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Abstract: (1) Background: In China and South Asia, Alstonia scholaris (Apocynaceae) is an important
medicinal plant that has been historically used in traditional ethnopharmacy to treat infectious
diseases. Although various pharmacological activities have been reported, the anti-lung cancer
components of A. scholaris have not yet been identified. The objective of this study is to evaluate
the active components of the leaf extract of A. scholaris, and assess the anti-proliferation effects of
isolated compounds against non-small-cell lung carcinoma cells; (2) Methods: NMR was used to
identify the chemical constitutes isolated from the leaf extract of A. scholaris. The anti-proliferative
activity of compounds against non-small-cell lung carcinoma cells was assessed by 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay; (3) Results: Eight triterpenoids
and five sterols were isolated from the hexane portion of A. scholaris, and structurally identified as:
(1) ursolic acid, (2) oleanolic acid, (3) betulinic acid, (4) betulin, (5) 2β,3β,28-lup-20(29)-ene-triol,
(6) lupeol, (7) β-amyrin, (8) α-amyrin, (9) poriferasterol, (10) epicampesterol, (11) β-sitosterol,
(12) 6β-hydroxy-4-stigmasten-3-one, and (13) ergosta-7,22-diene-3β,5α,6β-triol. Compound 5 was
isolated from a plant source for the first time. In addition, compounds 9, 10, 12, and 13 were
also isolated from A. scholaris for the first time. Ursolic acid, betulinic acid, betulin, and 2β,3β,28-
lup-20(29)-ene-triol showed anti-proliferative activity against NSCLC, with IC50 of 39.8, 40.1, 240.5
and 172.6 µM, respectively.; (4) Conclusion: These findings reflect that pentacyclic triterpenoids are
the anti-lung cancer chemicals in A. scholaris. The ability of ursolic acid, betulinic acid, betulin, and
2β,3β,28-lup-20(29)-ene-triol to inhibit the proliferative activity of NSCLC can constitute a valuable
group of therapeutic agents in the future.

Keywords: Alstonia scholaris; triterpenoid; sterol; non-small-cell lung carcinoma cells (NSCLC);
ursolic acid; betulinic acid; betulin; 2β,3β,28-lup-20(29)-ene-triol

1. Introduction

In the past few decades, non-small-cell lung cancer (NSCLC), one of the most commonly
diagnosed malignancies, has been shown to be the leading cause of cancer-related mortality all
over the world. In all lung cancer cases, 75% to 80% have been identified as non-small-cell lung cancer,
while only 15% to 25% is small cell lung cancer (SCLC). It is noted that conventional treatment of
either form of lung cancer is fairly ineffective [1]. Thus, the development of new therapeutic strategies
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against NSCLC is urgently needed. Previous studies have demonstrated that extracts from some
herbal medicines have anti-lung cancer potential and can inhibit lung cancer cell proliferation [2–5].
Recently, many of the chemotherapeutic agents are medicinal plants or are derived from medicinal
plants. Therefore, attention has been paid to investigate the natural, active ingredients from medicinal
plants against lung cancer cell.

The Alstonia scholaris, belonging to the family Apocynaceae, is widely distributed in the tropical
regions of Africa and Asia [6]. It is a tropical evergreen tree native to South and Southeast Asia, and is
called blackboard tree, or milkwood pine, commonly. Traditionally, the leaves of A. scholaris have been
used in “Dai” ethnopharmacy to treat chronic respiratory diseases in China [7]. In Africa, Australia,
India, Malaysia, the Philippines, and Thailand, A. scholaris are also used in traditional medicinal
systems [7]. The extracts of A. scholaris possess a wide spectrum of pharmacological activities; as
a result, the chemical constituents of A. scholaris, especially the alkaloids, have been extensively
investigated [8–13]. The extracts of A. scholaris have been observed to possess anti-diabetic [14], anti-
inflammatory [15], anti-tussive, anti-asthmatic, and expectorant activities [16]. Recently, the potential
of A. scholaris on antimicrobial activity has been screened, and the potent chemical constitutes and their
exact effective concentration have also been identified [17]. These findings reflect that the pleiotropic
effects of ursolic acid against methicillin-resistant Staphylococcus aureus (MRSA) make it a promising
antibacterial agent in pharmaceutical research [18]. Although the pharmacological usage of A. scholaris
has been greatly investigated, the anti-proliferative activity against NSCLC is not clear. Therefore,
the aim of this study was to further investigate the anti-proliferative constitutes from the leaf extracts
of A. scholaris against NSCLC. It is suggested that these compounds might be a valuable group of
therapeutic agents in NSCLC treatment in the future.

