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Dietary macronutrients have been regarded as a basic source of energy and amino acids that are
necessary for the maintenance of cellular homeostasis, metabolic programming as well as protein syn-
thesis. Due to the emergence of “nutrigenomics”, a unique discipline that combines nutritional and omics
technologies to study the impacts of nutrition on genomics, it is increasingly evident that macronutrients
also have a significant role in the gene expression regulation. Gene expression is a complex phenomenon
controlled by several signaling pathways and could be influenced by a wide variety of environmental and
physiological factors. Dietary macronutrients are the most important environmental factor influencing
the expression of both genes and microRNAs (miRNA). miRNA are tiny molecules of 18 to 22 nucleotides
long that regulate the expression of genes. Therefore, dietary macronutrients can influence the
expression of genes in both direct and indirect manners. Recent advancements in the state-of-the-art
technologies regarding molecular genetics, such as next-generation sequencing, quantitative PCR
array, and microarray, allowed us to investigate the occurrence of genome-wide changes in the
expression of genes in relation to augmented or reduced dietary macronutrient intake. The purpose of
this review is to accumulate the current knowledge focusing on macronutrient mediated changes in the
gene function. This review will discuss the impact of altered dietary carbohydrate, protein, and fat intake
on the expression of coding genes and their functions. In addition, it will also summarize the regulation
of miRNA, both cellular and extracellular miRNA, expression modulated by dietary macronutrients.

© 2020, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting
by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Epidemiological studies have shown that the life expectancy
and the physiological conditions crucially depend on different
macronutrients we take through various diets. The prime example
is that the Greenland Eskimos have lower morbidity due to car-
diovascular disease than the Eskimos who are living in Europe or in
the US. This is primarily because of the dietary consumption of
different nutrients. The Greenland Eskimo's food menu is
l).
iation of Animal Science and
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dominated by fish and seafood whereas Eskimos in Europe and the
US eat moremeat and carbohydrate. Fish oil contains omega-3 fatty
acid (20-carbon eicosapentaenoic acid) which has beneficial effects
on maintaining the health of the heart. Although it is clear and well
accepted that dietary consumption of macronutrients influences
the pathophysiological status of an animal, the underlying molec-
ular mechanisms are poorly understood. It is a general belief that a
complex array of response elements regulates the expression of
genes and these elements influence the transcription rate of a
particular gene (Cousins, 1999). Dietary nutrients, especially mac-
ronutrients, can influence the rate of transcription of a given gene
directly through interacting with the regulatory elements of the
genome. Alternatively, macronutrients may act indirectly by
affecting and/or modulating important signaling pathways (Sohel
et al., 2018). However, it is often difficult to discriminate whether
a nutritionegene interaction as a result of a direct or indirect effect.
Because of the involvement of several bioactive components, the
indirect way of regulating the transcription of genes is a more
uction and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This
censes/by-nc-nd/4.0/).
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complex process. For instance, dietary constituents of fiber can
regulate the expression of genes indirectly through altering me-
tabolites availability, mechanical stimuli, and hormonal signaling
produced by the intestinal/colonic microflora. Short-chain fatty
acids including butyric acid are produced by the colonic microflora
as a consequence of water-soluble fiber metabolism. Butyric acid, in
turn, can bind with the intracellular messenger G-protein to
selectively regulate the expression of genes or directly interact with
the regulatory sequence of DNA. The influence of macronutrients
(carbohydrate, protein, and lipid) on gene and microRNA (miRNA)
expression is discussed in the following sections.

2. Macronutrient mediated changes in the expression of
genes

The diet has long been considered as a mixture of complex
natural substances that provides both the energy and building
blocks to develop and maintain an organism. The generally
accepted notion is that food can regulate health by its nutritional
constituents. Furthermore, consumption of dietary macronutrients
enhances the release of a variety of hormones that can change gene
function and powerfully affect signal transduction. The use of
quantitative real-time PCR (qRT-PCR) gained the highest popularity
to study dietary nutritional impacts on gene expression as it is a
powerful tool to study the expression pattern of candidate genes in
specific tissues of both humans and animals (Schwerin et al., 2002).
As a result, understanding of the dietary influence on gene
expression and molecular mechanisms started increasing. Later on,
the GeneChip microarray system was employed to have a deeper
understanding of underlying molecular mechanisms of dietary
protein-induced alteration of the pathophysiological status of ani-
mals. The microarray is extremely effective and identifies multiple
up- and down-regulated genes as a result of dietary manipulation
at a single experiment which allows studying bioinformatics to
identify critical pathways involved. Recently next-generation
sequencing is used to identify the association between nutrition
and genetics as this platform generates millions of sequences in a
high-throughput and cost-effective manner.

2.1. Carbohydrate regulation of gene expression

Dietary carbohydrate has a strong influence on the expression of
a number of genes related to metabolic pathways predominantly
those are involved in carbohydrate metabolism including glycol-
ysis/gluconeogenesis, fructose and mannose metabolism, pentose
phosphate pathway, inositol metabolism, aminosugar metabolism,
and galactose metabolism (Wang et al., 2009). It is important to
note that the quantity of dietary carbohydrate also has dramatic
effects on the expression of several genes associated with cell
adhesion, cell cycle and growth control (Wang et al., 2009; Zhou
et al., 2015). The research conducted by Kallio et al. (2007)
demonstrated the possibility of changes in the expression of a
panel of genes in individuals consuming diets that have effects on
postprandial insulin concentrations. The authors assigned adults to
rye-pasta (low insulin response diet) and oat-potato-wheat (high
insulin response diet) for 12 wk. Gene expression in subcutaneous
fat was examined at baseline and at 12 wk using microarrays and
qRT-PCR platforms. In the low-insulin-response group, 71 genes
were found to have decreased expression. In addition, bioinfor-
matics analysis revealed several of these down-regulated genes
have links to apoptosis and insulin-signaling pathways. By contrast,
in the high-insulin-response group, 62 genes linked to immunity,
stress, and interleukin pathway were found to have increased
expression and none showed decreased expression (Kallio et al.,
2007). Interestingly, the modifications of gene expression profile
in the subcutaneous adipose tissue through carbohydrates are not
linked with body weight gain or loss.

