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Traumatic brain injury is a leading cause of cognitive disability and is often associated with significant impairment in episodic

memory. In traumatic brain injury survivors, as in healthy controls, there is marked variability between individuals in memory abil-

ity. Using recordings from indwelling electrodes, we characterized and compared the oscillatory biomarkers of mnemonic variabil-

ity in two cohorts of epilepsy patients: a group with a history of moderate-to-severe traumatic brain injury (n¼ 37) and a group of

controls without traumatic brain injury (n¼111) closely matched for demographics and electrode coverage. Analysis of these

recordings demonstrated that increased high-frequency power and decreased theta power across a broad set of brain regions mark

periods of successful memory formation in both groups. As features in a logistic-regression classifier, spectral power biomarkers ef-

fectively predicted recall probability, with little difference between traumatic brain injury patients and controls. The two groups

also displayed similar patterns of theta-frequency connectivity during successful encoding periods. These biomarkers of successful

memory, highly conserved between traumatic brain injury patients and controls, could serve as the basis for novel therapies that

target disordered memory across diverse forms of neurological disease.
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Abbreviations: AUC ¼ area under the curve; PLV ¼ phase-locking value; ROI ¼ region of interest; SEM ¼ standard error of the
mean; SME ¼ subsequent memory effect; TBI ¼ traumatic brain injury

Introduction
Traumatic brain injury (TBI) produces lasting impairments

in episodic memory. Episodic memory refers to our ability

to associate information within a spatio-temporal context

and to use contextual cues to retrieve information from

memory. Episodic memory is also autobiographical; it pla-

ces ‘us’ in our memories, giving us the sense that something

happened to us at a particular time and in a particular

place (Tulving, 1985). Neuropsychological tests reveal some

of the most profound functional impairments in measures

of delayed recall, a particularly sensitive index of episodic

memory function (Dikmen et al., 2009; Vakil, 2020).

Cognitive rehabilitation therapy has been the primary treat-

ment strategy for patients suffering from memory and ex-

ecutive dysfunction, but therapeutic evidence has been
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mixed, leading to continued uncertainty over clinical best

practices (Shoulson et al., 2012), and no medication consti-

tutes a clinical standard to address cognitive impairment in

the TBI population (Cicerone et al., 2006). To develop ef-

fective therapies for treating such memory loss, we must

first understand whether and how the physiology of mem-

ory function differs between TBI-affected individuals and

their non-TBI counterparts.

TBI is a heterogeneous injury, resulting in both focal

and diffuse pathologies, and the mechanisms of memory

dysfunction may be distinct from those resulting from de-

velopmental or neurodegenerative conditions. Post-trau-

matic axonal degeneration may contribute to

hippocampal atrophy, reduced volume of white matter

and passive ventricular expansion (Bigler and Maxwell,

2011). Structural and functional neuroimaging studies in

patients with moderate-to-severe TBI have highlighted

white matter lesions (Smith et al., 2003) and reduced

connectivity among the frontal, temporal and parietal

lobes (Wang et al., 2011; Pandit et al., 2013). This pat-

tern of damage, known as diffuse axonal injury, may

underlie slowed cognitive processing (Spitz et al., 2013).

Although neuroimaging studies provide an important

first step towards understanding the changes in brain

structure and networks in TBI, they do not provide critic-

al information as to whether or how TBI alters the elec-

trical activity underlying affected cognitive processes such

as episodic memory. Indeed, research remains ongoing

regarding the effectiveness of electroencephalography

(EEG) as a diagnostic tool for brain injury (Nuwer et al.,
2005; Slobounov et al., 2012; Edlow et al., 2017). Given

the critical importance of electrophysiology for tracking

the temporal dynamics of memory function, and the po-

tential of using such biomarkers for neuromodulatory

therapies such as direct brain stimulation to alter brain

activity and behaviour (Ezzyat et al., 2018; Hanslmayr

et al., 2019), we sought to address this gap in our know-

ledge by investigating the neural correlates of episodic

memory using direct brain recordings in epileptic patients

with and without a history of moderate-to-severe TBI.

Previous work by multiple research groups has revealed

a clear set of physiological biomarkers of intraindividual

variability in human memory function. Specifically, it is

now well established that high-frequency activity (general-

ly >30 Hz) increases across a broad network of brain

regions during periods of successful memory encoding

and retrieval (Burke et al., 2015; Greenberg et al., 2015;

Kragel et al., 2017). Similarly, increases in theta band (3–

8 Hz) functional connectivity, accompanied by decreases

in theta band power, mark periods of successful encoding

and retrieval in both the medial temporal lobe (Solomon

et al., 2019; Hanslmayr et al., 2020) and neocortex

(Burke et al., 2013; Solomon et al., 2017).