2. Results

2.1. Isolation and Identification of Triterpenoids from A. scholaris

The anti-proliferative constitutes of the most effective fractions in the hexane portion (fraction
Hex-4 to Hex-7) were isolated by using column chromatography to obtain 13 pure compounds:
compound 1 (4.61 mg), 2 (4.47 mg), 3 (1.01 mg), 4 (3.01 mg), 5 (1.88 mg), 6 (4.0 mg), 7 (4.1 mg),
8 (2.74 mg), 9 (4.9 mg), 10 (2.59 mg), 11 (7.29 mg), 12 (3.15 mg), and 13 (16.15 mg). Purified compounds
were subjected to spectroscopic identification by using 1H-NMR, 13C-NMR (Agilent Technologies DD2
600), and Mass (Bruker Daltonics Esquire HCT). All of the proton and carbon signals were assigned
based on the 1H-1H correlation spectroscopy (COSY), distortionless enhancement by polarization
transfer (DEPT) analysis, heteronuclear multiple-quantum correlation (HMQC), and heteronuclear
multiple bond correlation (HMBC). The chemical structures of triterpenoids (1–8) and sterols (9–13)
were illustrated in Figure 1.

By comparing the NMR and mass (MS) data with previous reports, compounds isolated from
the leaves of A. scholaris were identified as ursolic acid (1) [19], oleanolic acid (2) [19], betulinic
acid (3) [20], betulin (4) [21], upeol (6) [21], β-amyrin (7) [22], α-amyrin (8) [23], poriferasterol
(9) [24], epicampesterol (10) [25], β-sitosterol (11) [26], 6β-hydroxy-4-stigmasten-3-one (12) [27],
and ergosta-7,22-diene-3β,5α,6β-triol (13) [28] (Figure 1), respectively.

Compound 5 was isolated from the hexane fraction AS-H-6-6-6-2 by HPLC. As shown in Table 1,
The 1H-NMR spectrum (CDCl3, 600 MHz) revealed the presence of a pair of olefinic protons at δ
4.69 and δ 4.59 (each one H, brs), which is characteristic of an exocyclic methylene group; 6 singlet
methyls at δ 0.99 (3H, s, Me-23), 0.98 (3H, s, Me-24), 1.14 (3H, s, Me-25), 1.04 (3H, s, Me-26), 0.97 (3H,
s, Me-27), and 1.68 (3H, s, Me-30); and two carbinolic protons at δ 4.09 (dd, J = 3.6, 6.6 Hz, H-2) and
3.19 (d, J = 4.2 Hz, H-3), referring to the axial and α orientation. The 13C-NMR spectrum (CDCl3,
150 MHz) showed the presence of 30 carbons comprising six methyls, 11 methylenes, seven methines,
and six quaternary carbons. There was a vinyl carbon signal at 109.6 ppm, the signal corresponding
to methylene–methylidene at 150.4 ppm, and two carbon bound to the hydroxyl group at 78.4 and
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71.1 ppm, respectively. All of the proton and carbon signals were assigned based on the 1HCOSY, DEPT
analysis, HMQC, and HMBC. According to the data shown in Table 1, compound 5 was identified as
2β,3β,28-lup-20(29)-ene-triol, a compound that has been synthesized previously [29]. Compound 5
was isolated from a plant source for the first time.

Table 1. The 1H- and 13C-NMR spectral data of compound 5 and 2β,3β,28-lup-20(29)-ene-triol [29].

Compound 5 2β,3β,28-lup-20(29)-ene-triol

Position 1H 13C 1H 13C

1 2.15, 1.09 44.4 44.5
2 4.09 (dd, J = 3.6, 6.6) 71.1 4.08 (brs) 71.2
3 3.19 (d, J = 4.2) 78.4 3.19 (brs) 78.5
4 38.1 38.2
5 0.77 (d, J = 9.5) 55.2 55.3
6 1.56 18.2 18.1
7 1.41 34.1 34.2
8 41 41.1
9 1.24 50.8 50.9
10 36.8 36.9
11 1.45 20.9 21.0
12 1.65, 1.05 25.2 25.3
13 1.65 37.2 37.3
14 42.8 42.9
15 1.71, 1.05 26.9 27.0
16 1.93, 1.21 29.1 29.2
17 47.7 47.8
18 1.58 48.7 48.8
19 2.39 m 47.7 47.8
20 150.4 150.4
21 29.7 29.8
22 1.86, 1.04 33.9 34.0
23 0.99 s 29.5 0.99 s 29.6
24 0.98 s 17.1 0.98 s 17.1
25 1.14 s 17.0 1.14 s 17.1
26 1.04 s 15.9 1.04 s 16.0
27 0.97 s 14.7 0.97 s 14.7
28 3.80, 3.33 (d, J = 10.8) 60.5 3.80, 3.33 (d, J = 10.8) 60.6
29 4.69, 4.59 109.6 4.69, 4.58 109.7
30 1.68 s 19.2 1.68 s 19.1
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compounds for 48 h. The cell viability was evaluated using the MTT assay. As shown in Figure 2A, 
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Figure 1. Triterpenoids and sterols isolated from the hexane portion of an A. scholaris leaf extract.

