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A deep learning method for predicting the origins
of cervical lymph node metastatic
cancer on digital pathological images

Runliang Zheng,1,5 Xuenian Wang,1,5 Lianghui Zhu,1 Renao Yan,1 Jiawen Li,1 Yani Wei,2 Fenfen Zhang,2

Hong Du,3 Linlang Guo,4 Yonghong He,1,* Huijuan Shi,2,* and Anjia Han2,6,*
SUMMARY

The metastatic cancer of cervical lymph nodes presents complex shapes and poses significant challenges
for doctors in determining its origin. We established a deep learning framework to predict the status of
lymph nodes in patients with cervical lymphadenopathy (CLA) by hematoxylin and eosin (H&E) stained
slides. This retrospective study utilized 1,036 cervical lymph node biopsy specimens at the First Affiliated
Hospital of Sun Yat-Sen University (FAHSYSU). A multiple-instance learning algorithm designed for key
region identification was applied, and cross-validation experiments were conducted in the dataset. Addi-
tionally, the model distinguished between primary lymphoma and metastatic cancer with high prediction
accuracy.We also validated ourmodel and othermodels on an external dataset. Ourmodel showed better
generalization and achieved the best results on both internal and external datasets. This algorithm offers
an approach for evaluating cervical lymph node status before surgery, significantly aiding physicians in
preoperative diagnosis and treatment planning.

INTRODUCTION

Cancers still cannot be identified in the clinic and are categorized as cancers of unknown primary (CUP).1 Diagnosing and treating CUP is

notably tricky due to their ambiguous clinical presentations and the absence of reliable biomarkers. A key characteristic of CUP is metastasis

without the ability to identify the cancer’s primary location through conventional methods, introducing considerable uncertainty in the treat-

ment and prognosis of patients. The diagnosis of CUP typically starts with detecting ametastatic tumor, indicating that the cancer has already

spread from its origin to other body parts.2 Despite significant advancements in imaging and histopathological analysis by modernmedicine,

standard diagnostic techniques often remain unsuccessful in determining the origin of the cancer. The diagnosis of CUP typically entails a

comprehensive approach comprising a detailed patient history, physical examination, blood tests, imageology studies (including computed

tomography [CT], MRI, and positron emission tomography [PET scans]), and tissue analysis.3 Although these diagnostic techniques offer crit-

ical information about tumor characteristics, they are frequently time-intensive and expensive.

In response to these diagnostic challenges, computational pathology has emerged as an innovative field blending computer science and

pathology, witnessing rapid advancements in recent years.4 Computational pathology offers a new way to analyze microscopic images of

tumor tissue through neural networks to find clues about its site of origin. Deep learning has demonstrated significant potential in handling

and interpreting this complex data, offering new ways for diagnosing CUP origin. Through advanced algorithms, computational pathology

enables the extraction of significant patterns and features within tumor structures, which might escape direct observation and conventional

analysis. Artificial intelligence, empowered by advancements in algorithms, the accumulation of large-scale datasets, and enhanced compu-

tational power, exhibits robust capabilities in feature representation learning.5 Deep learning technology has significantly advanced themed-

ical field, particularly in tumor detection,6,7 classification,8 and grading.6,9 For instance, researchers employed a transfer-based learning

approach to construct a comprehensive model for assessing lymph node metastases in colorectal cancer using digitized hematoxylin and

eosin (H&E) staining slides.10 Additionally, a deep learning framework has been developed to determine lymph node status in cervical cancer

patients through analysis of H&E staining slides of primary tumors.11

Current research mainly aims at detecting the presence or absence of metastatic cancer in lymph nodes.12–15 However, accurately iden-

tifying the primary tumor’s location is crucial for guiding the treatment of patients withmetastatic tumors, and the research in this area remains
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Figure 1. The workflow of KMIL, a multiple-instance learning method for key recognition
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lacking.16 The development of a deep learning algorithm, Tumor Origin Assessment via Deep Learning (TOAD), marks significant progress in

this area.17 TOAD can analyze standard histological sections to predict the primary sites among 18 tumors. This model was trained using

