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Salsolinol (SAL), a compound derived from dopamine meta-
bolism, is the most probable neurotoxin involved in the 
pathogenesis of Parkinson’s disease (PD). In this study, we 
investigated the modification and inactivation of human ceru-
loplasmin (hCP) induced by SAL. Incubation of hCP with SAL 
increased the protein aggregation and enzyme inactivation in a 
dose-dependent manner. Reactive oxygen species scavengers 
and copper chelators inhibited the SAL-mediated hCP modi-
fication and inactivation. The formation of dityrosine was 
detected in SAL-mediated hCP aggregates. Amino acid analysis 
post the exposure of hCP to SAL revealed that aspartate, 
histidine, lysine, threonine and tyrosine residues were particu-
larly sensitive. Since hCP is a major copper transport protein, 
oxidative damage of hCP by SAL may induce perturbation of 
the copper transport system, which subsequently leads to 
deleterious conditions in cells. This study of the mechanism by 
which ceruloplasmin is modified by salsolinol may provide an 
explanation for the deterioration of organs under neurodegene-
rative disorders such as PD. [BMB Reports 2016; 49(1): 45-50]

INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease char-
acterized by the degeneration of dopaminergic neurons in the 
substantia nigra of the midbrain (1, 2). Salsolinol (1-methyl- 
6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; SAL) specifically 
affects the nigrostriatal dopamine system. Previous studies 
show that it may participate in the pathogenesis of PD (3-6). In 
the brain, SAL can be endogenously synthesized from dop-
amine and acetaldehyde, either by SAL synthase or Pictet- 
Spengler reaction (7, 8). As the oxidative stress level increases, 
the lipid peroxidation-induced formation of acetaldehyde can 
promote the synthesis of SAL in dopaminergic cells (9-12). 

Increased concentrations of SAL induce the mitochondrial tox-
icity (13). Subsequently, the increased SAL levels will elevate 
cellular oxidative stress by releasing reactive oxygen species 
(ROS) from the damaged mitochondria (14, 15), thus impairing 
the antioxidant defense mechanisms, such as superoxide dis-
mutase (SOD) (16).

Human ceruloplasmin (hCP) is a copper-containing protein 
found in blood plasma, having ferroxidase activity as well as a 
possible role in iron metabolism. Oxidation of iron from fer-
rous to the ferric form occurs in the presence of hCP. In as-
trocytic foot processes, hCP is linked to glycophospho inosi-
tide (17). Mutations in the hCP gene can lead to acer-
uloplasminemia, a genetic disease characterized by iron over-
load in the basal ganglia (18). hCP may also play a role in the 
aggregation of -synuclein, a component of Lewy bodies; this 
has previously been confirmed in an in vitro study (19). 
Decreased hCP ferroxidase activity in cerebrospinal fluid 
(20-22) and serum (23-29) from idiopathic PD patients has also 
been reported. In addition, decreased hCP levels are asso-
ciated with an earlier onset PD (24, 26, 27). 

In this study, the effects of SAL on the oxidative mod-
ifications of hCP were assessed. Our results demonstrated that 
SAL could induce hCP aggregation via free radical generation. 
Subsequently, the SAL-mediated hCP modification resulted in 
the release of copper from the protein.

RESULTS AND DISCUSSION

When incubated with SAL, the aggregation of hCP increased 
with increasing concentrations of SAL, in a dose-dependent 
manner (Fig. 1A and B). It is well known that all biological 
macromolecules are vulnerable to oxidative stress. Attack of 
various ROS on proteins can lead to amino acid modification 
and peptide bond cleavage. It has been reported that covalent 
cross-links involve both homologous and heterologous inter-
actions between carbon-centered radical derivatives of identi-
cal or non-identical amino acid residues in two separate pro-
tein molecules (30). We investigated the protective effect of 
ROS scavengers on the aggregation of hCP induced by SAL. 
We found that incubation of hCP with SAL in the presence of 
ROS scavengers, such as, azide, formate and mannitol, pre-
vented the aggregation of hCP (Fig. 1 C and D).
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Fig. 1. Aggregation of hCP by SAL, 
and effect of ROS scavengers and 
copper chelators on SAL-mediated hCP
aggregation. (A) 1.5 M hCP was in-
cubated with various concentrations of 
SAL in 10 mM phosphate buffer (pH 
7.4), at 37oC for 24 h. Reactions were
stopped at the indicated time by 
freezing at −80oC. The pattern of 
protein bands was analyzed by native 
PAGE. (C) 1.5 M hCP was incubated 
with 2 mM SAL in 10 mM phosphate 
buffer (pH 7.4), at 37oC for 24 h, in 
the presence of ROS scavengers or 
copper chelators. Lane 1, hCP control; 
lane 2, oxidized hCP (without ROS 
scavenger); lane 3, 200 mM azide; 
lane 4, 200 mM formate; lane 5, 200 
mM mannitol; lane 6, 1 mM DDC; 
lane 7, 1 mM PA. (B) and (D) Relative
staining intensity of native PAGE gel 
was analyzed by densitometric scan-
ning. Asterisk (*) and double asterisks 
(**) denote statistical significance at P 
＜ 0.05 and P ＜ 0.01, respectively.