After digestion, most dietary carbohydrates turned into glucose
in the small intestine and subsequently transported into the
bloodstream. This glucose is the primary fuel for skeletal muscles,
the brain and other organs to perform their functions properly.
Previous research has demonstrated that exposure to a high level of
glucose induces proliferation and differentiation in mesenchymal
stem cells (Li et al., 2007) and vascular smooth muscle cells
(Yamamoto et al., 2000) in vitro. In addition, a high level of sucrose
in the diet may result in the proliferation of intestinal epithelial
cells and tumorigenesis by increasing the level of hepatic insulin
like growth factor-1 (IGF-1) mRNA in APCMin mice in vivo (Wang
et al., 2009). Furthermore, high dietary sucrose significantly
altered mRNA expression of 109 known genes in the small intes-
tinal epithelium including many involved in several metabolic
pathways compared to cornstarch-containing diet (Wang et al.,
2009). One of the significantly affected metabolic pathways is
transcription and translation regulation where pleckstrin homol-
ogy, Sec7 and coiled-coil domains 3 (PSCD3), SMAD3, PR domain
zinc finger protein 2 (PRDM2) genes are significantly upregulated in
the high starch group (Wang et al., 2009). Despite their important
function in making proteins, these genes are known to have a sig-
nificant role in different diseases including retinal cancer and
Loeys-Dietz syndrome type III. It is important to note that con-
sumption of higher dietary sucrose (60%) does not cause a dramatic
increase in body weight in obese rat or induce obesity in lean rats.
Interestingly, high-sucrose feeding regimen for one week induced
the enhanced expression of genes of heat shock proteins (HSP27
and HSP70) and suppressed the production of nitrate and nitrite
(NOx) in the rat brain, whereas the standard diet did not show such
effects (Kanazawa et al., 2003). It is clear that the high-sucrose diet
has no effects on body weight gain in the obese or lean rat, how-
ever, it has favorable effects on the brain through modulation of the
expression of genes related to stress.

It has been shown that the level of dietary carbohydrates has
immense impacts on the growth, antioxidant capacity, pathogen
resistance, and immune response in the juvenile Black carp fish
(Wu et al., 2016). A low or high level of dietary carbohydrate
resulted in growth abnormalities. Gene expression analysis
revealed that the optimum level of carbohydrate (288.4 g/kg)
significantly increases the expression of antioxidant genes
including glutathione peroxidase (Gpx), catalase (CAT), and super-
oxide dismutase (SOD) and subsequently resulted in higher total
antioxidant capacities (TAOC) in the liver. In addition to antioxidant
activities, the expression levels of immune-related genes including
interferon (IFN) and tumor necrosis factor-a (TNF-a) in the liver and
blood samples of juvenile Black carp Mylopharyngodon piceus also
increases in comparison to the low or high carbohydrate diets (Wu
et al., 2016). An appropriate level of carbohydrate may boost the
antioxidative capacity and immune response in carp fish which
may subsequently enhance the pathogen resistance and finally
increase the growth. Similar results were observed in juvenile
shrimps (Ding et al., 2017) where the authors emphasize that the
lower level of dietary carbohydrates resulted in a reduction of
growth performance.

Heat stress is a major problem that causes suboptimal produc-
tion performance in domestic animals. Heat stress drastically
down-regulates the function of mitochondria (White et al., 2012),
while manipulation of exogenous carbohydrate supplementation
during exercise may induce stimulation of mitochondrial biogen-
esis through alteration of the expression of metabolic genes in
human skeletal muscle (Margolis and Pasiakos, 2013). By manipu-
lating carbohydrate supplementation, Dumke et al. (2013)
demonstrated the influence of exercise on skeletal muscle
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metabolic activity in response to heat. The authors showed that
carbohydrate ingestion during exercise represses the expression of
ncoupling protein 3 (UCP3) mRNA, which transfers the anions from
the inner to the outer mitochondrial membrane, however, had no
effect on the expression of mitofusin 2 (MFN2), glucose transporter
type 4 (GLUT4), and peroxisome proliferator-activated receptor-g
coactivator (PGC)-1a.

Acute starvation and refeeding are a worldwide health issue
nowadays. In the past few decades, a considerable number of
studies highlighted the relationship between unhealthy eating
behaviors such as picky eating, overeating, skipping meals and the
increased risk of atherosclerosis, type 2 diabetes, cardiovascular
and liver diseases (Yasutake et al., 2014). Irregular eating habits
mostly ended up with the ingestion of high carbohydrate-high-fat
fast food causing several food-associated health problems. Even
refeeding with a standard diet after long starvation can induce the
expression of genes associated with inflammation in the liver
which may be mediated by Toll-like receptor 2 (Tlr2) in mice where
dietary carbohydrate plays a crucial role (Oarada et al., 2013).
Findings of these studies are summarized in Table 1.
2.2. Protein regulation of gene function

Protein is an essential macronutrient required by humans and
animals for their proper growth and development. Malnutrition
caused by an insufficient supply of protein may affect the physio-
logic and pathologic status of an organism. Hydrolysis of proteins
by boiling yields a bunch of small molecules known as amino acids.
Depending on the animal's ability to synthesize, these amino acids
are classified as nutritionally essential amino acid (EAA) and
nonessential amino acids (NEAA). Overfeeding or restriction of di-
etary protein may cause severe health consequences through
altering the expression of genes that are central to several path-
ways. Dietary proteins mediate the majority of the pleiotropic ef-
fects through changes in the expression of involved target genes.
Several genes have been found to be influenced through dietary
protein in humans as well as different experimental and domestic
animals (Hesketh et al., 1998; Starr et al., 2015). For instance, the
IGF-1 system and the involved genes are extremely sensitive to the
dietary protein inputs (Wan et al., 2017). Any expression deviation
of these genes may cause metabolic abnormalities and growth re-
striction. One of the earliest studies investigating the influence of
dietary proteins on the expression of genes revealed that the ac-
tivity of plasma renin differs depending on the level of dietary input
of proteins, being higher on a high protein diet. Compared to the
Table 1
Detailed information of the selected experiments focusing on carbohydrate mediated ch

Macro-nutrient Feeding cohort Organism, tissue/organ Platfor

Carbohydrate sucrose vs. cornstarch mice, small intestine and
colon epithelial cells

microa

Carbohydrate rye-pasta vs. oat-potato-
wheat

humans, adipose tissue microa

Carbohydrate high sucrose rats, brain qPCR a
Carbohydrate dextrin, graded level (0 to