entire digital pathological images from knownprimary tumor sites, enabling it to classify tumors as either primary ormetastatic and determine

their origins. Similarly, a regionalmultiple-instance learning algorithmwas crafted to determine the origin of bonemetastatic cancer based on

only H&E stained slides.18

Lesions in cervical lymph nodes constitute one-third of all lymph node lesions. Abnormalities in the size or shape of these lymph nodes lead

to a diagnosis of cervical lymphadenopathy (CLA).19 Precisely diagnosing the cause of CLA and identifying the primary tumor site in meta-

static CLA cases are essential for determining appropriate patient referral pathways, customizing treatment plans, and conducting tumor

staging. Yang et al.20 employed deep learning techniques to assess the pathological conditions of cervical lymph nodes using PET/CT im-

aging. Their study specifically focused on differentiating between lymph node metastasis and lymphoma. The results demonstrated robust

diagnostic efficacy. However, there are still some gaps in deep learning research on CLA based on pathology.
Multiple instance learning for medical imaging

In computational pathology, acquiring pixel-level annotations formedical pathology images is challenging, leading to a need formore usable

data. To address this, researchers often divide medical pathology images, which may contain millions of pixels, into smaller patches. These

patches, derived from the same whole-slide image (WSI), are collectively treated as a bag labeled with a single identifier. Multiple instance

learning (MIL) approaches this by separately processing the extracted image blocks from theWSI and aggregating their features. This aggre-

gation utilizes pooling functions to integrate the features of each image block, allowing subsequent neural network layers to synthesize a

comprehensive feature representation of the WSI. This process effectively captures the global information of histological sections. Predom-

inantly, MIL feature aggregation hinges on theMIL pooling operator, consolidating the embedded features derived fromWSI patch segmen-

tation into a global representation of the WSI.

Ilse et al.21 explored the MIL method in pathological studies and proposed a permutation invariant aggregation operator combined with

the attentionmechanism basedMIL (attention basedMIL [ABMIL]). The operator can provide information about how each instance affects the

judgment of the bag’s label. Shao et al.22 developed a new multi-instance learning framework—transformer-based MIL method (TransMIL).
2 iScience 27, 110645, September 20, 2024



Figure 2. The performance of different models in predicting OCLNMC

(A) AUROC, accuracy, and F1 score of different models; (B) Recall for different categories by KMIL; (C) Precision for different categories by KMIL.
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The model mimics the context information and inter-regional correlation pathologists consider when diagnosing. TransMIL uses transformer

technology tominemorphological and spatial information inWSI classification and uses location coding and transformer layer to enhance the

training efficiency and interpretability of the model. Zhang et al.23 first proposed the instance probability derivation process under the frame-

work of ABMIL, showing that it is more reliable than the attention score of joint positive region detection. Based on this, they developed aMIL

method for double-tier feature distillation (double-tier feature distillation based MIL [DTFD-MIL]). It combines the pseudo-bag concept and

double-tier MIL structure to improve the model performance through feature distillation technology. Li’s team24 proposed a MIL method for

WSI classification and tumor detection, which solved the problems of WSI’s high resolution and lack of localized annotations. Through the

innovative introduction of a newMIL aggregator, self-supervised contrast learning, and pyramid fusion mechanism, this method(dual-stream

multiple instance learning [DSMIL]) not only optimizes the modeling of the relationship between instances but also effectively alleviates the

problem of extensive packet processing and improves the accuracy of classification and location.

Pathological images often have incredibly high dimensions and complex background information, containingmany cells, tissue structures,

and diseased areas, of which only a few are critical positive samples. Positive samples are critical to the final diagnosis. The existing research

methods look for these positive areas from the whole WSI. However, in the actual clinicopathological diagnosis, doctors will only observe

some areas and often choose the key areas of interest for observation. In this study, combined with the diagnosis process of pathologists,

we proposed amulti-instance learning algorithm to predict the status of cervical lymph nodes by focusing on identifying key regions. Further-

more, this algorithm can predict the origin of metastatic cancer, thereby offering an approach for the personalized treatment of patients with