Fig. 2. Inactivation of hCP after in-
cubation with SAL, and effect of ROS 
scavengers and copper chelators on 
SAL-mediated hCP inactivation. (A) 1.5 
M hCP was incubated with various 
concentrations of SAL in 10 mM pho-
sphate buffer (pH 7.4), at 37oC for 24 
h. Reactions were stopped at the indi-
cated time by freezing at −80oC. Ac-
tivity of hCP was analyzed by activity 
staining method as described under 
“Materials and methods”. (C) 1.5 M 
hCP was incubated with 2 mM SAL 
in 10 mM phosphate buffer (pH 7.4), 
at 37oC for 24 h, in the presence of 
ROS scavengers or copper chelators. 
Lane 1, hCP control; lane 2, oxidized 
hCP (without ROS scavenger); lane 3, 
200 mM azide; lane 4, 200 mM for-
mate; lane 5, 200 mM mannitol; lane 
6, 1 mM DDC; lane 7, 1 mM PA. (B)
and (D) Relative staining intensity of 
native PAGE gel was analyzed by de-
nsitometric scanning. Double asterisks 
(**) and triple asterisks (***) denote 
statistical significance at P ＜ 0.01 
and P ＜ 0.001, respectively.
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Fig. 3. Determination of dityrosine and released copper ions dur-
ing incubation of hCP with SAL. The fluorescence spectra of di-
tyrosine formation were observed when 1.5 M hCP was incubat-
ed with various concentrations of SAL in 10 mM potassium phos-
phate buffer (pH 7.4), at 37oC for 24 h. (A) The fluorescence 
emission spectrum of the sample was monitored at 410 nm (exci-
tation, 325 nm) using a spectrofluorometer. (B) The free copper 
ions were determined with a colorimetric reagent using bathocu-
proine disulfonate. Asterisk (*) and double asterisks (**) denote 
statistical significance at P ＜ 0.05 and P ＜ 0.01, respectively.

During the incubation of hCP with SAL, ferroxidase activity 
decreased when the concentration of SAL increased (Fig. 2A 
and B), indicating that SAL-mediated hCP inactivation is close-
ly associated with protein modification. Oxidative mod-
ification of metalloproteins may lead to a higher level of metal 
ions in cells (31, 32). A previous study has reported that oxida-
tive modification of Cu, Zn-SOD can lead to inactivation and 
releasing copper from the enzyme (33). Since many proteins 
contain metal ions, especially trace metals such as copper and 
iron, subsequent exposure of them to H2O2 can generate ROS 
that selectively damage amino acid residues at the binding site 
(34). Another of our finding was that the ROS scavengers were 
partially able to prevent the inactivation of hCP (Fig. 2C and D). 

Some aggregation of protein is due to the formation of 2,2’ 
biphenyl cross-linkage of tyrosine residues (35). We inves-
tigated the formation of O,O’-dityrosine during SAL-mediated 
hCP aggregation by measuring fluorescence emission spec-
trum at 410 nm, with an excitation at 325 nm. When hCP was 
treated with various concentrations of SAL, the formation of 
O,O’-dityrosine cross-links increased with increasing concen-
trations of SAL (Fig. 3A). Our result suggests that the ty-
rosine-tyrosine cross-link formation might participate in 
SAL-mediated hCP aggregation. 

Transition metals, such as iron and copper, are present in a 
variety of biological systems. When exposed to H2O2, they 
produce ROS, which damages the biological macromolecules 
(36-38). We investigated the protective effects of copper chela-
tors, such as DDC and PA, on SAL-mediated hCP aggregation. 
When hCP was incubated with SAL in the presence of DDC 
and PA, the modification (Fig. 1C, lane 6 and 7) and in-
activation (Fig. 2C, lane 6 and 7) of hCP were inhibited. 
Incubation of hCP with various concentrations of SAL induced 
the release of free copper ions from hCP (Fig. 3B). Transition 
metals can catalyze free radical reactions, such as autox-
idations and hydroxyl radical formation. Therefore, hypothe-
size that the copper ions released from SAL-damaged hCP 
might have led to the formation of hydroxyl radicals in cells.

