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Abstract

Background: The reproducibility of transcriptomic biomarkers across datasets remains poor, limiting clinical application.
We and others have suggested that this is in-part caused by differential error-structure between datasets, and their
incomplete removal by pre-processing algorithms.

Methods: To test this hypothesis, we systematically assessed the effects of pre-processing on biomarker classification
using 24 different pre-processing methods and 15 distinct signatures of tumour hypoxia in 10 datasets (2,143 patients).

Results: We confirm strong pre-processing effects for all datasets and signatures, and find that these differ between
microarray versions. Importantly, exploiting different pre-processing techniques in an ensemble technique improved
classification for a majority of signatures.

Conclusions: Assessing biomarkers using an ensemble of pre-processing techniques shows clear value across multiple
diseases, datasets and biomarkers. Importantly, ensemble classification improves biomarkers with initially good results
but does not result in spuriously improved performance for poor biomarkers. While further research is required, this
approach has the potential to become a standard for transcriptomic biomarkers.
Background
Optimizing cancer treatment aims for a cure which kills
all cancerous cells in the body with as little detriment to
the patient as possible. Cancer is a highly heterogeneous
disease with extreme genomic, intra- and inter-tumour
heterogeneity; unsurprisingly, patients show a large variety
in response to treatment [1-3]. Personalizing treatment is
therefore expected to improve treatment response, and
thus patient outcome. For example, in some cases surgical
resection of the tumour is curative; additional treatment,
which has serious side-effects, is unnecessary. In contrast,
other patients presenting with similar clinical characteris-
tics (e.g. age, tumour site, stage and histology) could have
more aggressive disease, for which adjuvant treatment is
required to cure or control disease [4]. Without markers to
distinguish these patients, all are given the same treatment,
resulting in over-treatment in some patients and under-
treatment in others.
* Correspondence: Paul.Boutros@oicr.on.ca
1Informatics and Bio-computing Platform, Ontario Institute for Cancer
Research, Toronto, Canada
4Department of Medical Biophysics, University of Toronto, Toronto, ON,
Canada
Full list of author information is available at the end of the article

© 2014 Fox et al.; licensee BioMed Central Ltd
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
To address this urgent clinical need, many groups
have sought to create transcriptomic biomarkers using
microarray-, PCR- or RNA-Seq-based assessments of
mRNA abundances. The resulting multi-gene prognostic
biomarkers (sometimes called signatures) can identify pa-
tient subgroups that would be particularly likely to derive
benefit from more intense therapy [5,6]. However, there
have been numerous challenges in the development of
clinically-useful biomarkers; most published biomarkers
fail to enter routine clinical practice [7].
In cancer, where heterogeneity plays such an import-

ant role, these challenges are magnified; important
tumour biomarkers may be missed when using the com-
mon practice of a single tumour biopsy to direct treat-
ment. If faced with uncertainty in biomarkers, these are
deemed unsuitable for clinical applications and clinicians
prefer to treat without the information and save costs
[8]. In order to advance personalized medicine, robust,
reproducible biomarkers are required.
We have shown that, at least in lung cancer one of the

major sources of biomarker irreproducibility is their sen-
sitivity to relatively subtle changes in pre-processing [9].
We found that analyzing a single biomarker with differ-
ent pre-processing techniques yielded highly-divergent
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results, and these could indeed change clinical manage-
ment for individual treatments [9]. However, we also
found tantalizing hints that different ways of analyzing a
single biomarker could be integrated: an “ensemble” of
pre-processing methodologies out-performed any indi-
vidual one in a 442-patient cohort of non-small cell lung
cancer patients. It appears that each pre-processing
technique removes a different aspect of the underlying
noise in a dataset, and thus a large enough collection of
them provides a more accurate estimate of the under-
lying biological signal.
To generalize and extend this finding, we explored the