CLA in the future.
RESULTS

Evaluation metrics

The diagnostic performance of our algorithm was assessed by five metrics: accuracy, precision, recall, F1 score, and area under the receiver

operating characteristic curve (AUROC).
Table 1. The performance of different models

Methods

Recall (%) Precision (%)

Non-tumor Lymphoma Breast Squamous Thyroid Non-tumor Lymphoma Breast Squamous Thyroid

ABMIL 76.30 79.86 58.48 98.74 35.61 71.89 73.94 80.25 84.00 39.09

TransMIL 70.52 72.90 58.64 94.05 79.24 68.02 69.32 75.49 93.99 87.50

DTFD 79.14 77.68 84.85 99.05 97.26 80.09 79.84 84.55 99.41 98.33

DSMIL 80.33 85.34 83.33 98.42 97.27 82.41 80.12 90.94 99.39 99.17

KMIL 81.26 85.44 84.06 99.68 96.36 83.98 81.25 91.17 99.09 99.09
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Table 2. The performance of different models on the external dataset

Model ACC F1 score AUROC

ABMIL 0.5494 0.4239 0.7926

TransMIL 0.4871 0.6273 0.8130

DSMIL 0.6918 0.6273 0.9346

DTFD 0.5506 0.4914 0.8442

KMIL 0.7341 0.6766 0.9400
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Prediction of the origin of cervical lymph node metastatic

We evaluate five MIL-based deep learning models in the FAHSYSU cohort: ABMIL, TransMIL, DSMIL, DTFD, and KMIL. KMIL is shown in

Figure 1. Each model was trained and tested in the FAHSYSU cohort with 10-fold cross-validation experiments. The performance of different

models in predicting cervical lymph node (CLN) metastasis status is evaluated by the metrics of the AUROC, accuracy, F1 score in Figure 2A.

Further performance breakdowns by ourmodel are provided in Figure 2. Ourmodel achieves an ACCof 90.18%, an AUROCof 98.02%, and an

F1 score of 0.9013.

The performance of recall and precision rates of different models in different categories is detailed in Table 1.

Similarly, we compared the generalizations of different models on an external dataset, as shown in Table 2. KMIL demonstrated superior

performance across multiple evaluation metrics on an external dataset. Notably, it achieved the highest accuracy with a score of 0.7341.

Furthermore, the KMILmodel excelled in terms of the F1 score, reaching 0.6766, which suggests a balanced proficiency in precision and recall,

critical for models operating under conditions of class imbalance. Additionally, it outperformed other models in the AUROC metric with a

score of 0.9400. The generalization of KMIL is better than that of other models, and it is solid and robust. Figure 3 compares the performance

of internal and external datasets of KMIL.

As detailed in the Table 3, we evaluated the computational efficiency andmodel complexity of ABMIL, TransMIL, DSMIL, DTFD, and KMIL.

Regardingmodel size and computational complexity, the proposedmodel has similar sizes and computational complexities with the models

of other works except for TransMIL, while TransMIL is significantly larger.

Ablation study

In the key sample aware scheme, we can calculate the hard score of the sample. The higher the score, the more difficult it is to identify the

sample; the lower the score, the more likely it is to be an easy sample. As is shown in Table 4, when the samples with scores less than 0.1 were

removed, the model’s ACC, F1 score, and AUC all reached the highest. However, as the threshold increased to 0.2, the model’s accuracy and

F1 score decreased slightly. This suggested that further increases in the threshold might result in more hard samples being incorrectly

removed, thereby failing to improve the model’s overall performance effectively. KMIL can significantly improve model performance under

specific threshold settings. However, it is also essential to select a reasonable threshold to avoid excessive deletion of potentially hard sam-

ples and ensure the optimization of model performance.

Table 5 shows the performance changes of the model on the verification set after removing patches whose perceived scores of hard sam-

ples are higher than different thresholds. This experiment investigated the specific effects of removing hard samples on model performance.