It has been reported that stable complexes can be formed by 
the reaction of catechol compounds with heavy metals such as 
iron or copper (39). Metal-catechol complexes may produce 
free radical compounds. Our results suggest that the deactiva-
tion of hCP by SAL might be due to the copper released from 
hCP, or the formation of the SAL-Cu(II) complex. It is true that 
protein deactivation can be achieved by cross-linking of pro-
teins with the ROS generated from reactions between catechol 
derivatives and/or heavy metal ions. However, it has also been 
reported that the deactivation of metallo-enzymes such as ribo-
nucleotide reductase by catechol compounds, can be reversed 
by the addition of iron (40). Therefore, we hypothesize that 
Cu(II)-SAL or Cu(II)-SAL2 complex formation is the major 
mechanism involved in the deactivation of hCP or the release 
of copper from protein. Our results further suggest that the re-
leased copper can accelerate ROS formation, resulting in hCP 
aggregation.

To determine the target site against SAL on hCP, we ana-
lyzed the amino acid composition after acid and alkaline hy-
drolysis of the modified proteins. hCP exposure to SAL partic-
ularly resulted in the loss of aspartate, histidine, lysine, threo-
nine and tyrosine residues (Fig. 4). hCP is comprised of six cu-
predoxin-type domains (41). Domains 1, 3 and 5 comprise of 
190 amino-acid residues. Domains 2, 4 and 6 possess a bind-
ing site for a mononuclear T1-type copper center (42). These 
even domains are smaller, with around 150 residues. The T1 
sites in domains 4 and 6 are typical blue-copper sites, with 
two histidines and a cysteine ligand at around 2.0Å, and a 
fourth weaker ligand, a methionine, at a distance of around 
3.0Å (43). Our results suggest that copper binding sites are 
modified during the reaction of hCP with SAL; it can be re-
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Fig. 4. Modification of amino acid residues in hCP by SAL. hCP 
was incubated in 10 mM potassium phosphate buffer (pH 7.4), at 
37oC under following conditions: 1.5 M hCP alone (gray bar); 
1.5 M hCP plus 2 mM SAL (dark bar). After incubation for 24 
h, the amino acid composition of acid and alkaline hydrolysates 
was determined as described under “Materials and Methods”.

leased from the oxidatively-damaged protein thus freeing cop-
per from the ligand. Previous studies have similarly reported 
that the release of copper can be induced during the reaction 
of hCP with other oxidants at high concentrations (1-50 mM) 
(44, 45). Our results similarly revealed that SAL could lead to 
the modification of hCP and the release of copper ions at low 
concentrations (0.1-2 mM). Taken together, these results sug-
gest that the SAL-mediated hCP modification may be due to 
the oxidative damage resulting from ROS generated by two 
mechanisms: the autoxidation of SAL, and the Fenton-like re-
action of free copper ions released from oxidatively-damaged 
hCP. 

Alterations in iron homeostasis/metabolism can produce 
neurodegenerative diseases by multiple pathways. Copper re-
leased from the copper-binding proteins induced oxidative 
stress, which is caused to proceed to the degeneration of the 
substantia nigra in PD (46). The toxicity of SAL may be in-
creased by the generation of ROS in the neurodegenerative 
disorder. Previous studies have been reported that SAL led to 
DNA cleavages in neuronal cells in the presence of transition 
metals (47, 48). It has also reported that SAL might increase 
ROS generation, and result in a reduction in the levels of gluta-
thione in SH-SY5Y cells (49).

The concentration of SAL in the substantia nigra from nor-
mal control brains was determined to be 0.1 M (50). 
However, the concentration was found to be much higher in 
dopamine neuron. It was reported that SAL was selectively in-
creased in the cerebrospinal fluid of patients with PD (51). In 
this study, we have used high concentrations of SAL. Although 
such values might be physiologically questionable, they dem-
onstrated clear protein modifications when used at high con-
centrations, provoking protein damage in a relatively short pe-
riod of time. 

In conclusion, the findings of this study demonstrated that 
SAL could induce oxidative modification of hCP with sub-
sequent copper release. This study also showed that this phe-
nomenon involved free radical generation. Therefore, 
SAL-mediated hCP modification might be associated with the 
pathogenesis of PD, as well as other related disorders. 