impact of data pre-processing on a micro-environmental
biomarker problem: the prediction of tumour hypoxia.
Tumor hypoxia (poor oxygenation) contributes to both
inter- and intra-tumour heterogeneity, and can com-
promise cancer treatment. It is a result of the uncon-
trolled growth of tumour cells and the formation of an
abnormal tumour vascular network [10], and is related
to chemotherapy and radiotherapy resistance, tumour
aggressiveness and metastasis [11]. Hypoxia is associated
with poor prognosis [11], and a marker for hypoxia both
identify patients with more aggressive disease and those
who might benefit from specific therapeutic options [12].
Many different predictors of hypoxia have been gener-
ated [13-20]. To understand pre-processing sensitivity
and how ensemble-classification can be best exploited,
we evaluate this approach for 15 separate biomarkers in
10 datasets comprising transcriptomic profiles of 2,143
primary, treatment-naïve breast cancers.

Methods
Datasets
The ensemble approach [9] was applied to two separate
groups of primary breast cancer datasets. The first group
comprises 8 datasets profiled on the Affymetrix Human
Genome U133A microarrays (HG-U133A), with 1,564
total patients [21-28]. The second group is made up of 2
datasets profiled on Affymetrix Human Genome U133
Plus 2.0 GeneChip Array (HG-U133 Plus 2.0), comprising
a combined 579 patients [29,30]. Only datasets reflected
similar disease states and profiles were included, for ex-
ample datasets of metastatic tumours were excluded [31].
All samples included were treatment-naïve.

Biomarkers
A series of 15 published hypoxia gene biomarkers were
evaluated. The following signatures were included: Buffa
metagene [13], Chi signature [14], Elvidge up gene set
[15], Hu signature [16], the 0% and 2% early Seigneuric
signatures [17], Sorensen gene set [18], Winter metagene
[19] and Starmans clusters 1 to 7 [20]. Descriptions of
each biomarker are given in Additional file 1: Table S1
and Additional file 2: Table S2. The signatures evaluated
here only contain up-regulated genes for which high
gene expression is associated with poor survival.

Pre-processing
All analyses were performed in the R statistical environ-
ment (v2.15.2). The first step was to pre-process each
dataset in 24 different ways: all combinations of 6 pre-
processing algorithms, 2 types of gene annotations and 2
approaches for dataset handling. Thus, each pipeline was
defined by three factors (Figure 1). Each of these is out-
lined in detail in the following paragraphs.
The first factor creating pipeline variation for the en-

semble classifier was the pre-processing algorithm. We
used Robust Multi-array Average (RMA) [32], MicroArray
Suite 5.0 (MAS5) [33], Model-base Expression Index
(MBEI) [34], GeneChip Robust Multi-array Average
(GCRMA) [35]. All of which are available in the R statis-
tical environment (R packages: affy v1.36.0, gcrma v2.30.0).
RMA and GCRMA return data in log2-transformed space
whereas MAS5 and MBEI return data in normal space. It
is common practice to log2-transform MAS5 and MBEI
pre-processed data, therefore both normal-space and log2-
transformed versions of these two methods were included,
giving us six pre-processing algorithms.
The second factor was the annotation approach. A key

part of microarray pre-processing involves mapping the
25 base-pair oligonucleotide probes to specific parts of
the transcriptome (either unique transcript isoforms or
full genes). This is accomplished using a chip description
file (CDF). Our understanding of the human transcrip-
tome is continually evolving, causing the annotation
of individual ProbeSets to change. These advances are
reflected in updated ProbeSet annotation (i.e. in updated
CDF files) [36]. Therefore, we included both the “default"
annotation (R packages: hgu133aprobe v2.10.0, hgu133acdf
v2.10.0, hgu133a.db v2.8.0, hgu133plus2probe v2.6.0,
hgu133plus2cdf v2.6.0, hgu133plus2.db v2.8.0) and up-
dated Entrez Gene-based “alternative” annotation (R pack-
ages: hgu133ahsentrezgprobe v15.1.0, hgu133ahsentrezgcdf
v15.0.0, hgu133plus2hsentrezgprobe v15.1.0, hgu133-
plus2hsentrezgcdf v15.1.0). The number of ProbeSets for
each annotation is given in Table 1.
The last aspect of pipeline variation considered was

