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Abstract: Prediction of the retention time from the molecular structure using quantitative structure-retention
relationships is a powerful tool for the development of methods in reversed-phase HPLC. However,
its fundamental limitation lies in the fact that low error in the prediction of the retention time does not
necessarily guarantee a prediction of the elution order. Here, we propose a new method for the prediction
of the elution order from quantitative structure-retention relationships using multi-objective optimization.
Two case studies were evaluated: (i) separation of organic molecules in a Supelcosil LC-18 column, and (ii)
separation of peptides in seven columns under varying conditions. Results have shown that, when
compared to predictions based on the conventional model, the relative root mean square error of the
elution order decreases by 48.84%, while the relative root mean square error of the retention time increases
by 4.22% on average across both case studies. The predictive ability in terms of both retention time and
elution order and the corresponding applicability domains were defined. The models were deemed stable
and robust with few to no structural outliers.

Keywords: reversed-phase high performance liquid chromatography; elution order prediction;
quantitative structure-retention relationships; multi-objective optimization

1. Introduction

High-performance liquid chromatography in the reverse-phase separation mode (RP-HPLC),
accounts for more than 90% of separations in modern analytical laboratories [1]. Prediction of LC
retention time has become valuable, powerful, and routine in chromatographic method development.
Depending on the experimental design, researchers may be directly interested in retention data, or may
use them to infer additional information. The quantitative structure-retention relationships (QSRR)
model provides significant additional insight into the relationship between the molecular structure
and fundamental phenomena in chemistry.

QSRRs can be useful in a variety of applications, such as identification of the most useful structural
descriptors that describe the retention mechanism, prediction of retention time of new analytes,
and the identification of unknown analytes. It can also be used for the quantitative comparison of
separation properties of different chromatographic columns; for evaluation of physical properties, such
as lipophilicity or dissociation constants; as well as estimation of relative bioactivities of xenobiotics [2].

Molecules 2020, 25, 3085; doi:10.3390/molecules25133085 www.mdpi.com/journal/molecules

http://www.mdpi.com/journal/molecules
http://www.mdpi.com
https://orcid.org/0000-0001-6481-2241
https://orcid.org/0000-0003-2162-1220
https://orcid.org/0000-0001-6468-1974
http://www.mdpi.com/1420-3049/25/13/3085?type=check_update&version=1
http://dx.doi.org/10.3390/molecules25133085
http://www.mdpi.com/journal/molecules


Molecules 2020, 25, 3085 2 of 14

An applicable retention time prediction model not only needs to be predictive, but also needs to
be able to predict analytes in the correct order. Suppose one has two close chromatographic peaks
0.1 min apart, as schematically depicted in Figure 1. For instance, 5.1 min for analyte A, and 5.2 min
for analyte B. The following three cases yield identical retention time errors, but different elution order
errors: predicted retention times: (i) tR,A = 5.0 min, tR,B = 5.1 min; (ii) tR,A = 5.2 min, tR,B = 5.3 min;
and (iii) tR,A = 5.2 min, tR,B = 5.1 min. In the aforementioned example, cases (i) and (ii) still remain
satisfactory as the order has not shifted. The third case, however, involves a shift in the elution order
despite the identical error in retention order. Such a simple example already emphasizes the problems
that this work aims to solve.
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Figure 1. Schematic depiction of three chromatograms with identical retention time error, but different
elution order errors (vertical solid lines in black: true retention time of analyte A and B; vertical dotted
lines in red: predicted retention time of analyte A and B).

This becomes especially evident in the case of very complex mixtures with hundreds of compounds
(such as peptides in a proteomic mixture) whereby the peak capacity greatly increases. In RP-HPLC,
solutes are eluted in order of decreasing polarity. However, it is often not as straightforward, and a
retention time prediction model utilizing hydrophobicity/lipophilicity as a predictor is often insufficient
to provide a clear picture of the retention mechanism. Thereby, even though the model may predict the
retention time with a reasonable error, the predicted order of analytes for complex analytical mixtures
containing thousands of close or even overlapping peaks is often very poor. Approaches to solve
this complex chromatographic problem in RP-LC are quite rare, and outlined in a few studies in the
literature [3–6]. In a QSRR study involving solvatic sorption parameters [7] for prediction of retention
of phenylisothiocyanate derivatives of 25 natural amino acids, Vorslova et al. [3] report a retention error
of <6%. While the predicted elution order mostly concurred with the experimental one, for retention
times >15 min the QSRR model yielded larger deviations, with a few unresolved peaks.