500 g/kg)
juvenile black carp, liver
tissue

qPCR a

Carbohydrate cornstarch, graded level (50
to 300 g/kg)

juvenile prawns, muscle qPCR a

Carbohydrate malto-dextrin humans, muscle qPCR a
Carbohydrate sucrose, cornstarch mice, liver qPCR a

DE ¼ differentially regulated; [ ¼ upregulated; Y ¼ downregulated; qPCR ¼ quantitativ
standard 20% protein diet, 50% high protein diet elevated the
expression of renal renin mRNA while 6% low protein diet lowered
the expression (Rosenberg et al., 1990). Using GeneChip microarray
Endo et al. examined for the first time the consequence of dietary
protein intake on the expression of hepatic genes and subsequently,
demonstrated that the expression of several genes was affected by
different protein diets (Endo et al., 2002).
2.2.1. Quantity of protein
High protein diets are generally promoted by some nutritional

supplement industry because of their important role in muscle
growth and development. Furthermore, high dietary proteins are
widely used to control obesity and overweight as it has been shown
that high protein diets reduce the mRNA abundance of lipogenic
genes (fatty acid synthase [FASN], acetyl-CoA carboxylase alpha
[ACACA], and acetyl-CoA carboxylase beta [ACACB], etc.) in the liver
(Chaumontet et al., 2015) which inhibits lipogenesis and reduces
obesity. However, several studies have demonstrated that over-
feeding of protein or overuse of protein supplements could cause
several diseases including cancer or cardiovascular diseases and
other disorders (Norat and Riboli, 2001; Pedersen et al., 2013).
Experiments on both humans (Hannan et al., 2000) and laboratory
animals (Amanzadeh et al., 2003) demonstrated that high dietary
protein can create increased acid load in body fluids which is
buffered by bone calcium resulting in excessive calcium loss.
However, studies have shown that protein could be beneficial for
bone health under some dietary conditions such as adequate cal-
cium supplementation (Mangano et al., 2014). Although a combi-
nation of high proteins and low carbohydrates may help to control
obesity in the short term, it can lead to the formation of kidney
stones under circumstances like low fluid intake. Diets rich in
protein strongly affect the expression of hepatic genes including
amino acid transport and catabolism and prevent fatty liver disease
by enhancing lipid secretion into very low density lipoprotein
(VLDL) particles (Schwarz et al., 2012).

On the other hand, protein deficiency has also been found to
have negative consequences on the growth and development of
humans, livestock and other laboratory animals (Christian and
Stewart, 2010; Rehfeldt et al., 2011). When mammals are exposed
to low protein diet or diet missing some EAA, the plasma concen-
trations of certain amino acid dropped dramatically, which may
cause aberrant expression of different growth related genes. For
instance, low dietary protein intake resulted in a lower abundance
of genes involved in endopeptidase activity and cell motility, which
are critical to the invasion of trophoblast in the early pregnancy
anges in gene expression.

m DE genes Important genes References

rray 58 [

37 Y

IGF-1, IGF-2, IGFBP3, Pcna, Pik3c2a,
Aldrl6, Scd2, Timm23, Smad3, Rasa3,
PSCD3

Wang et al. (2009)

rray 62 [

71 Y

IGFBP5, LIPE, DUSP6, MKNK2, GAS7,
CCND2, SKG, SLC40A1, FTHP1,
TCF7L2, CD34, INSR, PPP1R12B,
MRPS30

Kallio et al. (2007)

ssay e HSP27, HSP70 Kanazawa et al. (2003)
ssay e HEPC, TNF-a, IFN-a, LYZ, NRAMP, C3 Wu et al. (2016)

ssay e HK, PK, PYC, G6Pase Ding et al. (2017)

ssay e MFN2, GLUT4, PGC-1a, UCP3 Dumke et al. (2013)
ssay e Glut2, Tlr2, Tlr4, Hspd1, Hmgb1,

Grp94
Oarada et al. (2013)

e PCR.
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(Ren et al., 2012). Restriction of 50% protein in the diet of mice
during pregnancy from d 10.5 to 17.5 typically upregulates several
genes involved in epigenetic regulators, negative regulation of cell
growth and apoptosis (Gheorghe et al., 2009). Besides detrimental
effects on maternal health, protein restriction during pregnancy
plays a critical role in the suboptimal growth and development of
offspring by altering the folliculogenic and steroidogenic genes and
their regulatory miRNA (Sui et al., 2014). In addition, protein re-
striction influenced fetal growth by regulating the expression
mRNA abundance of placental growth related genes (Starr et al.,
2015). It has recently been reported that a high or low protein
diet alters the expression of several key genes in the fetal skeletal
muscle of sheep that could affect growth and development (Cinar
et al., 2018). The level of protein is also crucial for the postnatal
muscle development of growing animals. Very low protein intake
severely downregulates the abundance of amino acid transporter
mRNA including proton-assisted amino acid transceptors 2, L-type
amino acid transceptor 1, and sodium-coupled neutral amino acid
transceptor 2 in the muscles of growing pigs (Li et al., 2017). The
lower abundance of amino acid transporter mRNA in the muscles
resulted in inadequate absorption of EAA to the growing muscles it
requires and finally, restricts the growth. Interestingly, when a low
level of protein (3% lower than the recommended) was fed to
growing pigs, it resulted in a significantly higher level of these
amino acid transporter genes in the muscles (Li et al., 2017). It is
highly likely that slightly lower protein intake probably enhances
the abundance of amino acid transporter mRNA to efficiently
absorb the EAA in the muscles of growing pigs.
2.2.2. Origin of protein
In addition to the quantity of dietary protein, the source of

protein (whether from animal or plant) may play a role in the
growth and a variety of metabolic pathways. In a comprehensive
study, Song and colleagues investigated the effects of recom-
mended levels of soy and meat proteins on the expression of he-
patic transcriptomics as well as the physiological markers of the
metabolic syndrome (Song et al., 2016). Semi-synthetic diets for
both soy and meat source were fed to male rats for one week and
casein was used as a reference protein. Interestingly, the results
revealed that the growth was significantly reduced in the soy
protein regimen while the meat protein regimen showed no dif-
ference in comparison to those of the casein-fed control group. A
total of 1,571 and 1,369 genes were found to be differentially
regulated in the liver by soy and meat protein, respectively. Many
signaling pathways including insulin signaling, lipid, energy, and
amino acid metabolic pathways were affected by the differentially
regulated genes (Song et al., 2016). Similar results were reported for
juvenile rainbow trout (Oncorhynchus mykiss) when they were fed
either soy protein or fishmeal (Wacyk et al., 2012). The authors
demonstrated that plant-based dietary protein sources are less
efficient in terms of protein retention efficiency and growth per-
formance. The source of protein has a significant effect on the
expression of several hepatic genes as well (Wacyk et al., 2012). The
distinct physiological and gene expression changes in experimental
animals through soy and meat/fish protein source provides a
deeper understanding of the importance of the source of proteins
in domestic animals as well as humans. Dietary protein-induced
changes in the expression of genes are listed in Table 2.
2.3. Dietary lipid-mediated alteration of gene expression