The results show that the performance of the model generally declines when the patches with significant perception scores of hard samples

are removed. This suggests that clearing out this hard sample negatively impacts the model’s predictive power. Although hard samples are

difficult to classify, they contain valuable information for improving model learning and generalization. Removing these samples causes the
Figure 3. The performance of KMIL on the external dataset

(A) The performance of internal and external datasets of KMIL; (B) Receiver operating characteristic curves of internal and external datasets of KMIL.
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Table 3. Comparison of calculation speed and model size of different models

model Flops Params time

ABMIL 61.46M 530.2K 1.064s

TransMIL 602.82M 2673.2K 3.282s

DSMIL 114.38M 641.4K 2.892s

DTFD 83.02M 726.7K 2.301s

KMIL 116.53M 643.6K 2.916s
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model to lose necessary training signals, resulting in reduced performance when dealing with complex or boundary cases. The samples with

high scores are precisely the key samples that the model needs.

Prediction of cervical lymph node metastasis

We also predicted whether CLA patients had metastatic cancer, called Task A. Our model achieves an ACC of 90.87%, a AUROC of 97.04%,

and an F1 score of 0.8834 in Task A.

In clinical diagnosis, distinguishing between non-cancerous conditions, such as inflammation and lymphoma, presents a challenge, partic-

ularly for inexperienced pathologists.25 Our model is also utilized to determine the status of CLN, identifying them as either non-cancerous

conditions or lymphoma, which is task B. Ourmodel achieved an accuracy of 83.40% in distinguishing between non-cancerous conditions and

lymphoma. Clinically, distinguishing between primary lymphoma and metastatic cancer is crucial. Our model was employed to perform this

task, called task C. The KMIL algorithmdemonstrated over 90% accuracy in differentiating between the two types of tumors, achieving 93.13%

accuracy in identifying lymphoma and 95.38% accuracy in diagnosing metastatic cancer. The performance of our algorithm on these tasks is

shown in Table 6.

We verify the generalization of our model for these three tasks on an external dataset, as shown in Figure 4. Figures 4A and 4B illustrate the

model’s generalization capabilities for task A, while Figures 4C and 4D depict its performance on task B. Figures 4E and 4F demonstrate its

generalization for task C. Notably, the model’s performance declined on task A and task B, yet it showed improved effectiveness on task C

compared to the validation on the internal dataset. Models are more capable of handling simple tasks.

DISCUSSION

Cervical lymph nodemetastases comprise about 2%–5% of head and neck cancers.26 Metastases from unknown primary tumors are very rare.

They account for roughly 2% of all new cases in this group. However, managing patients with suchmetastases poses a significant challenge in

oncology. Determining the location of primary tumors is crucial for directing the clinical management of patients with metastatic cancer.

A deep learning model utilizing multiple-instance learning was developed to predict OCLNMC on H&E stained slides accurately. The al-

gorithm requires only theWSI level of labeling without more granular or region-specific annotations. It can directly identify metastatic cancer

and its origin in routine cases. This simplifies the complex task of determining metastatic cancer sources in clinical settings. As a result, it re-

duces diagnostic time for patients and saves medical resources.

Due to the sparse distribution of positive regions in pathological images, these areas often constitute a small portion of the WSI. Utilizing

traditionalMILmethods for feature aggregation fromWSI results in a predominance of features from negative patches. This significantly com-

plicates the task of the classifier and impacts its training efficiency. Researchers manually annotate region of interest (ROI) on WSIs and sub-

sequently apply the MIL method for prediction.11 However, our algorithm is specifically designed for precise, automatic identification and

analysis of crucial regions in WSIs. Initially, we segment WSIs into numerous small patches and utilize a pre-trained ResNet5027 network to

extract feature vectors from each patch. Subsequently, a key recognition module evaluates and prioritizes these feature vectors to identify

and retain those with critical information. These selected feature vectors, retaining themost vital data in theWSI, are then processed through

aMIL framework. In this framework, an attentionmodule assigns scores to each key feature vector, focusing on themost informative features.