Another example of elution order prediction is in a work of Shinoda et al [4]. The authors utilized
artificial neural networks (ANNs) to predict retention times of peptides (<50 amino acids) and report a
reasonable model for 834 peptides (with R2 of 0.928). Although not the first time the use of ANNs have
been reported in retention time prediction in proteomics [8,9], Shinoda et al. [4] are the first to report the
prediction of the elution order with an error of elution order <11%. The method itself does not integrate
the elution order prediction directly into the modelling process and it is rather vaguely described.

Recently, a complex methodology was presented by Bach et al. [5] for elution order prediction in
metabolomics using support vector machines [10] and dynamic programming [11]. The approach was
based on molecular fingerprints of two molecules as the input and the elution order as the output.
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Although quite promising, the method is computationally expensive, whereas the predictions of the
elution order are sensitive to the number of training samples and their composition [5].

In this work, we define the elution order prediction as a multi-objective optimization problem
with two objective functions: percentage root mean square error (%RMSE) of retention time and that
of elution order. It is directly implemented within the QSRR modelling process, where regression
coefficients are determined through multi-objective optimization (MOO) employing the two objectives,
root mean square errors of retention time and elution order. MOO was used to obtain QSRR models
which compromise prediction errors in favor of the enhanced elution order prediction. The developed
method was applied to analysis of two mixtures: (i) separation of organic molecules on Supelcosil LC-18
column, and (ii) separation of peptides in seven columns under varying chromatographic conditions.

2. Results and Discussion

This work presents a method for the prediction of the elution order in RP-LC based on QSRRs
defined as an MOO problem. Two case studies have been evaluated in eight RP-LC columns and
under various experimental conditions. Since the current study represents a proof-of-concept for
preliminary evaluation of our method, data for two case studies were taken from two literature sources.
Namely, the works of Kaliszan et al. [12] and Bączek et al [13]. Case study 1 (CS1) was represented
by a single chromatographic column (Supelcosil LC-18). Case study 2 (CS2) on the other hand was
represented with multiple columns and gradients. Inclusion of all the chromatographic columns into
our conceptual work was to exhibit the versatility of the approach and to emphasize the differences in
elution order predictability.

In both case studies, for all the RP-LC columns, sacrificing retention time predictive ability
(Figure 2A) resulted in a considerable increase in prediction of elution order (Figure 2B). As evident
from Figure 2C and Table 1, the maximum relative increase in %RMSE(tR) is a little over 15%, whereas
there is up to > 80% decrease in %RMSE(order). The molecular descriptors, experimental and predicted
retention times for both MLR and MLR-MOO are summarized in Tables S2 and S3, respectively.
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Figure 2. Distribution of %RMSE values of MLR (control) and MLR-MOO models for (A) retention
time, (B) elution order, and (C) relative difference in retention time and elution order RMSE values
between MLR and MLR-MOO. In (A,B) the color bars are in sequence (first MLR, then MLR-MOO).
In (C) the lines with open circle shapes represent the relative differences in retention time, whereas the
lines with open diamond shapes represent the differences in elution order. All the abbreviations are
explained in the text.
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Table 1. Summary of model performances for the first and second case studies.