Dietary fat is another macronutrient which serves a number of
essential functions. However, high dietary fat is considered an
important environmental risk factor that is associated with obesity
and other metabolic disorders such as stroke, coronary heart dis-
ease, hypertension, and type 2 diabetes mellitus. Although there is
a complex relationship between metabolic syndrome and dietary
input of fat which includes several genes and genetic interactions,
the results of different research provide clues to complete the
complex puzzle of dietary fat induced complications. Higher intake
of dietary fat induces rapid weight gain and adiposity not only in
laboratory animals but also in humans. When dietary energy
intake, in terms of fat, chronically exceeds expenditure may lead to
a variety of obesity-related disorders.
2.3.1. Effects of the quantity of fat in the diet
A variety of complications including hyperinsulinemia, hyper-

triglyceridemia, hyperglycemia, and higher low-density lipopro-
tein (LDL) are often associated with diets with higher fat. Diets
high in fat can also have adverse impacts on insulin-responsive
tissues. It is specifically true for the adipose tissues where lipid
homeostasis takes place and which secretes bioactive lipids and
adipokines to regulate the balance of systemic energy (Almon
et al., 2015). G-protein-coupled receptor (GPR)109A and GPR81
are G protein-coupled cell surface receptors that mediate anti-
lipolytic effects and located predominantly on adipocytes. Any
metabolic changes in the environment can be sensed by the adi-
pocytes through these receptors and responded through lipolytic
regulation and release of products including pro or anti-
inflammatory adipokines and free fatty acids. The level of di-
etary fat can regulate the expression of these genes in adipose
tissue. When male C57BL/6 mice were fed a high-fat diet for
11 wk, the expression GPR109A and GPR81 genes were significantly
downregulated in the adipose tissue of epididymal fat pads
(Wanders et al., 2012). In addition, the decrease in the expression
of GPR81 and GPR109A genes is positively correlated with the
expression of the peroxisome proliferator-activated receptor
gamma (PPARg) gene, a regulator of glucose metabolism and fatty
acid storage, in adipose tissue (Wanders et al., 2012). It is expected
that low dietary fat will enhance the expression of the PPARg gene
in adipose tissues. However, the expression of the PPARg gene in
response to a low-fat diet is partly true in the case of growing
calves. Low-fat diet resulted in an increase of the expression of
PPARg gene at 0 to 112 d of age of growing calves, whereas it is
decreased at 112 to 224 d of age in response to low dietary fat
(Segers et al., 2017). In another study, Anunciado-Koza and col-
leagues showed that the expression of an array of genes including
Secreted frizzled-related protein 5 (Sfrp5), bone morphogenetic
protein 3 (Bmp3), mesoderm specific transcript (Mest), and WNT
Signaling Pathway Inhibitor 1 (Nkd1) was significantly upregulated
in the adipose tissues of mice fed a high-fat diet in comparison to
that of basal low-fat diet-fed mice (Anunciado-Koza et al., 2015).
Importantly, these genes are known as predictive indicators of the
susceptibility to the development of obesity in the future. The
effects of low dietary fat on the global expression of genes
revealed that very few transcriptional changes in the liver of the
animals of same-sex and strains. However, considerable variability
was observed in the transcriptome profile of mice of the same
strain and sex when they were fed a high-fat diet (Shockley et al.,
2009). Furthermore, functional annotation and pathway analysis
identified a number of pathways including cholesterol biosyn-
thesis, liver damage, and immune response were affected by the
differentially regulated genes due to a varying dietary fat input
(Shockley et al., 2009). Offspring from high-fat diet-fed mothers
were significantly heavier at weaning with impaired insulin
sensitivity which is associated with increased plasma



Table 2
Information of selected studies that investigated the role of dietary protein on the expression of genes.

Macro-nutrient Feeding cohort Organism, tissue/organ Platform DE genes Important genes References

Protein commercial diet, 24%
vs. 6% protein

mice, placenta microarray 214 [

109 Y

Cxcl12, Gja1, Plau, Gm4787, Htra1, Plau,
Prss23, Creb3l1, Etv5, Foxp4, Gata1,
Gata3, d79a, Fas, Crb3, Hoxa13, Shank3

Starr et al. (2015)

Protein soybean, 14% and 20%
curd protein

swine, liver next generation
sequencing

667 [

652 Y

CMBL, PPIF, NDUFA11, MMACHC, AP2S1,
PARVB, CHCHD5, CHCHD5, ATP5J2, CD63,
ATPAF2, PPP1R1A

Wan et al. (2017)

Protein casein vs. protein free
diet

Wistar rats, liver microarray 97 [

184 Y

Igfbp2, Igf1, Phgdh, Tbg Endo et al. (2002)

Protein high protein vs.
standard protein

Wistar rats, liver microarray e Gls2, Sds, Prodh, Mccc2, Pck1, G6pc,
Gpam, Agpat1, Acls3, Crat, Cpt1a, Cpt1b,
Acat1

Chaumontet et al. (2015)

Protein commercial diet, high
vs. normal protein

mice, liver microarray e Acmsd, Ppargc1a, Got1, Mthfd1l, Idh2,
Cox7a1, Gnpda1, Acsl4, Gpx6, Cyp2b10,
Nnmt, Gstm3, Gsta2, Inhba, Klf10, Egr1,
Bcl6, Id2

Schwarz et al. (2012)

Protein low vs. standard
protein

mice, placenta microarray 91 [

153 Y

Dhcr24, Bcl2, Fastk, Fntb, Cdh5, Inpp5d,
Ncor2, Hdac7, Rai17, Hipk2

Gheorghe et al. (2009)

Protein low vs. standard
protein

swine, ovary qPCR e BAX, Bcl-2, BMP15, BMP4, PCNA, 3bHSD1,
17bHSD2, CYP19A1, CYP17A1, StAR,
FSHR, LHR, ERa

Sui et al. (2014)