dataset handling. Pre-processing was either done on each
dataset individually or on all datasets merged into one.
Separate dataset handling involves pre-processing of a sin-
gle dataset as a unit, independent of others. Each separate
dataset went through the pipeline and was classified inde-
pendent of the other datasets. From all separate datasets,
patients classified as having good prognosis were pooled
and patients predicted to have poor prognosis were pooled.
Alternatively, for merged data handling, the CEL files from
all datasets were combined during pre-processing and
went through the entire pipeline as one dataset.



Figure 1 Experimental design. Outline of the experimental design for ensemble classification and evaluation of a biomarker. Microarray data is
pre-processed in 24 different ways to calculate mRNA abundance levels (Stage 1). Risk groups are subsequently assigned for the evaluated biomarker
(Stage 2). Each of the resulting classifications represents a vote for whether the patient is in the low or the high risk group. The ensemble score is a
summation over these individual classifications and ranges from 0 to 24 (Stage 3). Only unanimously classified patients (ensemble scores 0 and 24) are
considered robust and are evaluated with Cox proportional hazard ratio modeling and Kaplan-Meier survival curves (Stage 4).
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Univariate gene analysis
For each gene represented on both array platforms, pa-
tients were median dichotomized into low and high risk
groups based on the signal-intensity of that gene across
all patients for a single pipeline variant. Cox propor-
tional hazards modeling was used to assess whether sur-
vival properties were significantly different between the
low risk and high risk patients. Statistical significance
was assessed using the Wald test (R package: survival
v2.36-14) and p-values were false-discovery rate (FDR)
adjusted to correct for multiple-testing.

Linear modeling
A simple linear model of platform, pre-processing algo-
rithm, annotation method and dataset-handling type:

Y ¼ V þW þ X þ
X5

i¼1

Zi ð1Þ

where Y is the number of genes, V is the annotation
method, W is the platform, X is the data handling and Z
Table 1 Number of probe sets after pre-processing

Microarray platform/Dataset Annotation Number of probe sets

HG-U133A default 22,283

HG-U133A alternative 12,080

HG-U133 Plus 2.0 default 54,675

HG-U133 Plus 2.0 alternative 18,988

The number of probe sets for each annotation and microarray platform after
completion of pre-processing.
is the pre-processing algorithm, was evaluated to deter-
mine if the model was a good fit for the data.
Second, starting with a complete model of all pairwise

interactions and main effects:

Y ¼ V þW þ X þ
X5

i¼1

Zi þ V : W þ V : X þW : X

þ
X5

i¼1

V : Zi þW : Zi þ X : Zið Þ

ð2Þ

where Y is the number of genes, V is the annotation
method, W is the platform, X is the data handling and
Z1..Z5 specify the 6 options for the pre-processing algo-
rithm, backwards stepwise refinement was performed
using the Akaike information criterion (AIC).
The linear modelling was constructed with alternative

annotation as the baseline for V, HG-U133A as the base-
line for W, merged data handling as the baseline for X,
and GCRMA as the baseline for Z.

Patient risk group classification
Each gene signature was used to classify patients into one
of two groups. The number of genes present on each array
for each annotation is shown in Additional file 2: Table S2.
After data pre-processing, a multi-gene signature score
was calculated for each patient using all genes on that plat-
form that are in the signature's gene list:

Score ¼
XN

n¼1

geneexpr;n ð3Þ

where N is the number of genes in a signature and
geneexpr,n is the median dichotomized value for the
gene expression of the nth gene in the signature compared
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to the expression levels of that gene from all samples. If
the level of the nth gene is above the median for all samples
then geneexpr,n is 1, otherwise −1.
After calculating a score for each patient, these scores

were used to median dichotomize patients into high and
low risk groups for each signature.

