUC values of nuke attacks are lower than that of
push attacks. The false positive rate of single-targeted detection is lower than that of multi-tar-
geted item detection; while the AUC values of single-targeted detection are higher than that of
multi-targeted item detection. The detection rate reaches 100% in most situations with some
false positives, except that there exist some false negatives in average detection. There exist
false negatives average detection when filler size is 3%, both in single-targeted average detection
and multi-targeted.

Table 9 shows the detection rate of single average detection when filler size is 3% when the
attack size varies. Table 10 shows the detection rate of multi-targeted detections when filler size
is 3% and the target items vary.

4.3 Performance of RD-TIA(b)
In this section, we test the detection of group attacks, including segment and bandwagon attack
models. In order to achieve better attack effectiveness, attackers combine different attack mod-
els to make attack profiles more similar to genuine profiles, as described in [25]. We call this

Fig 6. Comparison of false positive rate in multi-targeted detection when the number of target items varies. There are multi-target items in each
attack. Comparison of false positive rate in random push attack, average push attack, random nuke attack and average nuke attack.

doi:10.1371/journal.pone.0130968.g006
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Fig 7. Comparison of AUC value in multi-targeted detection when the number of target items varies. There are multi-target items in each attack.
Comparison of AUC value in random push attack, average push attack, random nuke attack and average nuke attack.

doi:10.1371/journal.pone.0130968.g007

Table 4. Detection result of random attacks when the filler size is 3% and attack size varies.

SVD-based method RD-TIA

Intent Attack Size AUC Detection Rate False Positive Rate AUC Detection Rate False Positive Rate

Push 20 0.9999 ± 0.0001 99.25% ± 1.83% 0.22% ± 0.01% 0.99999±0.00001 100% 0.003%±0.002%

50 0.9998 ± 0.0002 97.80% ± 1.82% 0.14% ± 0.02% 0.99999±0.00001 100% 0.001%±0.001%

100 0.9999 ± 0.0001 96.95% ± 1.73% 0.07% ± 0.01% 0.99999±0.00001 100% 0.002%±0.002%

200 0.9999 ± 0.0000 94.20% ± 1.41% 0.02% ± 0.01% 0.99999±0.00001 100% 0.001%±0.001%

Nuke 20 0.9999 ± 0.0001 94.20% ± 1.41% 0.22% ± 0.01% 0.99996±0.00003 100% 0.01%±0.01%

50 0.9998 ± 0.0002 98.00% ± 1.72% 0.15% ± 0.02% 0.99990±0.00006 100% 0.02%±0.01%

100 0.9999 ± 0.0000 97.75% ± 1.12% 0.06% ± 0.01% 0.99966±0.00004 100% 0.07%±0.01%

200 0.9999 ± 0.0000 93.55% ± 1.86% 0.02% ± 0.01% 0.99959±0.00001 100% 0.08%±0.00%

doi:10.1371/journal.pone.0130968.t004
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Table 5. Detection result of random push attacks(with 100 bots) when the filler size varies.

SVD-based method RD-TIA

Rated items AUC Detection rate False Positive Rate AUC Detection Rate False Positive Rate

20 0.9744 ± 0.0150 7.45% ± 4.72% 0.17% ± 0.02% 0.99994±0.00017 99.99% 0.003%±0.002%

50 0.9941 ± 0.0030 46.35% ± 8.97% 0.10% ± 0.01% 0.99998±0.00001 100% 0.001%±0.001%

100 0.9977 ± 0.0007 68.10% ± 6.19% 0.07% ± 0.01% 0.99999±0.00002 100% 0.002%±0.002%

150 0.9986 ± 0.0005 74.95% ± 4.68% 0.06% ± 0.00% 0.99998±0.00002 100% 0.001%±0.001%

500 0.9997 ± 0.0001 93.10% ± 3.63% 0.07% ± 0.00% 0.99999±0.00001 100% 0.01%±0.01%

1000 0.9999 ± 0.0001 97.10% ± 1.92% 0.06% ± 0.01% 0.99998±0.00002 100% 0.02%±0.01%

2000 0.9999 ± 0.0001 96.95% ± 1.73% 0.07% ± 0.01% 0.99999±0.00001 100% 0.07%±0.01%

All 0.9995 ± 0.0002 87.75% ± 2.51% 0.06% ± 0.02% 0.99998±0.00002 100% 0.08%±0.00%

doi:10.1371/journal.pone.0130968.t005

Table 6. Detection result of random push attacks(with 100 bots) when the target items varies.

SVD-based method RD-TIA

Target items AUC Detection Rate False Alarm Rate AUC Detection Rate False positive rate

1 0.9999 ± 0.0001 96.95% ± 1.73% 0.07% ± 0.01% 0.99999±0.00001 100% 0.003%±0.002%

2 0.9999 ± 0.0001 97.45% ± 1.32% 0.06% ± 0.01% 0.99997±0.00001 100% 0.005%±0.003%

5 0.9999 ± 0.0000 97.75% ± 1.37% 0.07% ± 0.01% 0.99992±0.00002 100% 0.016%±0.005%

10 0.9997 ± 0.0002 92.20% ± 4.50% 0.07% ± 0.01% 0.99989±0.00002 100% 0.023%±0.004%

20 0.9987 ± 0.0002 65.15% ± 4.61% 0.08% ± 0.02% 0.99983±0.00000 100% 0.033%±0.000%

doi:10.1371/journal.pone.0130968.t006

Table 7. Detection result of average push attacks (with 100 bots) when the number of filler items vary.