Protein corn-soy bean,
standard, low and very
low protein

swine, skeletal muscle qPCR e SNAT2, LAT1, PAT1, PAT2 Li et al. (2017)

Protein soy vs. meat protein rats, liver next generation
sequencing

297 [

279 Y

Slc16a5, Slc7a11, Asns, Gsta5, Phgdh,
Fut1, Csmd1, Igfbp2, Mt2A, Chac1,
Prkcdbp, Arhgap22

Song et al. (2016)

DE ¼ differentially regulated; [ ¼ upregulated; Y ¼ downregulated; qPCR ¼ quantitative PCR.
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concentration of interleukin (IL)-1b and TNF-a and the increased
expression of taste receptor type 1 member 1 (Tas1R1), IL-1b, TNF-
a, and nucleotide-binding domain and leucine-rich repeat con-
taining protein 3 (NLRP3) genes in the gut (Reynolds et al., 2015).
Expression of metabolic genes such as glucokinase (Gck), FASN,
and PPARa was significantly elevated in the liver of offspring in
response to high-fat diet in parents, indicating there is a pro-
gressing insulin resistance through transgenerational effects (Park
et al., 2015).

2.3.2. Dietary fat-induced regulation of genes related to oxidative
stress

Dietary fat intake markedly influences the abundance of the
mRNA genes crucial for the oxidative metabolism and trans-
portation of fatty acid in the skeletal muscles. Consumption of
high dietary fat for a short time may result in a selective increase
in the expression of fatty acid translocase (FAT)/CD36 and BHAD
genes in the skeletal muscles of humans. Gene abundance due to
fatty acid-mediated interactions could be a significant component
in skeletal muscle adaptive activity (Cameron-Smith et al., 2003).
Furthermore, it has been shown that high-fat diet in insulin-
sensitive mice and humans were involved in the changing the
expression of genes associated with decreased abundance of
mitochondrial protein-encoding nuclear genes (e.g., mitochondrial
carrier proteins), decreased expression of genes involved in
oxidative capacity (e.g., electron transport chain associated
genes), and mitochondrial biogenesis-related genes (e.g., PGC-1a
and PGC-1b) (Mizunoya et al., 2013). Insulin resistance and
hyperlipidemia often caused by a high-fat diet which subsequently
has negative impacts on kidney and liver function. Feeding a high-
fat diet can also increase the inflammation as well as oxidative
stress by modulating the expression of hepatic genes. A study
conducted by Okere et al. reported that on low-fat diet, hyper-
tensive animals could exhibit higher expression of myosin heavy
chain switching (2a to b), atrial natriuretic factor mRNA, and
decreased the activity of medium-chain acyl-coenzyme A dehy-
drogenase and citrate synthase. All of these conditions can be
reversed by feeding a high-fat diet (Okere et al., 2006). From these
results, it can be concluded that increased dietary lipid intake can
alter the expression of genes in response to hypertension, left
ventricular remodeling, reduce cardiac growth, and contractile
dysfunction. Changes in the expression of genes due to dietary fat
are presented in Table 3.

3. Macronutrients can influence miRNA expression and
function

3.1. Macronutrients and cellular miRNA

miRNA are a class of small non-coding RNA of approximately 22
nucleotides in length that principally regulate gene expression
either by mRNA destabilization or translational repression (Tesfaye
et al., 2017). miRNA are estimated to comprise 1% to 5% of animal
genes and thought to regulate at least approximately 60% of genes
that are involved in all cellular processes. In addition, to identify
active regulatory miRNA in various tissues, several studies have
shown the relevance of miRNA with numerous pathological,
fertility and developmental processes (Hossain et al., 2012) and
most recently nutrition (García-Segura et al., 2013). The growing
number of research in the field of nutritional impact on miRNA
expression and function indicates the interest and importance to
understand the dynamic relationship of nutrition and miRNA.

3.1.1. Dietary protein intake and regulation of miRNA function
The function and expression of miRNA in a given microenvi-

ronment have been shown to be dramatically dysregulated by the
environmental alteration, i.e. oxidative stress (Sohel et al., 2019).
Therefore, it is highly likely that the expression and function of
certain miRNA can also be modulated by nutrition, macronutrients
in particular, either via deficiencies or augmented intake. For
instance, deprivation of macronutrients modulates the expression
of 30 miRNA in the mammary gland in lactating goat, where 14
miRNA are up-regulated and 16 miRNA are down-regulated
(Mobuchon et al., 2015). It is important to note that both the



Table 3
Dietary fat induced changes in the expression of genes.

Macro-nutrient Feeding cohort Organism, tissue/organ Platform DE genes Important genes References

Fat standard vs. high fat mice, white adipose tissue qPCR e Gpr109a, Gpr81 Wanders et al. (2012)
Fat high vs. low fat cattle, muscle qPCR e ACLY, ADIPOQ, ADIPOR2, CEBPA, DGAT2,

FABP4, FASN, INSIG1, LEP, MTG1, PCK1,
PPARG, RPS15A, SCD, SREBF1

Segers et al. (2017)

Fat commercial diet,
standard vs. high fat

mice, epididymal fat qPCR e Mest, Sfrp5, Bmp3, Nkd1 Anunciado-Koza et al. (2015)

Fat dairy fat, high vs.
standard fat

mice, liver microarray 2,527 [

2,085 Y

Copg, Atp6v0d1, Golga7, Psph, Trappc4,
Dpm2, Psmb5, Dhrs1, Ppm1a, Psenen,
Anapc1, Mrpl43, Xpo7, Nmt1

Shockley et al. (2009)

Fat standard vs. high fat rats, upper gut samples qPCR e Tas1R1, Tas1R3, IL-1b, TNFa, NLRP3, IL-
10, PYY, Ghrelin

Reynolds et al. (2015)

Fat soybean vs. fish oil Wistar rats, muscle qPCR e MyHC1, MyHC2A, MyHC2X, MyHC2B,
LPL, UCP3, PDK4, MTCO2, PPARd, PGC1a,
FOXO1, MyoD

Mizunoya et al. (2013)

Fat high vs. low fat rats, hearts qPCR e MHC-b, ANF Okere et al. (2006)

DE ¼ differentially regulated; [ ¼ upregulated; Y ¼ downregulated; qPCR ¼ quantitative PCR.
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exercise and EAA intake modulate the expression of muscle-
specific miRNA, commonly known as myomirs, including miR-
499, miR-206, miR-133a/b, and miR-1 (Pasiakos and McClung,
2013). Characterization of these 30 nutriregulated miRNA might
provide us a clear understanding of gene regulation in response to
nutrition in ruminants.