Ensemble classification
The patient risk group classifications across all pre-
processing methods were combined to create an ensem-
ble classification by looking for unanimous agreement
between all pipeline variants. The high risk classification
for the ensemble classification is given to the patients
who have been classified as high risk in all 24 pre-
processing pipeline variants; similarly for the low risk
grouping. Patients with conflicting classifications be-
tween pipeline variants were deemed to have unreliable
molecular classifications and were thus excluded from
ensemble classification as before [9] as a conservative
approach that might be used in the clinic.

Individual classification for subset of patients
For better comparison between the ensemble classifica-
tion and individual classifications, the number of pa-
tients classified based on one pre-processing approach
was reduced to match the number of patients classified
in the ensemble classifier. Instead of median dichotomi-
zation, the patients were ordered by their multi-gene sig-
nature score. Then the number of patients that the
ensemble had classified as high risk was selected from
the top of the order as high risk patients and this was
equivalently done for the low risk classifications.

Classifier evaluation
Kaplan-Meier survival curves and unadjusted Cox pro-
portional hazard ratio modeling (R survival package,
v2.36-14) were used to assess survival differences be-
tween the low risk and high risk groups. The Wald test
was used to determine whether the hazard ratio was sta-
tistically different from unity. In all analyses, the super-
ior classification was defined as the classification with
the higher Cox proportional hazard ratio.

Permutation sampling for variable number of pipelines in
the ensemble
In these analyses, the ensemble classification is generally
a combination of all 24 pipeline variants. However, we
also varied the number of pipeline variants being com-
bined. To represent a combination of n pipeline variants,
we randomly sampled n pipelines (without replacement)
and created an ensemble classifier as outlined above.
This process was repeated with replacement 2000 times
for each value of n ranging from 1 to 24.
Student's t-test methods comparison
The pool of all 24 individual methods across the 15 sig-
natures was split based on a single aspect of the pipeline
(dataset handling, gene annotations or pre-processing al-
gorithms). We compared pipelines only differing on a
single aspect using the paired t-test to assess statistical
differences between pipelines.

Permutation sampling for variable number of pipelines in
the ensemble when subgrouping for methods
comparison
As part of the method comparison, the pipelines where
subgrouped based on a single aspect of the pipeline and
then within the subgroups ensembles of a varying num-
ber of the pipelines were constructed. To represent a
combination of n pipeline variants, we sampled n pipe-
lines (without replacement) and created an ensemble
classifier. For each value of n (from 1 to 4 for the pre-
processing algorithm or 1 to 12 if subgrouping based on
gene annotation or data handling), all possible combina-
tions containing n unique pipeline variants were created.

Visualization
All plotting was performed in the R statistical environ-
ment (v2.15.2) using the lattice (v0.20-10), latticeExtra
(v0.6-24), RColorBrewer (v1.0-5) and cluster (v1.14.3)
packages.

Results
Ensemble classification approach
Each dataset was pre-processed using 24 different pipe-
line variants. Each biomarker was then applied separ-
ately for each pipeline variant, producing an ensemble of
24 predictions for each patient and biomarker. These
were analyzed for consistency and combined to form a
single ensemble classification. Figure 1 outlines the ap-
proach used. We separated our datasets according to the
microarray platform used, and tested the two most
widely-used platforms at the time of writing according
to depositions in the Gene Expression Omnibus: HG-
U133A and HG-U133 Plus 2.0. Since both platforms are
Affymetrix arrays and therefore have the same set of po-
tential normalization methods, we can perform inter-
platform analysis independent of pre-processing.