The present study aims to determine whether these bio-

markers of variability in memory function are conserved

across TBI and non-TBI cohorts. As direct brain record-

ings may only be ethically obtained in human volunteers

undergoing intracranial EEG for indications such as in-

tractable epilepsy, and because these patients occasionally

have significant prior history of TBI [a known risk factor

in developing epilepsy (Verellen and Cavazos, 2010; Ding

et al., 2016)], we conducted a careful chart review of

more than 300 neurosurgical patients who performed

memory testing as part of a multi-centre memory study.

We identified 37 patients with a history of moderate-to-

severe TBI and 111 matched controls. Although

findings from this public dataset have been reported in

prior publications, none have considered the potential re-

lation between TBI history and biomarkers of successful

memory.

Materials and methods
We analysed direct neural recordings from cortical and

deep brain structures in patient-subjects while they per-

formed verbal episodic memory tasks. These patients

were surgically implanted with intra-parenchymal record-

ing electrodes to directly measure intracranial EEG activ-

ity. We quantified each subject’s neural biomarkers of

successful memory encoding by analysing two distinct

features of the EEG time-series across all implanted elec-

trodes during memory encoding: spectral power across a

broad range of frequencies and phase-locking connectivity

in the theta (3–8 Hz) band. We compared these features

between the groups to discern if a history of moderate-

to-severe TBI was associated with a difference in the elec-

trophysiology of successful memory encoding. We then

asked if these features could be used to reliably predict

successful memory encoding in these TBI patients.

Human subjects

We examined data from 148 neurosurgical patients (105

male, mean age ¼ 41) with medication-resistant epilepsy

undergoing invasive monitoring for seizure localization.

Neurosurgeons implanted patients with intra-parenchymal

depth electrodes and/or subdural grids and strips placed

on the cortical surface. The location of these electrodes

was determined based solely upon clinical considerations.

As such, there are no two patients with the same elec-

trode configuration, but when aggregated, the coverage is

expansive across the entire brain (Fig. 1B). The included

data were collected as part of a larger project in collab-

oration with Columbia University Medical Center (New

York, NY), Dartmouth-Hitchcock Medical Center

(Hanover, NH), Emory University Hospital (Atlanta,

GA), Hospital of the University of Pennsylvania

(Philadelphia, PA), the Mayo Clinic (Rochester, MN),

Thomas Jefferson University Hospital (Philadelphia, PA),

the National Institute of Neurological Disorders and

Stroke (Washington, DC) and University of Texas

Southwestern Medical Center (Dallas, TX). Institutional

review boards at the respective hospitals approved the
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research protocol, and we obtained informed consent

from each patient.

Through careful review of medical records, a subset

(n¼ 37) of patients (TBI group) were identified as having

a history of moderate-to-severe TBI based on criteria

developed by neurologists at the University of

Pennsylvania (Dr R.D-A.) and University of Texas

Southwestern (Dr K.D.), as follows: a reported history of

significant head injury with either loss of consciousness

of at least 30 min or post-traumatic amnesia of 24 h or

more, or a neuroradiology report describing lesions char-

acteristic of TBI (Gupta et al., 2014). In this dataset, we

identified 37 patients whose history indicated that they

likely experienced a moderate-to-severe TBI. For 21 of

these patients, we obtained hospital records confirming

all of the above criteria, for the remaining 17 patients, a

careful review of hospital records conducted by two inde-

pendent neurologists specializing in the treatment of TBI

indicated a likely history of moderate-to-severe TBI al-

though the hospital records lacked documentation con-

firming that the full set of criteria had been met. In

Table 1, we provide demographics for the TBI group.

We identified the best matched control patients (non-

TBI group) from the database (e.g. with no reported his-

tory of TBI) for each of the TBI subjects, by implement-

ing a propensity score matching procedure (Rosenbaum

and Rubin, 1983). First, we used a generalized linear

model to identify a set of relevant demographic and de-

scriptive factors predictive of whether a patient was

included in the TBI group: sex, handedness, prior resec-

tion, years of education, age at seizure onset, electrode

coverage by brain region and seizure onset zone by brain

region. We constructed propensity score models (general-

ized linear models) of the above factors, with the regres-

sion estimating a similarity score for each non-TBI

subject. We inputted the scores to the Matching package

Figure 1 Memory task overview and performance. (A) Memory task schematic. In the delayed free-recall task, subjects encoded a list of