Maternal low protein diets found to have significant impacts on
the expression of folliculogenic and steroidogenic genes and their
regulatory miRNA in the ovaries of neonatal piglets suggesting a
potential role of maternal low protein diet on ovarian development
and function through modulating the expression of key miRNA (Sui
et al., 2014). A diet lack of amino acids can result in a change in the
expression of severalmiRNA.When amethionine-choline-deficient
diet was fed, the animals showed liver steatosis, liver injury, and
nonalcoholic fatty liver. Interestingly, under such conditions, the
expression of miR-182, -183, -199a, -705, and -1224 was upregu-
lated in the liver indicating the association of miRNA with diet
induced metabolic disorders (Dolganiuc et al., 2009). Maternal di-
etary protein can affect lipid metabolism in offspring which may
mediate by miRNA. Ccaat-enhancer-binding Protein beta (C/EBPb)
and PPARg are well-established transcription factors involved in
lipid metabolism during adipogenesis and a master regulator of
adipocyte differentiation and insulin sensitivity. PPARg and C/EBPb
are predicted to be a potential target of miR-130b and miR-374b,
respectively. The body weight and backfat thickness of offspring
were significantly decreased in the low protein group which is
characterized by significant down regulation of the expression of
PPARg and C/EBPb genes along with a significant increase of miR-
130b and miR-374b (Pan et al., 2013). Dietary macronutrient-
induced changes in the cellular miRNA function are presented in
Table 4.

3.1.2. Carbohydrate regulation of miRNA function
The availability or shortage of carbohydrates also can modulate

the expression of miRNA. Glucose depletion-induced oxidative
stress has been shown to enhance the acetylation of the miR-466h-
5p promoter region, which led to increasing the expression of miR-
466h-5p (Druz et al., 2012). Lethal (let)-7 miRNA is one of the most
studied miRNA family specifically targets genes that are associated
with type 2 diabetes and is implicated in the regulation of
peripheral glucose metabolism. It has been shown that the
promoter activity and let-7 miRNA expression is dynamically
regulated in response to glucose, TNF-a, and caffeine (Katayama
et al., 2015).

Phosphatase and tensin homolog (PTEN), a tumor suppressor
gene and activator of Akt kinase and induces glomerular mesangial
cell hypertrophy in diabetic nephropathy, has been found to be a
potential target of miR-26a. High glucose diet increased the
expression of miR-26a which reduced the PTEN protein expression
and resulting in mesangial cell hypertrophy (Dey et al., 2015). In
addition, hyperglycemia also resulted in an increased expression of
miR-21 as well as in a decreased expression of its target PTEN in
mouse and lead to renal cell hypertrophy which is a characteristic
of diabetic nephropathy (Dey et al., 2011). In contrast to mamma-
lian, hyperglucidic feed did not affect the expression of metabolism
related miRNA in juvenile rainbow trout (Geurden et al., 2014).

3.1.3. Fat-induced changes in miRNA function
High-fat diets are believed to contribute to the global epidemic

of several metabolic disorders such as obesity, cardiovascular dis-
ease, and probably cancer. A number of recent studies have
demonstrated the putative role and changes in the expression of
miRNA related to the pathogenesis of diseases that are associated
with high-fat diets. For instance, it has been shown that maternal
high-fat diet during pregnancy and lactation significantly reduced
the expression levels of let-7a, let-7b, let-7c, miR-26a, miR-122,
miR-192, miR-194, miR-483*, miR-494, and miR-709, while the
hepatic expression of IGF-2 and PPARa were markedly increased
(Zhang et al., 2009). In addition, maternal high-fat diet results in a
significantly different expression of 10 miRNA in the germ cells of
F1 male offspring and 25 miRNA in the mammary glands of F3 fe-
males (Nguyen et al., 2014). It is interesting to note that 4 miRNA
were down-regulated in both F1 male germ cells and F3 mammary
glands which have been linked to increased susceptibility to many
cancers, including breast cancer (Nguyen et al., 2014) suggesting
that maternal dietary exposures during pregnancy can initiate
epigenetic inheritance of increased risk of breast cancer through
changes in miRNA. HMG-box transcription factor 1 (Hbp1) is a
target of miR-21 and is a transcriptional activator of p53 which is
commonly known as a tumor suppressor and an inhibitor of lipo-
genesis. High-fat diet induced the higher expression of miR-21 and
subsequently suppress the expression of Hbp1 and p53 which is
associated with the lipid accumulation in the liver and cancer
progression (Wu et al., 2015).

Calorie restriction (CR) generally means a reduction of dietary
intake than ad libitum levels without malnutrition. Both CR and
low-fat diet have a profound impact on miRNA expression which is
associated with several physiological alterations. For example, CR
significantly down-regulates the expression of miR-140-3p and
subsequently enhanced the expression of a SIRT1 proteinwhich is a
potential target of miR-140-3p (Pando et al., 2012). Sirtuin 1 (SIRT1)
gene found in the mammalian cell that helps to promote survival



Table 4
Dietary macronutrient induced changes in the expression of cellular microRNA (miRNA).

Macro-nutrient Feeding cohort Organism, tissue/organ Platform DE miRNA Top miRNA References

Carbohydrate,
protein, fat

ad libitum vs. food
deprived

goats, mammary gland
tissue

next generation
sequencing

14 [

16 Y

miR-126-3p, miR-6119-5p, let-7c-5p,
miR-99a-5p, miR-125b-3p, miR-140-
3p, miR-409-3p, miR-451-5p, miR-660-
5p, miR-99a-3p, miR-188-5p, miR-
196a-5p, miR-204-5p, miR-222-
3p, miR-223-3p, miR-494-3p

Mobuchon et al. (2015)

Protein low vs. standard
protein

swine, ovary qPCR e miR-378, miR-98, miR -let-7d-5p, miR-
140-5p, miR-140-3p, miR-let-7c, miR-
423-5p, miR-423-3p, miR-17-5p, miR-
421-5p

Sui et al. (2014)

Protein standard vs.
methionine choline
deficient

mice, liver microarray e miR-27b, miR-214, miR-199a-3p, miR-
182, miR-183, miR-200a, and miR-322,
miR-182, miR-183, miR-199a-3p, miR-
705

Dolganiuc et al. (2009)