2.2. Antiproliferation Activity of Triterpenoids and Steriols against NSCLC

To evaluate the anti-proliferative activities of isolated triterpenoids (Figure 2A) and sterols
(Figure 2B) on NSCLC cells, A549 cells were treated with various concentrations of isolated compounds
for 48 h. The cell viability was evaluated using the MTT assay. As shown in Figure 2A, the exposure
of A549 cells to compounds 1, 3, 4 and 5 decreased cellular viability in a dose-dependent manner.
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In the treatment of sterols, only compound 11 showed an inhibitory effect on NSCLC cells, with a 20%
decrease in cell viability. Interesting, compounds 9 and 10 showed no inhibiting effect on A549 cells,
but did show an increasing proliferation effect (Figure 2B). These results showed that only triterpenoids
exhibited efficient anti-proliferative effects on NSCLC cells in an A. scholaris leaf extract.
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Figure 2. Anti-proliferation activities of triterpenoids (A) and sterols (B) from A. scholaris leaf extract.

2.3. The Inhibitory Concentrations (IC50) of Triterpenoids and Steriols on NSCLC

The anti-proliferative activities of isolated triterpenoids (1–8) were determined by measuring the
IC50 of NSCLC cells. As shown in Table 2, half of the isolated triterpenoids did not show any effect on
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NSCLC. Two triterpenoids, compounds 4 and 5, displayed weak anti-NSCLC activities at IC50 values
of 240.5 and 172.6 µM, respectively. In addition, at IC50 values of 39.8 and 40.1 µM, compounds 1 and
3 inhibited A549 cell growth.

Table 2. The inhibitory concentration of (IC50) of triterpenoids on non-small-cell lung cancer (NSCLC).

Compound NSCLC (A549 Cell Line)

IC50 (µM) S.E. +

Ursolic acid (1) 39.8 0.09
Oleanolic acid (2) >400 -
Betulinic acid (3) 40.1 0.51

Betulin (4) 240.5 4.04
2β,3β,28-lup-20(29)-ene-triol (5) 172.6 0.44

Lupeol (6) >400 -
β-amyrin (7) >400 -
α-amyrin (8) >400 -

+ S.E.: standard error.

3. Discussion

Triterpenoids are a group of structurally diverse metabolites that are often used as pharmaceuticals
with various biological activities. Triterpenoids exist abundantly in Alstonia spp. and their proposed
bioactivities include anti-HIV, anti-microbial, allelopathy, anti-tumor, and anti-cancer activities [17,30–33].
In addition, the pharmacological activities of A. scholaris, particularly anti-lung cancer activity, have
not yet been fully explained. Previously, the main triterpenoids in leaves of A. scholaris were identified
by HPLC and LC/MS/MS [31]. Seven triterpenoid peaks were identified as cylicodiscic acid (7.7%),
betulin (5.8%), betulinic acid (5.4%), oleanolic acid (15.1%), ursolic acid (23.6%), cycloeucalenol (10.3%),
and α-amyrin acetate (6.5%), respectively. They found that the portion of triterpenoids showed a high
anti-proliferative activity in A549 cells with IC50 values of 9.3 µg/mL. Several papers reported that
ursolic acid possesses strong anti-cancer activity against several cancers of the prostate, breast, lung,
pancreas, and bladder [34–37]. Ursolic acid had been isolated from R. formosanum, an endemic species
distributed widely in Taiwan [38]. Way et al. focused on the antineoplastic effect of ursolic acid on
NSCLC cells, and found that ursolic acid activated AMP-activated protein kinase (AMPK), and then
inhibited the mTOR pathway, which controls protein synthesis and cell growth. These findings
suggested that ursolic acid is a potent anti-cancer agent. In this study, we have investigated the chemical
constituents and anti-proliferative activity of A. scholaris against NSCLC cells. We found that the major
components with anti-proliferative activity in the leaves of A. scholaris were ursolic acid and betulinic
acid. Oleanolic acid did not possess any anti-proliferative activity against A549 cells in this study.
Moreover, compound 5 (2β,3β,28-lup-20(29)-ene-triol) also showed anti-proliferative activity against
A549 cells. Our data suggest that not only ursolic acid, but also betulinic acid, is a potent anti-cancer
agent. Previously studies have demonstrated that betulinic acid has anti-proliferative properties
in vitro and in vivo [39,40]. Betulinic acid was able to trigger the mitochondrial pathway of apoptosis
to induce apoptotic cell death in cancer cells [41,42]. In mice, pharmacokinetic studies demonstrated
that betulinic acid was well absorbed and distributed within the melanoma xenografts [43]. In addition,
normal cells and tissue are relatively resistant to betulinic acid, pointing to a therapeutic usage [44].
Moreover, betulinic acid is being developed by a large network of clinical trial groups supported by
the U.S. National Cancer Institute [45]. Therefore, it is tempting to propose that A. scholaris could be
developed as an anti-cancer agent for NSCLC.