12 items (words) presented sequentially, followed by an arithmetic distractor and verbal free recall, for up to 26 lists in a session. In a given

session, all study lists contained either unrelated items or items belonging to one of three semantic categories. (B) Localized intracranial

electrodes overlaid on an average brain surface. Electrodes are coloured by patient group (orange: TBI group, blue: non-TBI group). (C) Recall

performance. Serial position curves plot the average probability of recall at each list position for the two groups. The TBI group trended towards

lower recall performance compared to the non-TBI group [v2(1) ¼ 3.2, P¼ 0.07]. The TBI group has significantly decreased recall performance

in the categorized task fgroup � task interaction: [v2(1) ¼ 5.87, P¼ 0.015]g. (D) Temporal clustering in recall. For each subject, we plot

temporal clustering scores, with the group mean and standard error. The dotted line at 0.5 represents random chance. Both groups show

temporal organization of their recall sequence, with no statistical difference between groups [t(217) ¼ �0.84, P¼ 0.40]. (E) Semantic clustering

in recall. For each subject performing the categorized task, we plot the adjusted ratio of clustering score with group mean and standard error.

Maximum clustering at 1 and no clustering at 0. Both groups exhibit semantic clustering of their recall sequences, with no significant difference

between groups [t(103) ¼ 0.04, P¼ 0.96]
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in R, ‘Multivariate and propensity score matching with

balance optimization’ (Sekhon, 2011), to determine the

three best matches for each TBI subject, with exact

matching required for handedness as an indicator of

hemispheric dominance. This algorithm resulted in a 111

subject non-TBI group with characteristics that did not

significantly differ from the TBI group, as highlighted in

Table 2.

Recall tasks and behavioural

analyses

Subjects completed between one and eight sessions (30–

60 min duration) of a delayed free-recall task (Kahana,

2020). On each of up to 26 lists (per session), subjects

studied 12 items, with each item appearing individually

for 1.6 s on a laptop display (a 0.75–1-s inter-stimulus

interval followed each item presentation). After the ap-

pearance of the last item, subjects performed a 20-s

distractor task in which they solved a series of self-paced

simple arithmetic problems. Next, a row of asterisks

appeared, accompanied by a 1-s tone, to signal the start

of a 30-s recall period, in which subjects freely recalled

as many items as they could remember without regard to

order of presentation.

Subjects participated in either, or both, of two variants

of the free-recall task described above in which the

studied items were either unrelated words or semantically

related (categorized) words. See Fig. 1A for a schematic

of one typical list from each variant of the task. In the

unrelated task, lists composed of 12 common nouns

drawn randomly and without replacement from a pool of

300 words chosen to have moderate levels of memorabil-

ity. For details on list construction, please see Ezzyat

et al. (2018). In categorized sessions, each 12-word list

comprised four noun exemplars drawn from each of

three taxonomic categories, with same category exemplars

appearing in successively presented pairs such that the

structure of a given list might be A1, A2, B1, B2, C1, C2,

B3, B4, A3, A4, C3, and C4. Pairs appeared in a random

order constrained such that successive pairs always came

from distinct categories. For details on category list com-

position, see Weidemann et al. (2019). As is customary

in list memory experiments, we did not include data

from the first (practice) list of each session in our subse-

quent analyses (Solway et al., 2012).

To assess the effect of prior injury history on recall

performance, we used a linear mixed-effects model with

group (TBI versus non-TBI), task and serial position as

fixed effects and random intercepts across subjects and

performed a likelihood ratio test, comparing the log-like-

lihood of the full model to a reduced model that did not

include the main effect of group. To determine the sig-

nificance of the interaction between group and task, we

fit a second model that included interactions for all of

the main effects and compared it to a reduced model

(without the group-task interaction) using the same likeli-

hood ratio test described above. These analyses were pro-

grammed using the statsmodels library in python

(Seabold and Perktold, 2010).

When freely recalling lists of items, the order of recalls

reveals the dynamic, cue-dependent nature of memory re-

trieval. Sequentially recalled items exhibit several forms

of ‘organization’, clustering according to their temporal

and semantic relations (Kahana, 1996; Howard and

Kahana, 2002). To quantify temporal organization (Polyn

et al., 2009), the temporal distance of each recall transi-

tion is compared to the distribution of temporal distances

for all words that have not yet been recalled, in which

1.0 represents perfect temporal clustering and 0.5 repre-

sents chance. The average percentile score of all recalls

for each subject is their temporal recall clustering score.