CS a Column Name Analysis
Parameters b Model %RMSE(tR) %RMSE(Order) SRD/%

I Supelcosil LC-18 tG = 10 min
T = 35 ◦C

MLR (control) 8.57 59.07 N/A
MLR-MOO 9.33 42.04 N/A

II Xterra MS C18 tG = 20 min
T = 40 ◦C

MLR (control) 11.50 25.01 8.12
MLR-MOO 12.07 18.05 7.58

II LiChrospher RP-18 tG = 20 min
T = 40 ◦C

MLR (control) 13.25 30.28 7.79
MLR-MOO 13.31 22.23 8.00

II LiChrospher RP-18 tG = 60 min
T = 40 ◦C

MLR (control) 25.60 34.11 10.04
MLR-MOO 26.84 20.50 7.71

II LiChrospher RP-18 tG = 120 min
T = 40 ◦C

MLR (control) 42.31 153.00 14.16
MLR-MOO 47.43 26.82 9.58

II LiChrospher RP-18 tG = 20 min
T = 60 ◦C

MLR (control) 18.45 36.12 8.45
MLR-MOO 18.58 31.09 7.91

II LiChrospher RP-18 tG = 20 min
T = 80 ◦C

MLR (control) 18.82 35.25 8.33
MLR-MOO 18.83 34.10 8.75

II Licrospher CN tG = 20 min
T = 40 ◦C

MLR (control) 39.28 195.82 13.20
MLR-MOO 40.85 31.08 10.37

II PLRP-S tG = 20 min
T = 40 ◦C

MLR (control) 20.07 69.44 9.95
MLR-MOO 21.89 44.54 10.41

II PLRP-S tG = 60 min
T = 40 ◦C

MLR (control) 37.92 107.94 13.41
MLR-MOO 39.28 46.84 9.83

II PLRP-S tG = 20 min
T = 60 ◦C

MLR (control) 21.75 94.97 10.83
MLR-MOO 21.94 55.19 9.95

II PLRP-S tG = 60 min
T = 60 ◦C

MLR (control) 40.11 321.65 13.24
MLR-MOO 44.91 47.01 9.54

II PLRP-S tG = 20 min
T = 80 ◦C

MLR (control) 22.36 137.16 12.12
MLR-MOO 22.71 55.35 10.87

II PLRP-S tG = 60 min
T = 80 ◦C

MLR (control) 42.60 194.56 14.37
MLR-MOO 45.16 44.38 9.70

II Discovery RP Amide C16 tG = 20 min
T = 40 ◦C

MLR (control) 36.73 261.22 17.95
MLR-MOO 37.58 75.84 15.62

II Discovery RP Amide C16 tG = 20 min
T = 60 ◦C

MLR (control) 36.37 219.01 17.62
MLR-MOO 36.98 70.10 15.66

II Discovery RP Amide C16 tG = 20 min
T = 80 ◦C

MLR (control) 36.74 241.63 14.54
MLR-MOO 38.01 69.92 13.29

II Discovery HS F5 tG = 20 min
T = 40 ◦C

MLR (control) 12.81 34.00 10.58
MLR-MOO 14.43 22.08 9.33

II Chromolith tG = 20 min
T = 40 ◦C

MLR (control) 20.82 43.81 8.20
MLR-MOO 21.34 32.55 9.25

a CS—case study. b tG—gradient retention time.

Table 2 summarizes the physicochemical parameters of the investigated columns. Namely, column
length, internal diameter, particle size, carbon load, pore size, and surface area. When it comes to
predictability of selectivity, and by extension the elution order, column length and internal diameter
are very important parameters. When the dwell volume is high, a low flow rate makes it more
difficult to predict elution order, because of delayed gradient elution. Larger internal diameter leads
to higher flow rates, whereas a decrease in the internal diameter is favorable for faster analyses but
results in an increase in back pressure which may also adversely affect the predictability of the elution
order. Column length positively affects analysis time, while decreasing resolution. For higher column
lengths, elution order may be more predictable. However, elution order predictability is more crucial
to columns with lower lengths due to decreased peak spacing.
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From Table 2 it can be observed that most of the columns have the same internal diameter (4.6 mm)
except PLRP-S with a value of 4.1 mm. On the other hand, all the columns are reasonably long
(>150–200 mm), apart from Chromolith and LiCrospher CN which have a length of 100, and 125 mm,
respectively. For LiCrospher CN, this fact is reflected in considerably higher error in elution order
for the control MLR model (%RMSE(order) = 195.82%). Columns with other lengths exhibit various
%RMSE(order) values, with some as high as 241.63% for Discovery RP Amide C16 with a 20-min
gradient and a temperature of 80 ◦C. These kinds of inconsistencies may have occurred because of the
missing dwell volume information not reported in the works of Kaliszan et al. [12] and Bączek et al. [13]
from which the retention data were obtained. In QSRR modelling, physicochemical parameters of the
column and the column itself are kept constant and it is assumed that retention depends mostly on the
molecular structure of the analytes [14,15]. Lack of generalizability and dependence on a pre-defined
set of chromatographic conditions is not only the main limitation of QSRR, but of QSAR and QSPR.
However, such dependence diminishes the influence of physicochemical parameters of the column on
prediction of retention time and order.