Although sterols isolated in this study exhibited no cytotoxic effects on NSCLC cells, the ability
of sterols in clinical trials to block cholesterol absorption sites in the human intestine. It is worth
investigating whether sterols could help reduce cholesterol absorption in humans, especially
these first isolated sterols from A. scholaris, including poriferasterol, epicampesterol, 6β-hydroxy-4-
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stigmasten-3-one, and ergosta-7,22-diene-3β,5α,6β-triol. In conclusion, the ability of ursolic acid,
betulinic acid, betulin, and 2β,3β,28-lup-20(29)-ene-triol to inhibit the proliferative activity of NSCLC
can constitute a valuable group of therapeutic agents in the future.

4. Materials and Methods

4.1. General Procedures

The NMR spectra, including 1H (600 MHz), 13C (150 MHz), DEPT (150 MHz), and 2D (1H-1H
COSY, HSQC, and HMBC), were recorded on an Agilent Technologies DD2 600 spectrometer (Agilent,
Santa Clara, CA, USA). ESI-MS was measured on a Bruker Daltonics Esquire high capacity ion trap
(HCT) mass spectrometer (Bruker Daltonic Inc., Billerica, MA, USA). Column chromatographies
(CCs) were carried out on silica gel 60 (230–400 mesh, Merck, Darmstadt, Germany), LiChroprep
RP-18 (40–63 µm, Merck, Darmstadt, Germany), and Sephadex LH-20 (Pharmacia, Uppsala, Sweden).
Precoated silica gel plates (Kieselgel 60 F254, 0.25 mm, Merck, Darmstadt, Germany) and RP-18
plates (F254, Merck, Darmstadt, Germany) were used for analytical thin layer chromatography (TLC).
The preparative HPLC was performed on a Hitachi HPLC system equipped with an L-2130 pump,
and a Hitachi L-2420 UV-vis detector at 220 nm (Hitachi, Tokyo, Japan), using a Hibar Purospher
RP-18e column (5 µm, 250 mm × 10 mm, Merck, Darmstadt, Germany).

4.2. Plant Materials

The leaves of Alstonia scholaris (L.) R. Br. were collected from an A. scholaris forest near
Mingdao University (23◦52′15.17′′ N and 120◦29′47.13′′ E), Changhua County, Taiwan, in March
2011. The voucher specimen (2010-0118-Wang) was preserved in the Lab of Chemical Ecology,
Research Center for Biodiversity, China Medical University. The plant species was identified by
the Key Laboratory of the High Altitude Experimental Station within the Taiwan Endemic Species
Research Institute.

4.3. Isolation and Identification of Triterpenoids and Sterols

As shown in Figure 3, the anti-proliferative constitutes of the most effective fractions in the
hexane portion (fraction Hex-4 to Hex-7) were isolated by using column chromatography to obtain
13 pure compounds.

Ursolic acid (1): White amorphous powder; ESI-MS m/z 479.3 [M + Na]+ (Calcd for C30H48O3: 456.3);
1H-NMR spectrum (600 MHz, CDCl3): δ 5.26 (1H, s, H-12), 3.23 (1H, dd, J = 10.7, 4.4 Hz, H-3), 1.08
(3H, s, Me-27), 0.99, 0.95, 0.93, 0.87, 0.82, 0.79 (Me-23, Me-30, Me-25, Me-29, Me-26, Me-24). 13C-NMR
(150 MHz, CDCl3): δ C: 39.0 (C-1); 28.0 (C-2); 78.0 (C-3); 39.4 (C-4); 55.7 (C-5); 18.6 (C-6); 33.5 (C-7); 39.9
(C-8); 47.9 (C-9); 37.4 (C-10); 23.5 (C-11); 125.5 (C-12); 139.2 (C-13); 42.4 (C-14); 28.6 (C-15); 24.8 (C-16);
47.9 (C-17); 53.4 (C-18); 39.3 (C-19); 39.2 (C-20); 31.0 (C-21); 37.2 (C-22); 28.7 (C-23); 16.5 (C-24); 15.6
(C-25); 17.4 (C-26); 23.8 (C-27); 179.5 (C-28); 17.4 (C-29); 21.3 (C-30).