SVD-based method RD-TIA

Rated items AUC Detection rate False Positive Rate AUC Detection Rate False Positive Rate

20 0.9614 ± 0.0207 3.65% ± 2.72% 0.18% ± 0.01% 0.99513±0.00131 100% 0.005%±0.003%

50 0.9735 ± 0.0078 14.10% ± 5.54% 0.17% ± 0.01% 0.99999±0.00001 100% 0.001%±0.001%

100 0.9582 ± 0.0088 6.45% ± 2.58% 0.18% ± 0.01% 0.99998±0.00001 100% 0.003%±0.003%

150 0.9324 ± 0.0121 1.85% ± 1.46% 0.20% ± 0.01% 0.99999±0.00001 100% 0.002%±0.002%

500 0.6844 ± 0.0101 0 0.24% ± 0.01% 0.99999±0.00002 100% 0.002%±0.003%

All 0.5141 ± 0.0054 0 0.22% ± 0.02% 0.99999±0.00002 100% 0.002%±0.003%

doi:10.1371/journal.pone.0130968.t007

Table 8. Proportion of five ratings in ML100K Dataset.

Value Count Percentage

1 4853 6.07%

2 9185 11.48%

3 21811 27.26%

4 27294 34.12%

5 16857 21.07%

doi:10.1371/journal.pone.0130968.t008
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the “combined attack models”. We test our method using single attack model and combined
attack models. In single attack model, there is only one attack model in an attack; while in a
combined attack, there are two different types attack models combined together. The results of
detection on single model attacks and combined model attacks are shown in the following
sections.

4.3.1 Single Attack Model Detection. In this section, we will show experimental results
using RD-TIA(b) detection method on single model attacks, where all of the attacks are push
attacks. Attack profiles are somewhat similar to the average attack model except for the selected
set. Attack profiles are generated as follow: in the selected set, 1% of the most rated items in the
datasets are chosen, these items are rated as maximum rating; the ratings for filler items are dis-
tributed around the average rating for each item; the target item is randomly chosen and rated
with the maximum rating.

Fig 8 shows the detection rates and false positive rates of the proposed method while facing
group attacks on four different datasets. Fig 8(A) is the detection rates when the attack size is
5% and filler size varies. Fig 8(B) shows the false positive rates of the detection. We find that
the detection rates increase along with the increase in filler size. The detection rates reach close

Table 9. The detection rate of single average detections.

Attack size Single average push Single average nuke

19 99.995% 99.989%

38 99.995% 99.989%

57 99.995% 99.995%

75 99.992% 99.995%

94 99.989% 99.989%

113 99.985% 99.990%

132 99.989% 99.993%

doi:10.1371/journal.pone.0130968.t009

Table 10. The detection rate of multi average detections.

Target items Multi average push Multi average nuke

1 99.990% 99.995%

2 99.990% 99.993%

3 99.993% 99.997%

4 99.993% 99.996%

5 99.994% 99.994%

6 99.995% 99.997%

7 99.992% 99.995%

8 99.994% 99.991%

9 99.994% 99.993%

10 99.993% 99.992%

doi:10.1371/journal.pone.0130968.t010
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to 100% when filler size reaches 4%. The false positive rates, on the other hand, consistently
stay below 0.5% when the filler size is greater than 2%, regardless of attack sizes.

In the second test, we compare our method with the state-of-the-art unsupervised βρ-based
method in [31] using ML100k Dataset when the selected set is none, that is, there is only one
target item in an attack profile, and the filler size is 5% and the attack size varies from 1%, 3%,
5%, 7% to 9%. Fig 9 shows the detection rates of βρ-based method (A) and our method (B)
when facing single-targeted push attacks. In our method (B), the detection rate reaches almost
100% when the filler size is greater than 4%. The false positive rates are lower.

In the third test, we compare βρ-based method and our method using ML100k Dataset
when the selected set varies from 2 to 10. Fig 10 shows the detection rates of βρ-based method
(A) and our method (B) when facing group push attacks. In our method, the detection rate
reaches almost 100%. The false positive rates are below 0.5%, which is low. Our method reaches
higher detection rates and lower false positive rates.