Table 2. Key physicochemical parameters of the evaluated chromatographic columns.

# Column Name Length/mm Internal Diameter
(ID)/mm

Particle
Size/µm

Carbon Load
(C)/%

Pore
Size/Å

Surface
Area/m2 g

1 Xterra MS C18 150 4.6 3.5 15.5 125 175
2 LiChrospher RP-18 250 4.6 5.0 21.0 100 350
3 LiChrospher CN 125 4.6 5.0 6.6 100 350
4 Discovery HS F5-3 150 4.6 3.0 12.0 120 300
5 Discovery RP Amide C16 150 4.6 5.0 11.0 180 200
6 Chromolith 100 4.6 2.0 18.0 130 300
7 PLRP-S 150 4.1 5.0 16.0 100 300
8 Supelcosil LC-18 150 4.6 5.0 11.0 120 170

Out of the eight RP-LC columns evaluated, results of two representative columns for each case
study (first case study—CS1: Supelcosil LC-18, tG = 10 min, T = 35 ◦C; and second case study—CS2:
Xterra MS C18, tG = 20 min, T = 40 ◦C) are summarized in more detail as an example. For the
MLR-MOO models, the optimal solution (solution 19, %RMSE(tR) = 8.670%, %RMSE(order) = 43.679%)
for CS1 (Supelcosil LC-18 column) is shown in Figure 3A, while the optimal solution (solution 16,
%RMSE(tR) = 11.631%, %RMSE(order) = 19.820%) for one of the representative columns of the second
case study (Xterra MS C18 column) is shown in Figure 3B. As mentioned in one of the subsequent
sections (Section 3.7), it is up to the user to set an upper bound on the loss of retention predictive
ability. For instance, for CS1 involving the Supelcosil LC-18 column the limit was set to ~10% from the
knee point value. For the Supelcosil LC-18 column the increase in %RMSE(tR) was 8.67, whereas the
decrease in %RMSE(order) was 4.43%. One may argue that the point with the lowest %RMSE(tR) is the
optimal one (Figure 3A). However, if indeed deemed optimal, the point decreases the %RMSE(order)
by 14.94, while at the same time increases the %RMSE(tR) by a sizeable 19.23%. Similarly, the MOO
Pareto front was analyzed for the Xterra MS C-18 (Figure 3B) column of CS1 where the limit was set to
~5%. Consequently, for an increase of %RMSE(tR) by 3.65, a decrease in the %RMSE(order) of 4.82%
was achieved.

We reiterate that setting an upper bound on the increase of %RMSE(tR) is a user-defined parameter,
and in such a case there is “no free lunch” [16].
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Predictive ability in terms of both retention time and elution order and the corresponding
(analytical chemical) domains of applicability for the optimal MLR(-MOO) QSRR models for the
representative columns of CS1 and CS2 for MLR(control) and MLR-MOO calculations are depicted in
Figure S1 and Figure 4, respectively. Reasonable performance is exhibited both for CS1 (Figure 4A–C),
and CS2 (Figure 4D–F).

Nearly all the analytes within both case studies are within their respective applicability domains
(Figure 4C,F) with only one structurally important analyte which is predicted well and was included
in the training set. Thereby, the developed models are deemed stable and robust to structurally more
distant analytes. Performance of all the columns in CS2 involving the separation of synthetic peptides
in terms of elution order predictions was ranked using SRD analysis. Figure 5 depicts the ranking
values for all the columns in CS2. Validation was performed by computing SRD values for normally
distributed random numbers. It can be observed that the ranking of all the QSRR models of the
second study is statistically significant because their respective SRD values are on the far-right side
of the Gaussian curve. A few columns stand out, especially the Discovery RP Amide C16, in all the
combinations of gradients and column temperatures, which exhibited that errors in the elution order
are up to 70% even after MOO. It is then not surprising that they are ranked among the last. Even in
the original work of Bączek et al. [13] from which the data have been obtained the models in question
performed poorly. It is worth noting that these columns are highly polar and their respective polar
intramolecular interactions with the analytes are difficult to quantify [13]. Therefore, the current QSRR
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model was not able to capture the retention mechanism in its entirety. Nevertheless, our method has
still decreased the %RMSE(order) approx. three-fold, from ~200% to ~70%.Molecules 2020, 25, x FOR PEER REVIEW 7 of 14 
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Figure 4. Performance of the MLR-MOO method in prediction of (A) retention time, (B) elution order,
and (C) applicability domain for CS1 (Supelcosil LC-18, tG = 10 min, T = 35 ◦C), (D) prediction of
retention time, (E) elution order, and (F) applicability domain for CS2 (Xterra MS C18, tG = 20 min,
T = 40 ◦C). Blue open circle shapes represent the training set, whereas the pink open diamond shapes
represent the testing set observations.