Oleanolic acid (2): White amorphous powder; ESI-MS m/z 479.3 [M + Na]+ (Calcd for C30H48O3: 456.3);
1H-NMR spectrum (600 MHz, CDCl3): δ 5.27 (1H, s, H-12), 3.22 (1H, dd, J = 10.6, 4.7 Hz, H-3), 2.82 (1H,
dd, J = 13.5, 3.7 Hz, H-18), 1.13 (3H, s, Me-27), 0.98, 0.92, 0.91, 0.90, 0.77, 0.75 (Me-23, Me-26, Me-30,
Me-24, Me-29, Me-25). 13C-NMR (150 MHz, CDCl3): δ C: 38.8 (C-1); 28.0 (C-2); 78.0 (C-3); 39.3 (C-4);
55.7 (C-5); 18.7 (C-6); 33.2 (C-7); 39.6 (C-8); 48.0 (C-9); 37.3 (C-10); 23.6 (C-11); 122.4 (C-12); 144.7 (C-13);
42.1 (C-14); 28.2 (C-15); 23.7 (C-16); 46.6 (C-17); 41.9 (C-18); 46.4 (C-19); 30.9 (C-20); 34.2 (C-21); 33.2
(C-22); 28.7 (C-23); 16.5 (C-24); 15.6 (C-25); 17.5 (C-26); 26.1 (C-27); 179.8 (C-28); 33.2 (C-29); 23.7 (C-30).

Betulinic acid (3): White crystal; ESI-MS m/z 455.3 [M − H]− (Calcd for C30H48O3: 456.3); 1H-NMR
spectrum (600 MHz, CDCl3): δ 4.74 (1H, brs, Hβ-29), 4.61 (1H, brs, Hα-29), 3.19 (1H, dd, J = 11.5,
4.8 Hz, H-3), 3.00 (1H, m, H-19), 1.69, 0.97, 0.96, 0.94, 0.82, 0.75 (Me-30, Me-27, Me-23, Me-26, Me-25,
Me-24), 0.68 (1H, d, J = 9.0 Hz, H-5). 13C-NMR (150 MHz, CDCl3): δ C: 38.7 (C-1); 27.3 (C-2); 79.0 (C-3);
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38.8 (C-4); 55.3 (C-5); 18.2 (C-6); 34.3 (C-7); 40.6 (C-8); 50.5 (C-9); 37.0 (C-10); 20.8 (C-11); 25.4 (C-12);
38.3 (C-13); 42.4 (C-14); 30.5 (C-15); 32.1 (C-16); 56.2 (C-17); 46.8 (C-18); 49.2 (C-19); 150.3 (C-20); 29.6
(C-21); 37.2 (C-22); 27.9 (C-23); 15.3 (C-24); 16.1 (C-25); 16.0 (C-26); 14.6 (C-27); 179.5 (C-28); 109.6 (C-29);
19.3 (C-30).

Betulin (4): White amorphous powder; ESI-MS m/z 465.3 [M + Na]+ (Calcd for C30H50O2: 442.3);
1H-NMR spectrum (600 MHz, CDCl3): δ 4.69 (1H, brs, Hβ-29), 4.58 (1H, brs, Hα-29), 3.80 (1H, d,
J = 10.8 Hz, Hβ-28), 3.33 (1H, d, J = 10.8 Hz, Hα-28), 3.19 (1H, dd, J = 11.5, 4.7 Hz, H-3), 2.38 (1H,
m, H-19), 1.68, 1.02, 0.98, 0.97, 0.82, 0.76 (Me-30, Me-26, Me-27, Me-23, Me-25, Me-24), 0.68 (1H, d,
J = 9.6 Hz, H-5). 13C-NMR (150 MHz, CDCl3): δ C: 38.6 (C-1); 27.3 (C-2); 78.9 (C-3); 38.8 (C-4); 55.2
(C-5); 18.2 (C-6); 34.2 (C-7); 40.9 (C-8); 50.3 (C-9); 37.1 (C-10); 20.8 (C-11); 25.1 (C-12); 37.2 (C-13); 42.7
(C-14); 27.0 (C-15); 29.1 (C-16); 47.7 (C-17); 48.7 (C-18); 47.7 (C-19); 150.4 (C-20); 29.7 (C-21); 33.9 (C-22);
27.9 (C-23); 15.3 (C-24); 16.0 (C-25); 15.9 (C-26); 14.7 (C-27); 60.5 (C-28); 109.6 (C-29); 19.0 (C-30).

2β,3β,28-lup-20(29)-ene-triol (5): White solid; ESI-MS m/z 481.4 [M + Na]+ (Calcd. for C30H50O3: 458.3);
1H-NMR spectrum (600 MHz, CDCl3) and 13C-NMR (150 MHz, CDCl3) are listed in Table 1.