For semantic clustering, we calculated an adjusted ratio

of clustering statistic (Roenker et al., 1971; Weidemann

et al., 2019), in which a score of 1 represents maximum

category clustering, and 0 represents clustering based on

Table 1 TBI group demographics

Age Sex Handedness Age of seizure

onset

TBI1 31 F R 1

TBI2 39 M R 16

TBI3 48 M R 33

TBI4 34 M R 1

TBI5 24 M R 16

TBI6 35 M R 15

TBI7 25 M R 17

TBI8 57 M R 6

TBI9 53 M R 29

TBI10 28 M R 12

TBI11 31 F R 1

TBI12 38 M R 33

TBI13 43 F R 12

TBI14 44 M R 17

TBI15 37 M R 34

TBI16 47 M R 44

TBI17 57 M R 48

TBI18 33 M R 13

TBI19 49 M L 1

TBI20 36 M R 2

TBI21 55 M R 37

TBI22 29 M L 4

TBI23 48 M A 19

TBI24 60 M R 50

TBI25 50 M R 39

TBI26 55 M L 20

TBI27 58 F A 9

TBI28 45 M R 18

TBI29 66 F L 30

TBI30 51 F R 11

TBI31 35 M R 28

TBI32 54 M A 39

TBI33 51 M R 35

TBI34 47 M R 22

TBI35 30 M R 20

TBI36 32 M R 27

TBI37 32 F R 9
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chance. For this analysis, we only included subjects from

each group that completed the categorized variant of the

task. For both metrics of recall, clustering scores for the

two groups were statistically compared using a Welch’s

independent t-test, which does not assume equal variance.

Intracranial recordings

We recorded EEG signals using varied clinical systems

(Nihon-Kohden Neurofax EEG-1200, Grass Aura LTM64,

XLTek EMU128FS, Natus Quantum) and research record-

ing systems (Blackrock NeuroPort, Medtronic External

Neural Stimulator) at sampling rates ranging from 250 to

2000 Hz. These data were either recorded at individual elec-

trodes referenced to a common contact placed intracranially,

on the scalp, or mastoid process and re-referenced to a bipo-

lar referencing scheme or recorded directly using a bipolar

referencing montage. In the bipolar scheme, neighbouring

contacts were referenced within each electrode. EEG data

were aligned with behavioural data via transistor–transistor

logic pulses sent from the behavioural computer to the EEG

system, or through network packets passed between the be-

havioural computer and recording computer. The data were

filtered using a fourth order Butterworth notch filter to re-

move 60 Hz line noise. The resulting signals were convolved

with Morlet wavelets (wave number ¼ 5) to obtain spectral

power and phase measurements. As determined by a clin-

ician, any contacts placed in epileptogenic tissue or exhibit-

ing frequent inter-ictal spiking were excluded from all

subsequent analyses.

To compare the activity in brain regions of interest,

each electrode was localized to the patient’s specific anat-

omy by alignment and co-registration of pre-surgical T1

and T2 MRIs and post-implantation CT scans, including

an automated segmentation of medial temporal lobe sub-

structures (Yushkevich et al., 2015). Depth electrodes

that were visible on CT scans were then localized within

all the brain regions defined by the Desikan–Killiany

Atlas (Desikan et al., 2006). Exposed recording contacts

were �1–2 mm in diameter and 1–2.5 mm in length; the

smallest recording contacts used were 0.8 mm in diameter

and 1.4 mm in length.

Analysis of spectral power
and functional connectivity
To determine the relation between power and successful

encoding in TBI and non-TBI subjects, we calculated the

subsequent memory effect (SME) as the difference in

spectral power (i.e. the power SME) for later recalled

and not-recalled items. First, we calculated spectral power

by convolving the raw EEG signal recorded during item

presentation with 20 Morlet wavelets logarithmically

spaced between 3 and 170 Hz. The resulting power val-

ues were log-transformed and Z-scored within each ses-

sion and averaged over the 400–1100 ms interval

following item onset, resulting in a single power value

for each item/frequency/electrode. We used a Welch’s t-

test to quantify, for each electrode and frequency, the dif-

ference between later recalled and not-recalled items.

Here, a positive t-statistic indicates an increase in power

during successful memory encoding; a negative t-statistic

indicates a decrease. Next, we averaged these SME t-sta-

tistics within four anatomical brain regions (frontal, med-

ial temporal, lateral temporal and parietal) and two

frequency bands: theta (4–8 Hz) and high-frequency activ-

ity (45–170 Hz). To assess differences in the average SME

between the TBI and the non-TBI group, we used a

Welch’s t-test with Benjamini–Hochberg false discovery

rate correction for multiple comparisons.