As for the other columns of the second case study, there are a few interesting examples. For instance,
for the PLRP-S column, %RMSE(tR) systematically increases as the gradient decreases from 60 to 20.
On the other hand, for the LiChrospher RP-18 column it is the opposite. %RMSE(tR) for this column
increases with the increase of the total gradient time. The increases in the errors may be due to the
absence of isomeric peptides, so the QSRR models have not accounted for the proximity effects of two
or more identical amino acids in the peptides’ primary sequence. Retention of the peptides, such as
the “AA” peptide, do not necessarily correlate strongly with a simple sum of their respective gradient
time “basis sets”. The linear model applied in this work may not be sufficient to account for this
behavior. In both cases the analytes exhibiting lower retention times exhibit a degree of non-linearity
between the parameters encoding the molecular structure of the peptides and retention. More complex
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machine learning methods should be applied to successfully capture these complex, often non-linear
relationships. The somewhat inconsistent results are also due to the fact that the gradients need to
be carefully optimized for a particular separation [13]. On the other hand, the implication of this
conclusion is that both QSRRs and our elution order prediction method can assist in localizing optimal
conditions in RP-LC method development.

Molecules 2020, 25, x FOR PEER REVIEW 8 of 14 

 

the current QSRR model was not able to capture the retention mechanism in its entirety. Nevertheless, 
our method has still decreased the %RMSE(order) approx. three-fold, from ~200% to ~70%. 

 
Figure 5. SRD analysis ranking the columns of the second case study according to their respective 
elution order predictions (“standard”: experimental elution order). Validated with normally 
distributed random numbers. SRD value of the first icosaile (XX1) was 59.00, median 66.10, whereas 
the last icosaile (XX9) was 73.2. Barplot legend (sorted ascending by SRD values): Xt(MLR-MOO) = 
7.58; L2(MLR-MOO) = 7.71; L1(MLR) = 7.79; L4(MLR-MOO) = 7.91; L1(MLR-MOO) = 8.00; Xt(MLR) = 
8.12; C1(MLR-MOO) = 8.21; L5(MLR) = 8.33; L4(MLR) = 8.46; L5(MLR-MOO) = 8.75; C1(MLR) = 9.25; 
D4(MLR-MOO) = 9.33; P4(MLR-MOO) = 9.54; L3(MLR-MOO) = 9.58; P6(MLR-MOO) = 9.70429; 
P2(MLR-MOO) = 9.82; P1(MLR), P3(MLR-MOO) = 9.96; L2(MLR) = 10.04; L6(MLR-MOO) = 10.37; 
P1(MLR-MOO) = 10.41; D4(MLR) = 10.58; P3(MLR) = 10.83; P5(MLR-MOO) = 10.87; P5(MLR) = 12.12; 
L6(MLR) = 13.20; P4(MLR) = 13.25; D3(MLR-MOO) = 13.29; P2(MLR) = 13.42; L3(MLR) = 14.16; 
P6(MLR) = 14.37; D3(MLR) = 14.54; D1(MLR-MOO) = 15.62; D2(MLR-MOO) = 15.66; D2(MLR) = 17.62; 
D1(MLR) = 17.95. Readers are kindly referred to Figure 2 for the definitions of the abbreviations. SRD 
values summarized in Table 2. 