Lupeol (6): White amorphous powder; ESI-MS m/z 449.4 [M + Na]+ (Calcd for C30H50O: 426.3);
1H-NMR spectrum (600 MHz, CDCl3): δ 4.69 (1H, brs, Hβ-29), 4.57 (1H, brs, Hα-29), 3.20 (1H, m, H-3),
2.38 (1H, m, H-19), 1.68 (3H, s, Me-30), 1.03, 0.97, 0.95, 0.83, 0.79, 0.76 (Me-26, Me-27, Me-23, Me-25,
Me-28, Me-24), 0.68 (1H, d, J = 9.6 Hz, H-5). 13C-NMR spectrum (150 MHz, CDCl3): δ C: 38.0 (C-1),
25.0 (C-2), 78.9 (C-3), 38.6 (C-4), 55.2 (C-5), 18.2 (C-6), 34.2 (C-7), 40.7 (C-8), 50.3 (C-9), 37.1 (C-10), 20.8
(C-11), 27.4 (C-12), 38.8 (C-13), 42.7 (C-14), 27.9 (C-15), 35.5 (C-16), 42.9 (C-17), 48.2 (C-18), 47.9 (C-19),
150.9 (C-20), 29.8 (C-21), 39.9 (C-22), 29.6 (C-23), 15.3 (C-24), 16.1 (C-25), 15.9 (C-26), 14.5 (C-27), 17.9
(C-28), 109.3 (C-29), 19.2 (C-30).

β-Amyrin (7): Colorless solid; ESI-MS m/z 449.6 [M + Na]+ (Calcd for C30H50O: 426.3); 1H-NMR
spectrum (600 MHz, CDCl3): δ 5.18 (1H, t, J = 3.6 Hz, H-12), 3.23 (1H, dd, J = 10.4, 4.8 Hz, H-3), 1.94
(1H, dd, J = 14.4, 4.8 Hz, H-18), 1.56 (1H, dd, J = 7.8, 1.8 Hz, H-9), 1.13 (3H, s, Me-27), 0.99, 0.96, 0.93,
0.88, 0.87, 0.83, 0.79 (Me-23, Me-26, Me-25, Me-29, Me-30, Me-28, Me-24), 0.74 (1H, dd, J = 12.0, 1.2 Hz,
H-5). 13C-NMR spectrum (150 MHz, CDCl3): δ C: 38.5 (C-1), 27.2 (C-2), 79.0 (C-3), 38.7 (C-4), 55.1 (C-5),
18.3 (C-6), 32.6 (C-7), 39.7 (C-8), 47.6 (C-9), 36.9 (C-10), 23.5 (C-11), 121.7 (C-12), 145.2 (C-13), 41.7 (C-14),
26.1 (C-15), 26.9 (C-16), 32.4 (C-17), 47.2 (C-18), 46.8 (C-19), 31.1 (C-20), 34.7 (C-21), 37.1 (C-22), 28.0
(C-23), 15.5 (C-24), 15.5 (C-25), 16.7 (C-26), 25.9 (C-27), 28.3 (C-28), 33.3 (C-29), 23.6 (C-30).

α-Amyrin (8): Colorless solid; ESI-MS m/z 449.6 [M + Na]+ (Calcd for C30H50O: 426.3); 1H-NMR
spectrum (600 MHz, CDCl3): δ 5.13 (1H, t, J = 3.6 Hz, H-12), 3.30 (1H, dd, J = 11.4, 5.4 Hz, H-3), 1.99
(2H, td, J = 13.5, 4.8 Hz, H-15), 1.84 (2H, td, J = 13.6, 4.9 Hz, H-16), 0.92 (3H, d, J = 6.0 Hz, Me-30), 0.78
(3H, d, J = 4.8 Hz, Me-29), 1.07, 1.01, 1.00, 0.95, 0.80, 0.79 (Me-27, Me-26, Me-23, Me-24, Me-28, Me-25),
0.74 (1H, dd, J = 12.0, 1.2 Hz, H-5). 13C-NMR spectrum (150 MHz, CDCl3): δ C: 38.7 (C-1), 28.0 (C-2),
79.0 (C-3), 38.7 (C-4), 55.1 (C-5), 18.3 (C-6), 32.9 (C-7), 39.9 (C-8), 47.7 (C-9), 36.8 (C-10), 23.3 (C-11),
124.4 (C-12), 139.5 (C-13), 42.0 (C-14), 27.2 (C-15), 26.6 (C-16), 33.7 (C-17), 59.0 (C-18), 39.6 (C-19), 39.6
(C-20), 31.2 (C-21), 41.5 (C-22), 28.1 (C-23), 15.6 (C-24), 15.6 (C-25), 16.8 (C-26), 23.2 (C-27), 28.7 (C-28),
17.4 (C-29), 21.4 (C-30).