To assess differences in inter-regional connectivity in

TBI and non-TBI subjects, we constructed a theta con-

nectivity network for each subject by calculating the

phase-locking value, or PLV (Lachaux et al., 1999) for

every pair of electrodes. To compute the PLV, we

extracted phase information during the 400–1100 ms

interval following item onset using five wavelets in the

theta band (4, 5, 6, 7 and 8 Hz), calculated the average

phase difference between each recording pair for every

item and measured the resultant vector (i.e. PLV) of

phase differences for each item class (i.e. recalled versus

not recalled). We calculated the connectivity SME as the

difference in PLV between these item classes, for each

pair of electrodes and frequency in the theta band. A

positive connectivity SME indicates greater synchroniza-

tion at a given frequency between the pair of electrodes

during successful memory encoding, and a negative SME

represents greater synchronization during unsuccessful

memory encoding. For each subject, we averaged the con-

nectivity SME across all five frequencies to measure the

overall theta-band connectivity SME and pooled across

all electrode pairs that spanned each unique region of

interest (ROI) pair, yielding a theta connectivity SME for

every ROI pair in the network.

To account for the imbalanced number of recalled and

not-recalled items, we performed a non-parametric per-

mutation test to compare the theta connectivity SME to a

Table 2 Significant model covariates predictive of TBI

Age (mean 6 SD) Male (%) Right frontal coverage (%) Left temporal SOZ (%) Right temporal SOZ

(%)

TBI (n¼ 37) 42.9 6 11.0 73.0 75.0 2.8 5.6

Match group (n¼ 111) 40.0 6 11.5 70.3 73.3 2.9 5.7

All non-TBI (n¼ 309) 36.4 6 11.3 65.4 65.4 15.1 11.0
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chance distribution. To generate a null (or chance) distri-

bution of theta connectivity SME values for each elec-

trode pair and subject, we randomly shuffled the item

labels (i.e. recalled, not recalled) 500 times and repeated

the PLV computation for each shuffle. For each electrode

pair, a Z-score was derived by comparing the true theta

connectivity SME value to its corresponding shuffled dis-

tribution. This Z-score was taken to represent an edge

weight of the connectivity network for each electrode

pair in every subject, which were then averaged across

electrode pairs that spanned ROI pairs. A positive Z-

score indicates an increase in synchronization between a

pair of brain regions during successful encoding; a nega-

tive Z-score indicates increased synchronization during

unsuccessful encoding. To assess whether each group

exhibited increased synchronization during successful

memory encoding, we calculated an average edge weight

across all ROI pairs for each subject, and compared the

distribution of weights for each group to zero with a

one-sample t-test. We used an independent t-test to com-

pare the distributions of edge weights between the TBI

and non-TBI groups.

Multivariate classification methods

To discriminate patterns of spectral power predictive of

successful memory encoding during the free-recall task,

we trained a logistic-regression classifier using methods

described in Ezzyat et al. (2018). The input features were

average spectral power for each item encoding epoch (0–

1366 ms relative to item onset) calculated at each of eight

frequencies log-spaced between 3 and 180 Hz and each

electrode (frequency x electrode). The logistic-regression

model used L2-regularization with a penalty parameter

(C) to 2.4 � 10�4 that was selected by a cross-validation

procedure on historical subjects via a grid search to cor-

rect for over-fitting. Given the possible class imbalance

between later recalled and not-recalled items depending

upon subject performance, we weighted observations

from the minority class in inverse proportion to the class

frequency when training the classifier.

We quantified classifier performance by computing the

average area under the curve (AUC), which measures the

model’s ability to identify true positives while minimizing

false positives, with chance AUC ¼ 0.50. To mitigate the

effects of over-fitting on our evaluation of classifier per-

formance, we used leave-one-out cross-validation when

calculating AUC. For subjects performing multiple ses-

sions of free recall, we used a leave-one-session-out

method; for subjects with a single session, a leave-one-

list-out method was used. To assess the significance of

each subject’s individual classifier, we randomly permuted

the recalled/not-recalled labels in the training data and

computed the AUC 1000 times to generate a null distri-

bution. Classification analyses were programmed using

the scikit-learn library in python (Pedregosa et al., 2011).

Data availability

De-identified data and analysis code is made available at:

http://memory.psych.upenn.edu/Electrophysiological_Data.