As for the other columns of the second case study, there are a few interesting examples. For 
instance, for the PLRP-S column, %RMSE(tR) systematically increases as the gradient decreases from 
60 to 20. On the other hand, for the LiChrospher RP-18 column it is the opposite. %RMSE(tR) for this 
column increases with the increase of the total gradient time. The increases in the errors may be due 
to the absence of isomeric peptides, so the QSRR models have not accounted for the proximity effects 
of two or more identical amino acids in the peptides’ primary sequence. Retention of the peptides, 
such as the “AA” peptide, do not necessarily correlate strongly with a simple sum of their respective 
gradient time “basis sets”. The linear model applied in this work may not be sufficient to account for 
this behavior. In both cases the analytes exhibiting lower retention times exhibit a degree of non-
linearity between the parameters encoding the molecular structure of the peptides and retention. 
More complex machine learning methods should be applied to successfully capture these complex, 
often non-linear relationships. The somewhat inconsistent results are also due to the fact that the 
gradients need to be carefully optimized for a particular separation [13]. On the other hand, the 
implication of this conclusion is that both QSRRs and our elution order prediction method can assist 
in localizing optimal conditions in RP-LC method development. 

Finally, the developed methodology has great potential for practical applications once it is 
comprehensively validated on new high-quality retention data of complex mixtures, such as 

Figure 5. SRD analysis ranking the columns of the second case study according to their respective
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P6(MLR) = 14.37; D3(MLR) = 14.54; D1(MLR-MOO) = 15.62; D2(MLR-MOO) = 15.66; D2(MLR) = 17.62;
D1(MLR) = 17.95. Readers are kindly referred to Figure 2 for the definitions of the abbreviations.
SRD values summarized in Table 2.

Finally, the developed methodology has great potential for practical applications once it is
comprehensively validated on new high-quality retention data of complex mixtures, such as proteomics
and metabolomics mixtures. We believe that not only retention time predictions, but also predictions
of the elution order have the potential to greatly facilitate peptide/metabolite identification. This can
be achieved by comparing classification rates (expressed as false detection rate) before and after
implementation of elution order prediction within an RP-LC-MS/MS proteomics or metabolomics
workflows and is an integral segment of our future work.

3. Materials and Methods

3.1. Chromatographic Measurements

Detailed information about measurements of analysis on high-performance liquid chromatography
(HPLC) are shown in Table S1 and previous studies [13,17]. Briefly, all the chromatographic
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measurements were performed with a flow rate of 1 mL/min, and UV detection wavelengths at
214 and 223 nm. The injected sample volume was 20 µL. The mobile phase for case study 1 was
methanol and 100 mM tris buffer at pH values of 2.5 and 7.2. For case study 2, gradient elution was
carried out with solvent A (water with 0.12% trifluoroacetic acid) and solvent B (acetonitrile with 0.10%
trifluoroacetic acid). The mobile phase was filtered through a GF/F glass microfiber filter (Whatman,
Maidstone, UK) and subsequently degassed with helium during the analysis. Peptide samples were
dissolved in water containing 0.10% (v/v) of trifluoroacetic acid.

3.2. QSRR Model Development

In this work, two QSRR models were developed, for two case studies involving simple analytical
mixtures: (i) separation of organic molecules in a Supelcosil LC-18 column, and (ii) separation of
peptides in seven columns under varying chromatographic conditions. In the first case study, retention
times of 62 organic compounds analyzed in the Supelcosil LC-18 column (Table S1) were utilized.
The following retention time prediction model was used:

tR = f (u, δmin, SASA) (1)

whereµrepresents the total dipole moment,δmin is the electron excess charge of the most negatively-charged
atom, whereas SASA is the solvent accessible surface area. The model defined with Equation (1) was
used because it is one of the earliest, and well-described mechanistic QSRR models derived purely in
silico introduced by Kaliszan et al [12,18]. The descriptors µand δmin accounted for electrostatics. Namely,
dipole-dipole and dipole-induced dipole interactions of the analyte with the mobile and stationary phases;
and local polar interactions, respectively. On the other hand, SASA accounted for dispersive interactions
of the analyte and the mobile and stationary phase [12].

The dataset itself was obtained from literature [17], while the molecular descriptors were re-calculated
using density functional theory (DFT) at a higher level of theory, namely, MN15/6-311+G** [19,20]. Due to
a pronounced solvent effect, the implicit SMD solvation model [21] was used to model it. All the DFT
calculations were performed in Gaussian 16 software (Gaussian, Inc., Wallingford, CT, USA).