Poriferasterol (9): White amorphous powder; EI-MS m/z 412.4 [M]+ (Calcd for C29H48O: 412.4); 1H-NMR
spectrum (600 MHz, CDCl3): δ 5.35 (1H, t, J = 5.3, H-6), 5.15 (1H, m, H-22), 5.01 (1H, m, H-23), 3.52 (1H,
m, H-3), 2.30 (1H, dd, J = 13, 5.1, H-4β), 2.25 (1H, dd, J = 11.4, 5.3, H-4α), 1.01 (3H, d, J = 6.6, Me-21),
1.01, 0.85, 0.82, 0.80, 0.70 (Me-19, Me-28, Me-26, Me-29, Me-18). 13C-NMR (150 MHz, CDCl3): δ C: 37.2
(C-1); 31.6 (C-2); 71.7 (C-3); 42.2 (C-4); 140.7 (C-5); 121.7 (C-6); 31.8 (C-7); 31.8 (C-8); 50.1 (C-9); 36.4
(C-10); 21.2 (C-11); 39.6 (C-12); 42.1 (C-13); 55.9 (C-14); 24.3 (C-15); 28.9 (C-16); 56.8 (C-17); 12.0 (C-18);
19.3 (C-19); 40.5 (C-20); 21.0 (C-21); 138.3 (C-22); 129.2 (C-23); 51.2 (C-24); 25.4 (C-25); 12.2 (C-26); 28.9
(C-27); 21.0 (C-28); 18.9 (C-29).
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Epicampesterol (10): Faint yellow powder; EI-MS m/z 400.3 [M]+ (Calcd for C28H48O: 400.3); 1H-NMR
spectrum (600 MHz, CDCl3): δ 5.35 (1H, t, J = 5.4 Hz, H-6), 3.52 (1H, m, H-3), 2.30 (1H, dd, J = 13, 5.1,
H-4β), 2.25 (1H, dd, J = 11.4, 5.3, H-4α), 0.92 (3H, d, J = 6.6, Me-21), 1.01, 0.85, 0.79, 0.78, 0.68 (Me-19,
Me-28, Me-27, Me-25, Me-18). 13C-NMR (150 MHz, CDCl3): δ C: 37.2 (C-1); 31.6 (C-2); 71.8 (C-3); 42.2
(C-4); 140.7 (C-5); 121.7 (C-6); 31.9 (C-7); 31.9 (C-8); 50.1 (C-9); 36.5 (C-10); 21.0 (C-11); 39.7 (C-12); 42.2
(C-13); 56.7 (C-14); 24.2 (C-15); 28.1 (C-16); 55.9 (C-17); 11.8 (C-18); 19.4 (C-19); 36.1 (C-20); 18.9 (C-21);
33.7 (C-22); 32.4 (C-23); 39.0 (C-24); 15.4 (C-25); 31.4 (C-26); 17.6 (C-27); 20.5 (C-28).

β-sitosterol (11): White waxy powders; ESI-MS m/z 469.3 [M + Na]+ (Calcd for C29H50O3: 456.3);
1H-NMR spectrum (600 MHz, CDCl3): δ 5.35 (1H, t, J = 5.4 Hz, H-6), 3.52 (1H, m, H-3), 2.30 (1H, dd,
J = 13, 5.1, H-4β), 2.25 (1H, dd, J = 11.4, 5.3, H-4α), 0.92 (3H, d, J = 6.6, Me-21), 1.01, 0.84, 0.83, 0.81,
0.68 (Me-19, Me-26, Me-28, Me-29, Me-18). 13C-NMR (150 MHz, CDCl3): δ C: 37.2 (C-1); 31.6 (C-2);
71.8 (C-3); 42.2 (C-4); 140.7 (C-5); 121.7 (C-6); 31.8 (C-7); 31.8 (C-8); 50.1 (C-9); 36.4 (C-10); 21.0 (C-11);
39.7 (C-12); 42.2 (C-13); 56.7 (C-14); 24.2 (C-15); 28.2 (C-16); 56.0 (C-17); 36.1 (C-20); 19.0 (C-21); 33.9
(C-22); 26.0 (C-23); 45.8 (C-24); 23.0 (C-25); 11.9 (C-26); 29.1 (C-27); 19.8 (C-28); 19.3 (C-29); 18.7 (C-19);
11.8 (C-18).