Results
To support our analysis of the behavioural and physio-

logical effects of TBI on memory biomarkers, we gener-

ated a matched group of controls over a set of relevant

variables including age, sex, hemispheric dominance, seiz-

ure onset zone, and electrode coverage (see Materials and

Methods). This yielded a non-TBI group of 111 subjects

whose characteristics did not reliably differ from those of

the 37 subject TBI group (see Table 2). Figure 1A illus-

trates our two memory paradigms: delayed free recall of

(i) categorized and (ii) unrelated lists of nouns. In both

paradigms, subjects studied lists composed of 12 words

for later recall, with each list followed by a brief arith-

metic distractor task. Categorized lists comprised four

exemplars drawn from each of three categories presented

as successive pairs of categorized words. Unrelated lists

were composed of words drawn randomly and without

replacement from a pool of common nouns (see

Materials and Methods). As seen in Fig. 1B, electrodes

across both TBI and non-TBI subjects were distributed

across similar regions, with the greatest density of electro-

des sampling the temporal, medial temporal and frontal

regions.

We first asked whether the TBI and non-TBI groups

differed in terms of their behavioural performance on our

two memory tasks. Both groups exhibited typical serial

position effects, recalling a higher proportion of early list

items (the primacy effect) and a lower proportion of late-

list items, which are attenuated in memory by the post-

list arithmetic distractor task (see Fig. 1C and Materials

and Methods). Overall, TBI patients recalled fewer items

than their non-TBI counterparts during both tasks,

though this effect fell short of the significance threshold

[v2(1) ¼ 3.2, P¼ 0.07]. Using a linear mixed-effects

model, we found a significant interaction between task

(categorized versus unrelated) and group (TBI versus non-

TBI), in which the non-TBI group outperformed the TBI

group to a greater extent during the categorized list para-

digm [v2(1) ¼ 5.87, P¼ 0.015]. This finding is consistent

with prior evidence of TBI-related impairment of seman-

tic organization in verbal delayed free recall (Vakil et al.,

2019). Further, analysis of both groups’ recall dynamics

revealed significant temporal and semantic clustering,

recapitulating well-characterized episodic memory dynam-

ics. List items were more likely to be successively recalled

if they were studied in nearby list positions [temporal:

TBI, t(51) ¼ 10.6, P< 0.01; non-TBI, t(166) ¼ 18.2,

P< 0.01] (Fig. 1D) and came from the same category [se-

mantic: TBI t(28) ¼ 31.6, P< 0.01; non-TBI t(75) ¼
66.2, P< 0.01]. There was no significant difference
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between the two groups for these measures of recall or-

ganization [temporal: t(217) ¼ �0.84, P¼ 0.40; semantic:

t(103) ¼ 0.04, P¼ 0.96] (Fig. 1E).

To determine whether the neural activity underlying

successful memory encoding differed between TBI and

non-TBI cohorts, we employed the SME paradigm. The

SME compares neural measures during encoding of items

that were subsequently recalled with items that were sub-

sequently not recalled, reflecting activity that correlates

with memory success. As prior work has established that

increased high-frequency activity (45–170 Hz) and

increased inter-regional theta synchrony mark periods of

successful memory encoding (Burke et al., 2014; Solomon

et al., 2017), we conducted this subsequent memory con-

trast for two key biomarkers of successful memory for-

mation: spectral power and theta (4–8 Hz) phase

connectivity, asking whether these particular biomarkers

serve as indices of successful memory encoding in subjects

with a history of moderate-to-severe TBI.

We first compared patterns of whole-brain spectral

power SMEs between the TBI and non-TBI groups. To

do this, we computed spectral power at a broad range of

frequencies (3–170 Hz) during the item encoding period,

for each electrode. We then statistically compared the dis-

tribution of powers for items that were later recalled to

powers for items that were not recalled, generating a

spectral power SME t-statistic (see Materials and

Methods). Figure 2A illustrates the average power SME

t-statistic at 20 different frequencies and 4 brain regions

associated with episodic memory (frontal lobe, medial

temporal lobe, lateral temporal cortex and parietal lobe)

in the two patient subgroups. As in prior studies, we

found a significant increase in high-frequency activity

(P< 0.05; Benjamini–Hochberg corrected) in both the TBI

and non-TBI groups in all regions except the lateral tem-

poral cortex. We further noted a significant decrease in

low frequency activity (P< 0.05; Benjamini–Hochberg

corrected) in all four brain regions in both groups. There

were no significant differences in SMEs between the two

groups at any brain region in the theta and high-fre-

quency activity frequency bands (P> 0.1) as seen in

Fig. 2B.