Univariate gene analysis
We first investigated the univariate performance of indi-
vidual genes to determine how the prognostic power of
these simple biomarkers is influenced by pre-processing
differences. As shown previously for lung cancer [12],
the prognostic ability of individual genes varied dramat-
ically across methods. Of the 17,701 genes represented
on both array platforms tested, 74% reached statistical
significance after multiple-testing correction in at least
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1/24 pipeline variants. By contrast, only 16% reached
significance in at least 12/24 pipelines (Figure 2) and
none were significant in all pipelines. Three pipeline var-
iants identified zero genes, while three others found a
single gene (RACGAP1; Rac GTPase activating protein 1),
which was not identified in the other 21 pipelines. These
data clearly indicate that simple union (which would iden-
tify 74% of all genes) and intersection (no genes) ap-
proaches are inappropriate.
Interestingly, all six pipelines that resulted in either

one or no prognostic genes involved analysis of HG-
U133A data (n = 1,564 patients), using either the RMA
Figure 2 Gene univariate analysis. FDR-adjusted p-values (q-values) for u
in common to both platforms and annotation types were visualized in a h
along the x-axis. The pipeline variants are specified by the covariant bar. Th
are provided in the top panel and the number of pre-processing methods
right panel.
or MBEI algorithms, along with the “separate” dataset-
handling approach. There is an evident difference be-
tween the patterns of significant genes on each platform.
The lowest concordance between pipelines is shown in
the inter-platform correlations. Different aspects of the
pipeline appear more highly correlated depending on the
platform and there is no clear ordering of which aspect
is more important without interactions (Additional file 3:
Figure S1). We were able to use linear-modeling to show
that the choice of pre-processing method is strongly deter-
ministic for the number of statistically-significant genes
identified. We considered a complete model of all pairwise
nivariate Cox proportional hazard ratio modeling analysis of all genes
eatmap. Genes are presented along the y-axis and pipeline variants
e number of significant genes (q ≤ 0.05), per pre-processing method
in which each gene reaches significance (q ≤ 0.05) are displayed in the
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interactions and main effects, then used the Akaike infor-
mation criterion (AIC) for backwards stepwise refinement.
A model containing the main effects: platform, pre-
processing algorithm, data-handling type and their pairwise
interactions resulted (R2 = 0.84; Table 2), indicating that
the relationship is deterministic, not stochastic. We note
that interactions are critical: a simple model of main-
effects was not explanatory (R2 = −4.51 x 10−3).

Multi-gene signatures
We next focused on multi-gene classifiers, seeking to de-
termine if our single-gene results could be generalized.
We compared the hazard ratios from Cox modeling of
the ensemble and the 24 individual classifications for 15
published hypoxia signatures. For all multi-gene signa-
tures, superior classification was defined as the classi-
fication with a higher hazard ratio. As seen with the
single gene classifiers, variation was observed between
classifications from the different pipelines and there was
not one single variant which consistently resulted in lar-
ger risk stratification than the others. Further this ana-
lysis identified microarray platform as another possible
source for variation. One pipeline variant (separate data
handling, MAS5 algorithm and default annotation) showed
the lowest risk stratification of the 24 pipelines on one plat-
form (HG-U133A) and the largest of the 24 pipelines on
the other platform (HG-U133 Plus 2.0) (Figure 3). As
shown in Figure 3, ensemble classification performed bet-
ter than individual pipelines and improved signature per-
formance for both microarray platforms.
Analyses for all signatures showed that performance

was sensitive to pre-processing choices and, in the major-
ity of cases, the ensemble classification improved prognos-
tic ability over individual pipeline variants (Figure 4A,B).
For half of the signatures, ensemble classification resulted
in superior risk stratification (as measured by the mag-
nitude of the HR) compared to classifications from the
individual pre-processing pipelines. Moreover the ensem-
ble technique was almost always superior to the “typical”
Table 2 Significant coefficients of linear model for prognostic