MATERIALS AND METHODS

Materials
The commercial hCP (Cabiochem) was further purified by gel 
filtration chromatography, using Superose 6 FPLC column 
(Pharmacia, Sweden). Salsolinol, azide, formate, mannitol, 
bathocuproine disulfonate, diethyldithio carbamic acid (DDC) 
and penicillamine (PA) were obtained from Sigma (St. Louis, 
MO, USA). Chelex 100 resin (sodium form) was obtained from 
Bio-Rad (Hercules, CA, USA). All solutions were treated with 
Chelex 100 resin to remove any traces of transition metal ions.

Protein oxidative modification
Protein concentrations were determined using the BCA meth-
od (52). 1.5 M hCP modification was induced by incubating 
with SAL in a phosphate buffer (pH 7.4) at 37oC. After in-
cubation, the reaction mixtures were placed onto Vivaspin ul-
trafiltration spin column (Sartorius Stedim Biotech, Goettingen, 
German) and centrifuged for 1 h at 13,000 rpm to remove the 
SAL. The mixture was then washed with Chelex 100-treated 
water and centrifuged for 1 h at the same speed to remove any 
residual SAL. This procedure was repeated four times, after 
which the (washed) proteins were dried in a freeze-dryer and 
dissolved with 10 mM potassium phosphate buffer (pH 7.4). 
The free radical scavenger-induced protection against the 
SAL-mediated hCP modification was performed by preincubat-
ing the enzyme with free radical scavengers for 5 min at room 
temperature, after which the mixture was reacted with SAL for 
24 h at 37oC. The unreacted reagent was then washed through 
a Microcon filter (Amicon).

Analysis of CP aggregation 
The samples were treated with 4 l of concentrated sample 
buffer (0.25 M Tris, 40% glycerol, 0.01% bromophenolblue), 
and then subjected to polyacrylamide gel electrophoresis via 
the Laemmli method (53), using an 8% acrylamide slab gel. 
The gels were stained with 0.15% Coomassie Brilliant Blue 
R-250. 

Ceruloplasmin activity staining
hCP activity staining was performed by the method of Sato and 
Gitlin (54). 1.5 M hCP was incubated with various concen-
trations of SAL in 10 mM potassium phosphate buffer (pH 7.4), 
at 37oC for 24 h. An aliquot of sample was subjected to native 
PAGE with a slab gel (stacking gel: 4% acrylamide; separating 
gel: 8% acrylamide). The gel was incubated in 0.1 M sodium 
acetate buffer (pH 5.7) containing 500 g/ml of p-phenylenedi-
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amine, for 1 h at 37oC followed by washing in 50% ethanol.

Detection of O,O’-dityrosine
To detect O,O’-dityrosine, 1.5 M hCP was incubated with 
various concentrations of SAL, in 10 mM potassium phosphate 
(pH 7.4). The fluorescence emission spectrum of the sample 
was then monitored at 410 nm (excitation, 325 nm) using 
Spectrofluorometer SMF 25 (Bio-Tek Instruments).

Determination of copper ion concentration
The concentration of copper ions released from oxidatively 
damaged hCP was determined by using the bathocuproine di-
sulfonate method, as described previously (55). The reaction 
mixture contained 1.5 M hCP and various concentrations of 
SAL, in a total volume of 100 l, and incubated for 24 h at 
37oC. After incubation, the mixtures were placed into Vivaspin 
ultrafiltration spin columns (Sartorius Stedim Biotech, Goettin-
gen, German) and centrifuged at 13,000 rpm for 1 h. Color-
imetric reagent was added into the filtrate and analyzed by a 
UV/VIS spectrophotometer (Shimadzu, UV-1601) at 535 nm. 
The color reagent was composed of 1% ascorbate, 0.02% bath-
ocuproine disulfonate and 1% acetic acid-acetate buffer (pH 4.5)

Amino acid analysis 
Aliquots of modified and native hCP were hydrolyzed at 
110oC for 24 h, after addition of 6 N HCl. Since amino acid 
hydrolysis destroys tryptophan, the tryptophan content of oxi-
dized and native hCP preparations was determined by means 
of alkaline hydrolysis, as described previously (56). The amino 
acid content of acid and alkaline hydrolysates was determined 
by HPLC separation of their phenylisothiocyanate-derivatives, 
using the Waters Nova-Pak C18 column and HP 1100 detector 
(Hewlett Packard, USA).

Statistical analysis
Values are expressed as the means ± S.D of three to five sepa-
rate experiments. The statistical differences between the means 
were determined by the Student t-test.
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