Protein standard vs. low
protein

swine, adipose tissue qPCR e miR-130b, miR-374b Pan et al. (2013)

Carbohydrate glucose deprivation mouse cell lines qPCR e miR-466h-5p Druz et al. (2012)
Carbohydrate high glucose rat glomerular

mesangial cells
qPCR e miR-26a Dey et al. (2015)

Carbohydrate high glucose kidney glomerular
mesangial cells

qPCR e miR-21 Dey et al. (2011)

Carbohydrate glucose and gelatinized
starch, high vs. low

rainbow trout, liver and
midgut

qPCR e miR-29, miR-107, miR-33, miR-143 Geurden et al. (2014)

Fat standard vs. high fat mice, liver microarray 10 [

23 Y

miR-503*, miR-379, miR-770-3p, miR-
369-3p, miR-197, miR-21*, miR-328,
miR-471, miR-207, miR-667

Zhang et al. (2009)

Fat standard vs. high fat mice, liver qPCR e miR-21 Wu et al. (2015)
Fat standard vs. low rats, epiphyseal growth

plate
qPCR e miR-140-3p Pando et al. (2012)

Fat standard vs. caloric
restriction

mice, heart tissue qPCR array 18 [

24 Y

miR-21, miR-92a, miR-27, miR-29, miR-
208, miR-214

Noyan et al. (2015)

Fat ad libitum vs. caloric
restriction

mice, colon mucosa qPCR e miR-16, let-7f, miR-351, miR-150, miR-
425, miR-196a, miR-138, miR-155

Olivo-Marston et al. (2014)

DE ¼ differentially regulated; [ ¼ upregulated; Y ¼ downregulated; qPCR ¼ quantitative PCR.
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during energy scarcity and its abundance increased in a tissue-
specific manner in response to calorie restriction. Short-term CR
has been found to be involved in the changes of mRNA and miRNA
profiles associated with the circadian clock, oxidative stress, im-
mune function, apoptosis, metabolism, angiogenesis, cytoskeleton
and extracellular matrix (Noyan et al., 2015). Furthermore, short-
term CR is also associated with improved cardiac function
compared to long-term CR through the reduced abundance of
caspase 3 and activation of pro-survival signaling pathways (Noyan
et al., 2015).

Moderate CR without malnutrition is recognized to have an
anti-aging effect and extend lifespan in many organisms. Expres-
sion and activity of miR-144 were significantly increased in aged
cells, while CR results in a decrease in expression of miR-144
(Csiszar et al., 2014). Expression and transcriptional activity of
Nrf2 both were found to be significantly reduced in aged cells,
whereas CR prevents Nrf2 dysfunction through significant down-
regulation of miR-144. Furthermore, CR reduced age-related
impairment of angiogenic processes, including cell proliferation,
adhesion to collagen, and inhibits apoptosis in cere-
bromicrovascular endothelial cells. Characterization of CR-induced
changes in the expression of miRNA suggests that they may affect
several critical functions and pathways in endothelial cell homeo-
stasis (Csiszar et al., 2014). High-fat diet induced obesity is another
epidemic risk factor that is associated with the aging process and
colon cancer, while the CR diet regimen decreases the risk of colon
cancer. CR significantly decreased cytokines and IGF-1 expression
along with differential expression of several miRNA including let-7,
mir-16, mir-425, mir-196, mir-150, mir-155, mir-351, mir34, and
mir-138. Clearly suppressive effects of CR on colon cancer are
associated with alterations of several biological pathways and
miRNA (Olivo-Marston et al., 2014).

3.2. Macronutrients and extracellular miRNA function

While the majority of miRNA are detected intracellularly, a
handful of miRNA, commonly known as circulatingmiRNA or extra-
cellular miRNA (ECmiRNA), have also been detected outside cells,
mainly in various bio-fluids (Sohel, 2018). ECmiRNA are found in
follicular fluid (Sohel et al., 2013, 2014), blood plasma (Noferesti
et al., 2015), milk (Sun et al., 2015), amniotic fluid (Sun et al.,
2016), and several other bodily fluids (Weber et al., 2010) and cell
culture media (Valadi et al., 2007). Moreover, the expression profile
of extracellular miRNA from different types of body fluids in rela-
tion to different physiological/pathological conditions showed a
specific pattern indicating that ECmiRNA are selectively released
from the cells (Sohel, 2016). ECmiRNA can be released to the
extracellular environment through a variety of pathways including
exosomes, microvesicles, and protein-mediated pathways. For a
detailed review of ECmiRNA release, please see (Sohel, 2020). Both
pathological conditions and environmental factors can influence
the ECmiRNA expression in body fluids. Therefore, it is highly likely
that the expression of ECmiRNA could also be dysregulated by the
dietary intake of macronutrients.

3.2.1. Dietary fat-induced changes in ECmiRNA function
Weight loss through low-fat diet resulted in a significant upre-

gulation of 23 ECmiRNA including miR-16, let-7i, miR-26a, miR-17,
miR-107, miR-195, miR-20a, miR-25, miR-15b, miR-15a, let-7b, let-
7a, let-7c and miR-103 (Hsieh et al., 2015). Target prediction and
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pathway analysis on these miRNA revealed that the target genes
were predominantly involved in metabolic, insulin signaling, and
adipocytokine signaling pathways which are directly linked with
pathophysiological changes associated with obesity and weight
reduction (Hsieh et al., 2015). On the other hand, high-fat diet led to
increasing circulating concentrations of miR-128, miR-130b-3p,
miR-374a-5p, miR-423-5p, while an altered expression of miR-128
and miR-130b-3p was observed in both prediabetic and type 2
diabetes subjects compared to control (Prabu et al., 2015). Of those
miR-128 was known to be positively correlated with insulin level in
circulation. In addition, Povero et al. (2014) showed that nonalco-
holic fatty liver disease induced by high-fat diet results in signifi-
cant enrichment of circulating levels of miR-122 and miR-192
which are previously described in liver disease. Muroya et al. (2015)
tried to investigate the potential effect of grazing movement on the
ECmiRNA profile in bovine plasma. It is important to note that
several circulating miRNA including miR-19b, miR-148a, miR-221,
miR-223, miR-320a, miR-361, and miR-486 were found to be
differentially regulated, surprisingly, expression of muscle-specific
miRNA such as miR-1, miR-133a, miR-206, miR-208a/b, and miR-
499 was undetectable in the plasma, although the authors tried
to correlate the differential expression of miRNA with grazing ex-
ercise there is a possibility that the differential expression of miRNA
may due to the freshness of diet (fresh pasture grasses vs. cut
pasture grasses). One most recent study demonstrated the intra-
venous injection of microvesicles coupled with miR-130b reduces
epididymal fat deposition in high-fat induced obese mice through
the translational repression of PPARg (Pan et al., 2015).