Then, using the attention pooling mechanism,28 we condense these key feature vectors to get a comprehensive representation of the whole

set. Finally, the score of the bag and the score of each patch are calculated by two MLPs, respectively. The combination of the two scores,

which consider the overall information and the local details, forms a comprehensive prediction of the WSI. In short, recognizing and utilizing

key features enhances the precision of prediction and facilitates a deeper comprehension of cancer characteristics in WSIs. Selecting hard

samples can not only effectively reduce the interference of negative patches on classifier judgment but also significantly improve the learning
Table 4. The perception effect of hard samples with different scores

t ACC F1 score AUC

0 0.8932 0.8928 0.9775

0.1 0.9018 0.9013 0.9802

0.2 0.8930 0.8920 0.9801
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Table 5. The relationship between scores and hard samples

t ACC F1 score AUC

0.8 0.8656 0.8577 0.9735

0.85 0.8646 0.8519 0.9755

0.9 0.8685 0.8618 0.9718

1 0.8932 0.8928 0.9775
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efficiency and accuracy of themodel in pathological image analysis. Based on hard sample aware, this approach optimizes the traditional way

of feature aggregation. It ensures the focus on positive samples duringmodel training, thus achieving higher performance andmore accurate

diagnostic results in pathological image analysis.

The performance metrics demonstrate that our model can precisely predict the status of CLN in CLA patients on H&E stained slides. In

most cases of metastatic CLA, the pathological subtypes are predominantly squamous cell carcinoma (SCC) or adenocarcinoma (ADC).29 For

metastatic CLA diagnosed as SCC, primary tumor origins are often identified in areas like the head and neck, lungs, or esophagus.

Conversely, for ADC, primary tumors are usually linked to the thyroid, stomach, or lungs. Therefore, accurately identifying the two subtypes

in patients withmetastatic CLA, particularly those whose primary tumor origins are unclear, is essential for streamlining the diagnostic process

and swiftly determining the origins of primary tumors. Our model has now been refined to distinguish between these two pathological sub-

types effectively.

In conclusion, our research introduces a highly accurate assistive tool for pathologists to predict origins of cervical lymph node metastatic

cancer (OCLNMC) from conventional H&E stained slides. The development of this tool not only simplifies the pathological diagnosis process

but also improves the accuracy of prediction and provides strong support for clinical decision-making. By comparing and analyzing different

MIL methods, this study demonstrates the significant potential of this technique to improve the accuracy and robustness of model diagnosis.

Themodel outperformed on several key performance indicators, especially in the identification accuracy of specific cancer types. In particular,

our model’s validation on the external dataset outperforms the internal dataset for identifying primary lymphoma andmetastatic cancer. Our

key sample aware scheme also provides a new perspective for future pathological research. In pathological research, we eliminate more

miscellaneous information, which significantly saves computational cost and efficiency. We can find key features and use them in future

studies of vision-language pretraining models for pathology.
Limitations of the study

Thecurrent researchmainly focuseson thedifferentiationof various typesof tumorsanddoesnot subdivide intodifferent subtypesof tumors. For

patients with different subtypes, doctors will adopt different treatmentmethods. Future research can also be carried out on studying tumor sub-

types in cervical lymph nodes. Non-Hodgkin lymphoma can be divided into subtypes including B cell lymphoma, NK, and/or T cell lymphoma.

There are specific challenges in metastatic cancer, such as small sample learning and unbalanced data processing. The imbalance of data

samples generated by the scarcity of metastatic cancer data far exceeds that of other types of pathological data, and some sample data are

often only a few cases for a long time. For example, the number of metastatic cancer, such as lung cancer and gastric cancer in cervical lymph

node metastatic cancer are very rare, and the sample number is less than 1% of that of other metastatic cancers.
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Figure 4. The performance of KMIL for different tasks on the external dataset

(A, C, and E) The performance of internal and external datasets in task (A), (B), and (C); (B, D, and F) Receiver operating characteristic curves of internal and external

datasets in task (A), (B), and (C).
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ABMIL Ilse et al.21 https://github.com/AMLab-Amsterdam/AttentionDeepMIL

TransMIL Zhu et al.18,30 https://github.com/szc19990412/TransMIL

DSMIL Li et al.24 https://github.com/binli123/dsmil-wsi

DTFD Zhang et al.23 https://github.com/hrzhang1123/DTFD-MIL

KMIL This paper https://github.com/wxn22/KMIL

Pytorch Version 1.13.0 https://pytorch.org/docs/1.13/

Python Version 3.9.13 https://docs.python.org/release/3.9.13/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Anjia Han

(hananjia@mail.sysu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� All data reported in this paper will be shared by the lead contact upon request.
� All original code has been deposited at GitHub (https://github.com/wxn22/KMIL) and is publicly available as of the date of publication.