To assess for differences in functional networks under-

lying successful memory encoding between TBI and non-

TBI patients, we analysed patterns of inter-regional phase

connectivity in the theta band. To construct networks of

connectivity between electrodes in each subject’s brain,

we calculated the PLV, which quantifies the phase syn-

chronization in the theta band (4–8 Hz) for every ROI

pair. We calculated a connectivity SME Z-score, reflecting

the difference in PLV between successful and unsuccessful

item encoding events; a positive value indicates increased

phase synchrony between ROIs during successful encod-

ing (see Materials and Methods). Connections with Z-

scores greater than 1.96 are displayed in Fig. 2C, where

red lines represent memory-related increases in connectiv-

ity, while blue lines represent memory-related decreases in

connectivity. Qualitatively, these maps show strong

fronto-temporal synchrony during successful memory

encoding in both TBI and non-TBI groups.

To determine if these theta connectivity networks reli-

ably differed between TBI and non-TBI groups, we took

the average PLV Z-score across all connections (or ‘edge

weights’) in each subject as a measure of overall syn-

chronization during good memory states. Congruent with

previous findings, both the TBI and non-TBI subject

groups showed a general increase in theta synchroniza-

tion during successful encoding; average Z-scores were

above 0 in both groups, indicating an overall propensity

for memory-related synchronization. As seen in Fig. 2D,

the non-TBI group had Z-score averages that were sig-

nificantly higher than zero [t(110) ¼ 2.20, P¼ 0.03],

though the TBI group did not meet significance [t(36) ¼
0.66, P¼ 0.51]. However, we did not find a significant

difference in the average Z-score between the two groups

[t(146) ¼ �0.65, P¼ 0.52].

The ability to reliably predict subsequent memory in

real-time is potentially a critical tool for designing new

therapies and interventions. Here, we trained an individ-

ual multivariate logistic-regression classifier for each sub-

ject to discriminate patterns of spectral power during

memory encoding, effectively forecasting whether each

item would be later recalled or forgotten. In Fig. 3, we

plot the average true positive and false positive rate for

probability thresholds ranging from 0 to 1 as receiver

operating characteristic curves. To quantify classifier per-

formance, we computed the average AUC for each sub-

ject’s classifier and averaged within each group. Overall,

the TBI group had an average AUC of 0.624 [standard

error of the mean (SEM) ¼ 0.011], and the non-TBI

group had an average AUC of 0.620 (SEM ¼ 0.008)

with statistically equivalent distributions [t(142) ¼ 0.29,

P¼ 0.77]. This result suggests that spectral power fea-

tures of recorded intracranial EEG can effectively predict

memory performance in both TBI and non-TBI patients

and could be used to responsively trigger closed-loop

brain stimulation.

Discussion
Our mnemonic ability exhibits marked variability from

moment to moment and from day to day, independent of

item characteristics and task variables (Kahana et al.,

2018). Measures of brain activity similarly reflect this be-

havioural variation, constituting neural biomarkers of

mnemonic success. Direct brain recordings from neurosur-

gical patients have revealed two striking biomarkers of ef-

fective memory encoding: First, the power spectrum of

intracranial EEG activity tilts upward during periods of

successful encoding. Second, theta-frequency neural activ-

ity (3–10 Hz) becomes coherent and synchronous during

periods of successful encoding (Burke et al., 2013;

Solomon et al., 2017). These two patterns emerge across
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a broad network of brain regions, described as the ‘core

memory network’ (Wagner, 1998; Paller and Wagner,

2002; Kim, 2011; Burke et al., 2014; Long and Kahana,

2015). Here, we examined these two biomarkers of suc-

cessful memory function in matched groups of neurosur-

gical patients with and without a significant prior history

of TBI.

TBI produces diverse and heterogeneous damage to

neural networks including diffuse axonal injury, diffuse

microvascular injury and neuroinflammation, and ultim-

ately, impaired memory ability in many patients. As such,

we wondered whether patients who experienced moder-

ate-to-severe TBIs would exhibit differences in their bio-

markers of successful memory function.

To answer this question, we recorded from indwelling

electrodes in cohorts of TBI-affected and non-TBI neuro-

surgical patients as they performed verbal free-recall

tasks. Although our TBI group exhibited marginally

worse recall performance, both groups showed nearly

identical serial position effects, temporal and semantic

clustering (see Fig. 1C–E). Both groups also exhibited

highly similar electrophysiological correlates of successful

memory (Fig. 2), suggesting that biomarkers of local

memory processing were unaffected by TBI neuropathol-

ogy. Finally, we examined the utility of spectral power

biomarkers of successful memory in reliably predicting re-

call performance. We found that this approach yielded

statistically equivalent classification ability for both the

Figure 2 Biomarkers of successful memory encoding. (A) Average spectral power SME t-statistics (recalled versus non-recalled encoding

periods) at 20 frequencies spanning 3–170 Hz and four distinct brain regions [frontal lobe, medial temporal lobe (MTL), lateral temporal cortex