Exosome mediated release and existence of ECmiRNA is one of
the dominant pathways for miRNA to be survived in the harsh
condition of circulation. Recently, several studies have shown the
importance of exosomal miRNA in diet induced complexities. For
instance, exosomal miR-194 plays a crucial role in the cardiac
function and mitochondrial activity in high-fat diet-induced mice
as well as in human subjects (Nie et al., 2018). The upregulation of
exosomal miR-194 was closely related to the impaired cardiac
function in human subjects. In addition, it has also been shown that
exosomes derived from obese mice are involved in the impairment
of mitochondrial activity in myocyte through reduced ATP pro-
duction (Nie et al., 2018), however, the use of miR-194 sponge
improved the cardiac function in in vivo mouse model. Similar
studies reported the involvement of exosomal miR-29a (Li et al.,
2019) and exosomal miR-122 (Wang et al., 2019) in cardiac func-
tion in high-fat diet-induced obese mice andmitochondrial activity
in cardiomyocyte. Dietary macronutrient-induced changes in the
extracellular miRNA function are presented in Table 5.
Table 5
Dietary macronutrient induced changes in the expression of extracellular microRNA (mi

Macro-nutrient Feeding cohort Organism, tissue/organ Platform

Fat commercial feed,
Standard vs. low fat

mice, serum microarray

Fat standard vs. high fat human-mice, serum miRNA PCR array

Fat standard vs. high fat mice, plasma exosomes qPCR
Fat standard vs. high fat humans, plasma exosomes qPCR
Protein standard vs. high

protein
humans, plasma Next generation s

Carbohydrate recommended vs.
energy restriction

elderly men, serum TaqMan miRNA a

DE ¼ differentially regulated; [ ¼ upregulated; Y ¼ downregulated; let ¼ lethal; qPCR ¼
3.2.2. Influence of dietary protein on circulating miRNA
In addition to their fundamental role in maintaining nitrogen

balance and providing EAA for growth, a growing number of
studies indicating that the dietary proteins are directly interacting
with a variety of metabolic functions, cellular signaling, and
thermogenesis. miRNA are the molecules that fine-tune all these
pathways. Given their important role in different physiological
processes, extracellular circulating miRNA should have been
studied more to understand the effects of dietary proteins. How-
ever, unfortunately, there is only one study that evaluated the
effect of higher dietary protein intake in the circulating miRNA
expression pattern (Ramzan et al., 2019). Because of the fact that
high protein diets have a significant impact on the car-
diometabolic health of the elderly, the authors used double the
recommended protein level for 10 wk to investigate the expres-
sion of miRNA in the circulation of the older men. The result was
striking. There were 5 miRNA (miR-125b-5p, miR-100-5p,
miR �99a-5p, miR-23b-3p, and miR-203a) showed significant
downregulation in the study subjects. Bioinformatic analysis
revealed that all these miRNA are targeting genes particularly
involved in inflammation-related pathways (Ramzan et al., 2019).
It is interesting to note that there were very few miRNA showed
altered expression, although there was a large change in the di-
etary protein intake. Therefore, it is not entirely clear whether
these alterations in the abundance of circulating miRNA as a result
of higher protein intake could actually translate into a physio-
logically relevant impact on immune cell function.

3.2.3. Carbohydrate regulation of circulating miRNA function
It is extremely important for the elderly to participate in the

weight loss interventions as more than 35% of them are obese.
Although the short-term energy restriction resulted in improved
metabolic and cardiovascular health, it could also lead to undesir-
able loss of muscle mass. To evaluate whether energy restriction
modulates the expression changes of certain miRNA in circulation
and whether these changes are associated with the whole-body
protein synthesis, Margolis and colleagues recruited 16 over-
weight older men in a 30% energy restriction regimen for 28 d
(Margolis et al., 2017). Energy restriction significantly increased the
expression of circulating miR-133a and miR-133b and Backward
linear regression analysis revealed that upregulation of myo-miRs
was inversely associated with the whole-body protein synthesis.
The idea of using circulating miRNA as a potential biomarker to
detect the individual with high response to energy restriction-
induced weight loss interventions was tested by Parr and col-
leagues. The authors reported that the expression of circulating
RNA).

DE miRNA Important miRNA References

28 [

16 Y

miR-16, let-7i, miR-26a, miR-17,
miR-107, miR-195, miR-20a, miR-
25, miR-15a, let-7b, let-7a, miR-
451, miR-223, miR-92a, miR-200c,
miR-873

Hsieh et al. (2015)

e miR-128, miR-99b-5p, miR-130b-
3p,miR-142-3p, miR-374a-5p, miR-
423-5p, miR-484, miR-629-5p, let-
7d-3p

Prabu et al. (2015)

e miR-194 Nie et al. (2018)
e miR-29a Li et al. (2019)

equencing 5 Y miR-125b-5p, miR-100-5p, miR-
99a-5p, miR-23b-3p, and miR-203a

Ramzan et al. (2019)

ssays e miR-1, miR-133a-3p, miR133b,
miR-206

Margolis et al. (2017)

quantitative PCR.
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miR-935 was significantly higher in the low response group
compared to the high response group and this miRNA could be a
potential biomarker to select the individuals with high response to
energy restriction regimen.
4. Conclusion

Over the last decade due to the advancement of omics tech-
nology, our understanding of the effect of nutrition on the regula-
tory mechanisms at cellular and molecular levels has increased at
an accelerated rate. A combination of innovative nutritional
research and omics technologies will definitely enhance our basic
understanding of gene-miRNA-nutrition interactions that ulti-
mately leads to the development of new methods for animal pro-
duction and disease control. However, this interdisciplinary branch
of science is still in its infancy and should walk a long way to
debunk the secrets of complex geneenutrient interactions. Using
the available resources, this article showed that there is a direct
relationship between the dietary macronutrients and expression of
specific genes and miRNA. The obtained information in this article
will be immensely helpful to deepen our understanding of dietary
macronutrient-induced modulation of gene and miRNA functions
as well as the activity of metabolic pathways.
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