Fig 8. Detection rate and false positive rate when the attack size is 5% and filler size varies in different datasets.Detection rate and false positive rate
are detected when the attack size is 5% and filler size varies using four different datasets, including MovieLens 100k Dataset, MovieLens 1M Dataset,
Eachmovie Dataset and Netflix sub-Dataset.

doi:10.1371/journal.pone.0130968.g008
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4.3.2 Combined Attack Models Detection. In this section, we will show experiment
results using RD-TIA(b) detection method on combined model attacks. Three single attack
models, random, average and bandwagon attack models, and two combined attack models,
random&bandwagon and average&bandwagon attack models are tested in this section. All the
attacks in this section are push attacks, with attack size is 10% and the filler size varies from 1%
to 50%. ML100K Dataset is used in the flowing test.

Sensitivity, Specificity, AUC value of the detecting results using RD-TIA(b) against five
attack models are shown in Figs 11–13. We can see from the results that the specificity of all
the tests is high. According to Eq (7), we know that there are only a small number of false posi-
tives in the result. There are a common characteristic in five detection results, when the filler
size of attacks is greater than 3%, the sensitivity of the results gets better, which means only a
small number of false negatives exist in the results by Eq (6). In Table 3, we can see that all of
the datasets we use are very sparse. Metric DegSim0 does not reflect the rating distribution well
when the filler size is smaller than 3%. Detecting results using RD-TIA(b) are not as good when

Fig 9. Detection rate of single-targeted attacks when attack size and filler size varies. There is only one target item in each attack. Comparison of
detection rate when attack size and filler size varies.

doi:10.1371/journal.pone.0130968.g009
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the filler size is smaller than 3%. The experiments in this section show that our proposed
method RD-TIA(b) can efficiently detect combined model attacks. The performance of detect-
ing combined profiles is better when the filler size is greater than 3%.

5 Conclusions
In this paper, we present RD-TIA, a novel unsupervised shilling attack detection structure that
use profile rating patterns and group feature of attack profiles. Two different statistical metrics
are used to detect attackers based on their rating patterns. We proposed two detection algo-
rithms based on RD-TIA structure. In RD-TIA(a), the threshold value is set to find suspicious
profiles. Tests show that using the threshold method can achieve a high-accuracy result, using
extra knowledge for the threshold value, but there are restrictions in detecting more complex
attack models. So we propose another detection method based on RD-TIA structure. In
RD-TIA(b), a new metric DegSim0 is proposed based on DegSim. Tests show that RD-TIA(b) is

Fig 10. Detection rate of group attacks when the attack size and target items vary. There are multi-target items in each attack. Comparison of detection
rate when attack size and filler size varies.

doi:10.1371/journal.pone.0130968.g010
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useful to detect segment attacks and combined attack models. TIAmethods are used to filter
out genuine profiles based on the suspicious profiles we get in both of the methods.

Table 11 shows detection result when there are no attacks injected using ML100K by
RD-TIA(a) and RD-TIA(b). Table 12 shows the comparison of two RD-TIAmethods. RD-TIA
(a) needs more knowledge before detection, has high accuracy and consumes less time, but
detects only random and average attacks; RD-TIA(a) needs less knowledge before detection,
detect random, average, bandwagon and segment attacks, but the accuracy is not as high as
RD-TIA(b) and consumes more time.

The algorithms we proposed in the paper detects attackers and does not require attacking
profiles as training data, which means it is immune to missing values, but there are some limi-
tations on the RD-TIAmethods. The first limitation is that we need to know the features of

Fig 11. Sensitivity of different attack models when filler size varies usingRD-TIA(b). Detecting result of different attack models when filler size varies
using RD-TIA(b).

doi:10.1371/journal.pone.0130968.g011
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metrics we use in the structure, for example, we should know he RDMA value is higher and the
DegSim value is lower in attack profiles. This requires some knowledge of the rating distribu-
tion information of the dataset. The other limitation is with the time consumed as the scale of
the dataset increases. We obtained the DegSim value by calculating the similarity with other
profiles. The computational cost of the metric DegSim is square stage growth with the number
of profiles. Based on the above limitations, in the future, we will try to introduce supervised
learning methods so that we do not have to know the features of the metrics. We will try differ-
ent metrics using the structure and find a way to reduce time complexity. In the future, we will
extend our techniques to detect more complex attack models.

Fig 12. Specificity of different attack models when filler size varies usingRD-TIA(b). Detecting result of different attack models when filler size varies
using RD-TIA(b).

doi:10.1371/journal.pone.0130968.g012
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Fig 13. AUC value of different attack models when filler size varies usingRD-TIA(b). Detecting result of different attack models when filler size varies
using RD-TIA(b).

doi:10.1371/journal.pone.0130968.g013

Table 11. Detection result when there are no attacks injected using ML100K.

Methods Profiles that misjudged as attackers

RD-TIA(a) 195, 219, 358

RD-TIA(b) 46, 112, 126, 166, 206, 260, 507, 519, 531, 578, 609, 626, 724, 782, 841

doi:10.1371/journal.pone.0130968.t011

Table 12. Comparison of two RD-TIA attack detectionmethods.

RD-TIA(a) RD-TIA(b)

Detect models random and average attacks random, average, bandwagon and segment attacks

Knowledge need more less

Accuracy higher lower

Time consuming less more

doi:10.1371/journal.pone.0130968.t012
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