(LTC) and parietal lobe]. Both groups exhibit a significant increase in high-frequency activity (HFA), a significant decrease in low frequency

activity during successful encoding [P< 0.05] (B) and statistically similar power SME in every ROI (P> 0.1). (C) Group average theta encoding

networks overlaid on an average brain surface. Each node represents a distinct ROI. Connections (edges) between nodes are coloured red when

theta synchronization increases during successful memory encoding and blue where synchronization decreases during encoding. (D) Average

synchronization Z-score (‘edge weight’) distributions, with positive values reflecting overall memory-related synchronization. Across subjects, we

found a significant increase in theta synchronization with successful memory encoding for the non-TBI group [t(110) ¼ 2.20, P¼ 0.03] but not for

the TBI group [t(36) ¼ 0.66, P¼ 0.51]; there was no evidence of a difference between the two groups [t(146) ¼ �0.65, P¼ 0.52]
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TBI and non-TBI groups, with both groups showing stat-

istically reliable classification (AUCs of 0.0624 and

0.0620 for TBI and non-TBI groups, respectively).

The surgical treatment of refractory epilepsy occasional-

ly requires long-term implantation of electrodes for seiz-

ure localization. By generously volunteering to take part

in cognitive studies, patients undergoing such treatment

have afforded scientists an unprecedented view of the

neural basis of human cognition. Whereas only a handful

of epilepsy centres conducted this type of cognitive elec-

trophysiological research at the dawn of the 21st century,

we are now seeing scientific reports from most of the

major epilepsy centres worldwide. With this advancing

research program characterizing the neural correlates of

diverse cognitive processes, the neuroscientific community

must consider whether these findings generalize beyond

the population of epilepsy patients. This question of gen-

eralization has obvious scientific and therapeutic

implications.

Here, we sought to determine whether spectral corre-

lates of successful memory, studied and extensively docu-

mented in epilepsy patients (Ezzyat et al., 2017; Herweg

et al., 2020), generalize to those patients with an add-

itional history of TBI, or if TBI-related pathology produ-

ces distinct biomarkers of variability in memory function.

In conducting this study, we did not know what to ex-

pect. Given that a history of TBI suggests an underlying

pathology, which differs from that seen in non-TBI epi-

lepsy patients (Bigler and Maxwell, 2011), we did not ex-

pect to find such striking similarities among the two

groups.

The striking similarity between biomarkers of successful

memory in TBI and non-TBI groups helps to address a

fundamental question in human neuroscience; namely, do

findings in patients with epilepsy-related pathology gener-

alize to other clinical subgroups? The invariance of bio-

markers across clinical subgroups bolsters arguments that

task-manipulation contrasts identify neural processes that

more likely reflect normal brain function (Kahana et al.,

1999, 2001). That is, although TBI and epilepsy-related

pathology both disrupt neural mechanisms that support

memory, these mechanisms still function to some extent,

and comparisons of successful and unsuccessful items

help to identify these residual functions. Of course, this

hypothesis need not be true, and future work across

more diverse patient populations may well temper the

claims laid out in this paper.

Although our study can only speak to the similarity of

a particular set of biomarkers of memory across two dis-

tinct epilepsy subgroups, this particular inter-group com-

parison has important clinical implications. Recent studies

have shown that closed-loop neuromodulatory therapy,

such as direct brain stimulation, in refractory epilepsy

patients can reliably boost memory, albeit to a modest

degree (Ezzyat et al., 2018), and closed-loop DBS prom-

ises to improve existing therapies in other patient popula-

tions, such as Parkinson’s (Swann et al., 2018). Such

findings raise hope for the use of closed-loop electrical

stimulation as a therapy for memory loss in patients with

brain injury or other types of neurological or neurogener-

ative diseases. Our findings suggest that biomarkers used

to guide such therapy appear conserved in at least some

epilepsy patients with an additional history of TBI, pav-

ing the way for future tests of closed-loop neuromodula-

tory therapies in TBI patients.

Figure 3 Classifier performance. For each unique subject, receiver operating characteristic curves show the performance of a logistic-

regression classifier tested on held-out sessions of the delayed free-recall task (grey lines), with the group average performance shown in bold

(TBI group, left: mean AUC ¼ 0.624, n¼ 37, SEM ¼ 0.011; non-TBI group, right: mean AUC ¼ 0.620, n¼ 111, SEM ¼ 0.008). The distributions

of the two groups were statistically equivalent [t(142) ¼ 0.29, P¼ 0.77]
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