The second case study comprised of retention times of 98 synthetic peptides analysed on seven
different columns in varying conditions: Xterra MS C18, LiChrospher RP-18, LiChrospher CN,
Discovery HS F5-3, Discovery RPAmide C16, PLRP-S and Chromolith (Table 2 and Table S1). The QSRR
formulation used in the second case study is as follows:

tR = f (log SumAA, log νDWvol., c log P) (2)

where log SumAA is logarithm of the sum of gradient retention times of the amino acids composing
the peptide, clogP is the logarithm of its theoretically calculated n-octanol−water partition coefficient
representing hydrophobicity of the peptides, whereas log vdWvol. is the logarithm of the peptides’
van der Waals volume. The log SumAA descriptor, thereby, accounted for the primary structure of the
peptides, whereas the clogP and vdWvol explained most of the remaining variance in retention due
to post-translational modification and acetylation [22–24] Both the retention data and the molecular
descriptors were obtained from literature [13]. In the second case study, due to the sheer size of the
molecular structures of most of the analytes, the descriptors were not re-calculated at a higher level
of theory.

For a functional form for Equations (1) and (2), a linear equation is employed:

tR = α0 + α1x1 + α2x2 + . . .+ αnxn + ε (3)

where xi and αi denote the molecular descriptors and regression coefficients, respectively, while ε is the
error. The regression coefficients are typically estimated using multiple linear regression (MLR) [25].
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3.3. QSRR Model Validation

In QSRR, model validation is the task of demonstrating that the model is a reasonable representation
of the actual system; i.e., it reproduces system behavior with enough reliability to satisfy prediction
objectives. In this work, both datasets were separated into training and external validation sets using
the Kennard and Stone algorithm [26] (70/30% ratio). Performance metrics, such as %RMSE, were
evaluated and the predictive ability of the developed models was also depicted.

Chemical domains of applicability were also defined for all the models in both case studies.
This was to ensure that the predictions were restricted to prediction of a model to compounds which
possessed similar structural, physicochemical, or biological space information similar to the training
compounds. For this purpose, the Williams plot, a graphical description of dependence between
standardized residuals and leverages of the model was employed. Its warning limits were set as
the critical leverage value h* and three multiples of standard deviation. The critical leverage [27] is
defined as:

h∗ =
3(K − 1)

N
(4)

where K is the number of variables, and N is the number of observations.

3.4. Elution Order Prediction

As previously mentioned, elution order in HPLC is generally governed by polarity. Thereby,
in RP-HPLC, solutes will typically be eluted in a reverse order to nonpolar compounds where retention
increases with decreasing polarity. However, it is not always as straightforward. In this work,
the elution order problem was formulated by considering all the peaks. Mathematically, elution order
can be easily predicted once retention time is predicted and then sorted in ascending order. Specifically,
indices are defined for all the experimental peaks (sorted in ascending order). Subsequently, retention
times predicted by a QSRR model are sorted with respect to the experimental times and another set
of indices is defined and sorted. The resulting differences between the two sets of indices define the
elution order error. Therefore, it is directly implemented within the QSRR modelling process.

3.5. Multi-Objective Optimization (MOO)

Multi-objective optimization (MOO) seeks to optimize a vector-valued cost function, with more
than one objective. In this work, the MOO formulation of elution order prediction was defined as:

α∗ = argmin( f1(α), f2(α))
f1(α) = %RMSE(tR); f2(α) = %RMSE(order)

(5)

where α* represent optimal regression coefficients. %RMSE(tR) and %RMSE(order) denote %RMSE of
retention time and that of elution order. Upon obtaining the MLR model (control), the MLR coefficients
were used as an initial point for multi-objective optimization (MLR-MOO). In this work MOO is
implemented using genetic algorithms (GA) [28,29]. GAs are a family of optimization algorithms
based on natural evolution and were chosen as a robust alternative to the classical interior-point [30] or
conjugate gradient [31] algorithms.