DOIs are listed in the key resources table.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We collected cevical lymph node biopsy or surgical specimens which were stained using H&E staining from the First Affiliated Hospital of Sun

Yat-sen University and Guangzhou first people’s Hospital where key words ‘‘neck’’ and ‘‘lymph nodes’’ in the electronic case systems were

searched. These cases in FAHSYSU were diagnosed from 2007 to 2023 and those in the external dataset were diagnosed from 2018 to

2023. We included cervical lymph node metastases cases regardless of histological types and metastatic cancers of known origins, and

some biopsies without metastatic carcinomas. We excluded the slides where the tissue was severely squeezed and deformed, affecting

the results of diagnoses and the faded ones of which the corresponding paraffin-embedded blocks weremissing. Also, we deleted the whole

slide images whichwere not clear. A detail flow of datasets createdwas available in Figure S1. Study participant details were shown in Table S3

and Table S4. The data were not available and just the image files were used.

This retrospective study received approval from IEC for Clinical Research and Animal Trials at the First Affiliated Hospital of Sun Yat-sen

University ([2022]429). All participants provided informed consent before they accepted pathological examinations and operations biopsies.

METHOD DETAILS

Data acquisition and processing

In this study, the FAHSYSU cohort was composed of cervical lymph node biopsy surgical specimens from the First Affiliated Hospital of Sun

Yat-sen University in China, and the deep learning method proposed in this study was trained, validated, and tested in the FAHSYSU cohort.

We also collected relevant data from Guangzhou First People’s Hospital to build an external dataset. The recruitment process for the data-

sets, including criteria for inclusion and exclusion, is thoroughly documented in the supplemental information (Figure S1). The FAHSYSU

cohort that comprises 505 patients is shown in Table S1. The external dataset that comprises 85 WSIs is shown in Table S2. All H&E sections

were formalin-fixed and paraffin-embedded tissue sections.

The FAHSYSU cohort included 505 cases diagnosed between January 2007 andMarch 2023. It was randomly allocated into training (80%),

validation (10%), and testing sets (10%) for model development and assessment. In both datasets, the primary sites of cervical lymph node
10 iScience 27, 110645, September 20, 2024
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metastasis originated from commonorgans, including the breast, thyroid, head, and neck, with the latter primarily consisting of squamous cell

carcinomas.
Digitization and annotation

The datasets were scanned by the SQS-1000 scanner (Sqray company, Shenzhen, China) at 403magnification. Prior to downloading, all pa-

tient-specific private information was removed.

Two pathology experts with two decades of experience were consulted to review the slides to ascertainOCLNMC. They employed a com-

bination of H&E stained slides, immunohistochemical findings, and patient clinical data for diagnostic purposes. In cases of disagreement

between the two pathologists, a third expert is called upon to review the slides. If necessary, additional immunohistochemical markers are

utilized to verify the metastasis source.
Image preprocessing

For this study, thewhole slide imageswere segmented into 2563256 pixel patches without overlap at 203magnification. Before initiating the

training process, data augmentation methods such as random flipping and color jittering were applied.

Additionally, the RGB pixel values of each patch were normalized to a range between� 1 and 1, utilizing themean and standard deviation

values from ImageNet.31
Deep learning method

A complete digital whole slide image typically encompasses trillions of pixels. TheWSI can be segmented into tens or hundreds of thousands

of 2563256 patches for training. However, labeling each patch individually would be found to be prohibitively time-consuming. Considering

the vast amount of data and the limited number of pathologists available for detailed annotation, such an approach is impractical.32 There-

fore, this study requires labeling only at the WSI level.