6β-Hydroxy-4-stigmasten-3-one (12): White amorphous powder; EI-MS m/z 428.4 [M]+ (Calcd for
C29H48O2: 428.4); 1H-NMR spectrum (600 MHz, CDCl3): δ 5.83 (1H, s, H-4), 4.34 (1H, brs, H-6), 2.52
(1H, dd, J = 15.1, 4.9, H-2β), 2.39 (1H, dd, J = 15.1, 3.1, H-2α), 1.38 (3H, s, Me-19), 0.93, 0.86, 0.84, 0.82,
0.75 (Me-21, Me-27, Me-24, Me-25, Me-18). 13C-NMR (150 MHz, CDCl3): δ C: 37.0 (C-1); 34.2 (C-2);
200.3 (C-3); 126.4 (C-4); 168.6 (C-5); 73.2 (C-6); 38.5 (C-7); 29.7 (C-8); 53.6 (C-9); 37.9 (C-10); 20.9 (C-11);
39.5 (C-12); 42.4 (C-13); 55.8 (C-14); 24.1 (C-15); 28.1 (C-16); 56.0 (C-17); 12.0 (C-18); 19.5 (C-19); 36.1
(C-20); 18.7 (C-21); 33.8 (C-22); 26.0 (C-23); 45.8 (C-24); 29.1 (C-25); 19.8 (C-26); 19.0 (C-27); 23.0 (C-28);
12.0 (C-29).

Ergosta-7,22-diene-3β,5α,6β-triol (13): White needles; ESI-MS m/z 453.4 [M + Na]+ (Calcd for C28H46O3:
430.3); 1H-NMR spectrum (600 MHz, CDCl3): δ 5.35 (1H, d, J = 3.0 Hz, H-7), 5.23 (1H, dd, J = 15.6,
7.8 Hz, H-23), 5.16 (1H, dd, J = 15.6, 8.4 Hz, H-22), 4.08 (1H, m, H-3), 3.62 (1H, d, J = 5.4 Hz, H-6), 1.08
(3H, s, Me-19), 1.02, 0.91, 0.84, 0.82, 0.60 (Me-21, Me-26, Me-27, Me-28, Me-18). 13C-NMR (150 MHz,
CDCl3): δ C: 32.9 (C-1); 30.8 (C-2); 67.7 (C-3); 39.4 (C-4); 75.9 (C-5); 73.6 (C-6); 117.4 (C-7); 144.0 (C-8);
43.4 (C-9); 37.1 (C-10); 22.0 (C-11); 39.1 (C-12); 43.7 (C-13); 54.7 (C-14); 22.8 (C-15); 27.9 (C-16); 55.9
(C-17); 12.3 (C-18); 18.8 (C-19); 40.4 (C-20); 21.1 (C-21); 135.3 (C-22); 132.1 (C-23); 42.7 (C-24); 33.0 (C-25);
17.5 (C-26); 19.9 (C-27); 19.6 (C-28).
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4.4. Anti-Proliferative Activity

Antiproliferation activity was determined against A549 cells (human lung adenocarcinoma cell
line) using the MTT assay (Promega, Fitchburg, WI, USA). Briefly, the A549 cell line was cultured
in Dulbecco’s modified eagle medium (DMEM) supplemented with 10% fetal bovine serum and
antibiotics (100 U/mL of penicillin and 100 µg/mL of streptomycin). This assay is based on the
cleavage of the MTT to purple formazan crystals by metabolically active cells. MTT assay was done
as described previously [38]. Briefly, the A549 cells were inoculated into a 96-well culture plate
(1 × 104 cells/well) and treated with tested compounds in different concentrations at 37 ◦C for 48 h.
After removing the medium from each well, 100 µL of MTT (500 µg/mL) was added to each well,
and the plate was incubated at 37 ◦C for 1 h. When purple precipitate was clearly visible under the
microscope, 80 µL of DMSO was added to each well. The plate was incubated in the dark for 1 h
at room temperature. The spectrophotometric absorbance of the samples was detected by using an
ELISA reader (SpectraMax M5e, Molecular Devices LLC, Sunnyvale, CA, USA) at 570 nm. The cell
viability was calculated as the percentage of cell survival after the treatment. All measurements were
performed in triplicate.

5. Conclusions

Eight triterpenoids and five sterols have been isolated from the hexane portion of A. scholaris leaves.
2β,3β,28-lup-20(29)-ene-triol was the first reported natural product isolated from the plant. In addition,
poriferasterol, epicampesterol, 6β-Hydroxy-4-stigmasten-3-one, and ergosta-7,22-diene-3β,5α,6β-triol
were also isolated from A. scholaris for the first time. The ability of ursolic acid, betulinic acid, betulin,
and 2β,3β,28-lup-20(29)-ene-triol to inhibit the NSCLC proliferative activity can constitute a valuable
group of therapeutic agents in the future.
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Abbreviations

AMPK AMP-activated protein kinase
COSY Correlation spectroscopy
DEPT Distortionless Enhancement by Polarization Transfer
DMEM Dulbecco’s Modified Eagle Medium
HMBC Heteronuclear Multiple Bond Correlation
HMQC Heteronuclear Multiple-Quantum Correlation
mTOR Mammalian target of rapamycin
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
MRSA Methicillin-resistant Staphylococcus aureus
NMR Nuclear Magnetic Resonance
NSCLC Non-Small Cell Lung Cancer
SCLC Small Cell Lung Cancer
TLC Thin layer chromatography
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