The solution to the MOO problem is not a single point, but a family of points (Pareto front).
Each point on the Pareto front that does not lead to degradation is optimal in the sense that no
improvement can be achieved in one vector component of the cost with respect to one of the remaining
components. From the obtained Pareto front(s), a solution is selected which gives a desirable trade-off

between the objectives, in this case decrease of elution order error at the expense of retention time
prediction. It has to be noted that the choice of an upper bound for the loss of the retention predictive
ability (expressed as 100 −%RMSE) is a user-defined parameter.
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3.6. Objective Functions for MOO

For MOO, %RMSE of retention time and elution order were used as objective functions for elution
order prediction through MOO. %RMSE(tR) [15,32] was defined as follows:

%RMSE(tR) =

√√√∑n
i = 1

(
tR,pred.,i−tR,obs.,i

tR,obs.,i

)
n

(6)

In Equation (6) tR,pred and tR,obs. stand for the predicted and experimentally-obtained retention
times, respectively, while n is the number of observations. Once the predicted retention times are sorted
in ascending order with respect to the experimental ones, the elution order can be easily predicted.
Subsequently, %RMSE(order) had the same form as the equation for %RMSE(tR) with the experimental
and predicted elution order instead of the retention time.

3.7. Selection of an Optimal MOO Solution

An optimal solution from the obtained Pareto set of solutions is selected employing the following
approach. Starting from the knee point of the Pareto front, a point which represents the optimal
trade-off between errors in retention time and elution order is selected. This is because the estimated
Pareto front knee point may not always represent an acceptable solution to the end-user. Thereby,
the optimal MOO solution can be considered as a user-defined parameter. Subsequently, the optimal
solutions are compared to the control QSRR models built via MLR. Diagnostic metrics: (i) predictive
performance, and (ii) (analytical chemical) domain of applicability, are used to evaluate the developed
QSRR and QSRR-MOO models.

3.8. Sum of Ranking Differences

An attempt was made to utilize sum of ranking differences (SRD) [33] for an objective selection of
a solution from the Pareto front. However, for all the columns the differences were too subtle. Instead,
SRD was used to directly compare the performance of all the RP-LC columns of CS2 in terms of their
elution order.

SRD is a method that has been used on several occasions for comparison of chromatographic
columns both in terms of column performance and QSRR model performance [34,35]. Essentially,
SRD is an unbiased ranking method with the ability to compare models, methods, analytical techniques,
and so on. It is based on the sum of squared differences in the ranking of the observed objects (e.g.,
chromatographic columns) and their respective observations (e.g., analytes). The ranking is obtained
with respect to either a golden standard or a global statistical metric (such as mean, or median) of
the observations. In this work, an extension of the original SRD method, which includes validation
through a comparison of ranks of random numbers (CRNNs) has been employed [36]. SRD-CRNNs
are based on computing SRD values for a series of normally-distributed random numbers. Values of
the first icosaile, median, and last icosaile are computed, as well as a sufficient number of points to
plot the SRD normal distribution curve. If an object has an SRD value on either side of the curve, it is
statistically significantly different than the ranking of random numbers.

3.9. Software Development

Implementation of both the GA in its multi-objective form, objective function, knee point
determination, and comprehensive QSRR model validation was carried out using MATLAB 2019a
(MathWorks, Sherborn, MA, USA). A graphical interface was constructed for the purpose of easing
user interaction with the developed software.
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4. Conclusions

In conclusion, an elution order prediction method was developed based on quantitative
structure-retention relationships (QSRRs) and multi-objective optimization (MOO) with two objective
functions: %RMSE(tR) and %RMSE(order). Two case studies were evaluated: (i) separation of organic
molecules; and (ii) separation of peptides on several columns with varying chromatographic conditions.
Results have shown that, when compared to control calculations, in both case studies for most of the
columns the same trend is observed. Retention time error increases, while the elution order error
decreases. As evident from our proof-of-concept study, the developed method has the potential for
application with respect to complex analytical mixtures, such as proteomics mixtures with thousands
of peptides. Future work will entail the application of the method to such complex analytical mixtures,
utilization of machine learning, and the development of an online QSRR platform.

5. Patents

Patent applied for USPTO (app. no. 16/740,243) and KIPO (app. no. 10-2019-0069924).
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Summary of experimental conditions of the chromatographic analyses for both case studies; Figure S1.
Performance of the MLR(control) model; Table S2. Molecular descriptors, experimental retention times and
predicted retention times of 62 organic analytes used in the first case study; Table S3. Molecular descriptors,
experimental retention times and predicted retention times of 98 synthetic peptides used in the second case study.
TableS S2 and S3 are given in form of a spreadsheet in a separate file.
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