We propose the Key Recognition basedMultiple-instance learning (KMIL) algorithm, designed for the critical task of data key recognition.

This algorithm facilitates the assessment of the status of cervical lymph nodes and determines the origins of metastatic cancer. As shown in

Figure 1, for a certain WSI, all patches obtained from segmentation are compiled into a single bag. The ResNet50 network,27 pre-trained on

ImageNet, serves as the primary feature extractor, extracting the features of each patch to aggregate a comprehensive feature set for the bag.

Utilizing a specially designed Key Recognition Module, the algorithm identifies significant feature vectors, assigns attention scores to each

patch, and selects key feature vectors for further analysis. These key vectors which originally came from the sameWSI form a new bag, which is

then processed through aMIL architecture. In this framework, an attentionmodule calculates the attention score for each patch, which is then

followed by integrating the overall characteristics of the bag through attention pooling. Subsequently, the scores for the bag and individual

patches are derived from two separateMultilayer Perceptrons (MLPs). Finally, the combined scores are aggregated to obtain the prediction of

the WSI.
Key sample aware scheme

Considering the sparsity of positive samples in pathological images, in most pathological images, the positive regions that can indicate le-

sions are only a small proportion, which poses a unique challenge to the process of feature aggregation.When dealing withWSIs, most of the

patches directly obtained from WSI segmentation tend to reflect the features of negative slides, increasing the classification difficulty of the

classifier and slowing down the classifier’s training speed. Many negative patches represent easy samples, while the real challenge, the hard

samples, are often represented as those patches containing positive labels. In response to the need for pathological image analysis, we pay

special attention to emphasizing the importance of positive samples. For a WSI, even if it is divided into thousands to tens of thousands of

patches, if only one patch shows positive, then the whole WSI is judged positive. In this process, increasing the Witness Rate, which is the

proportion of positive instances in the positive ’’bag,’’ is the key to significantly improving the performance of the model. Zhu et al.30 pointed

out that the closer the forecast probability of the model output is to the supervision label, the smaller the loss of the sample. However, the

normalized probability is more easily analyzed than the loss value. The average prediction probability of an easy sample is usually higher than

that of a difficult sample.

As shown in Figure S2, we calculate the attention score sequence of each patch through patch features and then obtain the attention score

through the pooling operation. Then, we calculate the deviation degree from the sample center value to the attention score. The difference

between this deviation degree and one is defined as the problematic sample score. The larger the score, the more difficult it is to identify the

sample. Finally, hard sample classifier selects samples with higher hard sample scores to form new key sample features.

Xatt = attentionðXÞ (Equation 1)
Xpooling = poolingðXattÞ (Equation 2)
hard sample score = 1 � g
�
Xpooling; central value

�
(Equation 3)
iScience 27, 110645, September 20, 2024 11



ll
OPEN ACCESS

iScience
Article
Here, X represents the patch features with dimensions N3 1024, where N is the number of patches obtained from segmenting the WSI.

attention denotes the attentionmechanism, pooling represents the pooling operation, central value denotes the central value of the sample,

and g represents the function used to calculate the degree of deviation. In this paper, the variance function is used.
QUANTIFICATION AND STATISTICAL ANALYSIS

A ten-fold cross-validation was employed tomitigate the effects of randomdataset partitioning. Themodel was trained using 8-fold data, and

1-fold data served as a validation set to identify the most effective model. Ultimately, the remaining fold data was employed as a test set for

evaluating the performance of the model, and we also verified the generalization of the model on the external dataset.
Implementation details

Themodel was built on the Pytorch framework and trained using an NVIDIA RTX 3090 GPUwith 24GB of videomemory. Each patch is set to a

feature dimension of 1024. The cross-entropy loss function is used in the training process of themodel, and the Adam optimizer is selected to

optimize the model’s performance. As for the adjustment of the learning rate, the CosineAnnealingLR strategy is adopted, the initial learning

rate is set as 2e-4, and the weight attenuation coefficient of 1e-5 is set. The batch size of the model training was set to 1, and a total of 400

rounds were performed in the whole training process.
12 iScience 27, 110645, September 20, 2024
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