Coefficient Estimate

(Intercept) 1995.2

Handling, separate −1305.8

Platform, HGU133 Plus 2.0: Handling, separate 3079.2

Platform, HGU133 Plus 2.0: Algorithm, log2 MAS5 −1844.8

Platform, HGU133 Plus 2.0: Algorithm, MAS5 −1822.2

Handling, separate: Algorithm, log2 MAS5 −1124.2

Handling, separate: Algorithm, MAS5 −1132.8

Handling, separate: Algorithm, RMA −993.0

For the linear model, Y ¼ W þ X þP5

i¼1
Zi þW : X þP5

i¼1
W : Zi þ X : Zið Þ where Y is th

specify the 6 options for the pre-processing algorithm, the coefficients that have a
pre-processing techniques, exceeding the median of the 24
techniques in 24/30 signature comparisons.
The Buffa metagene and the Winter metagene showed

similar results across pipeline variants, but many of
the signatures performed very differently depending
on the dataset platform (Figure 4C, Additional file 4:
Figure S2, Additional file 5: Table S3). Overall signa-
tures showed better risk-stratification on HG-U133
Plus 2.0 arrays (p = 2.75 × 10−48, paired t-test), although
this was signature-specific. Some signatures (Hu signature,
Elvidge signature and Starmans cluster 3) showed consist-
ently better results on the HG-U133 Plus 2.0 dataset com-
pared to the HG-U133A dataset. Conversely, Starmans
cluster 4 and cluster 5 performed better in the HG-U133A
datasets.
The Buffa and the Winter metagene were the only sig-

natures which were statistically significant across all
pipelines tested. Hu and Sorensen, additionally, were
other signatures with statistically significant ensemble
classifications for both datasets. In contrast, Starmans
clusters 1, 2, 3 and Seigneuric 0% early signatures did
not perform well in either dataset; none of their ensem-
ble classifications were statistically significant. In general,
if a signature performed poorly for single pipeline vari-
ants, using the ensemble classification did not improve
it. This was demonstrated by the correlation between
the hazard ratios for the ensemble classification and the
maximum hazard ratios for classification from the indi-
vidual pipeline variants (R = 0.87 for HG-U133A and
R = 0.88 for HG-U133 Plus 2.0).
Since previous analyses involved comparing unequal

numbers of patients classified, we also compared en-
semble classification to classification for the individual
pre-processing methods. In this way, we match patient
numbers between the two conditions, removing this poten-
tial confounding variable. In general, this approach yielded
fewer statistically significant results (Additional file 6:
Figure S3), although both the range and the variance of
hazard ratios increased for every signature using this
s based on individual gene

Standard error t value Pr (> | t | )

251.9 7.736 1.57×10−8

313.1 −4.171 2.51×10−4

236.7 13.010 1.24×10−13

409.9 −4.500 1.02×10−4

409.9 −4.445 1.18×10−4

409.9 −2.743 1.03×10−2

409.9 −1.461 9.83×10−3

409.9 −2.422 2.18×10−2

e number of genes, W is the platform, X is the data handling and Z1…Z5 are

p < 0.05 are shown.



Figure 3 Ensemble approach prognostic improvements. Prognostic ability of the Winter metagene was evaluated in two breast cancer
meta-datasets representing two different array platforms with Kaplan-Meier survival analyses. Two different current practice pre-processing
pipelines and the ensemble approach are shown. Hazard ratios and p-values are from Cox proportional hazard ratio modeling.
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classification algorithm. However the comparison be-
tween of ensemble classifications and individual classifi-
cations shows that patient-number differences are not
the origin of the superior performance of ensemble clas-
sification. For 13/30 signatures, the ensemble classification
was superior to all classifications from the individual pre-
processing pipelines and in 26/30 signatures the ensemble
exceeded the median classification.

Signature comparison
To better understand which signatures were more suc-
cessful, all individual classifications were compared. Un-
supervised clustering of the percentage agreement of
concordant patient classifications between individual
pipeline variants for each signature showed that they
mainly clustered by signature, rather than by pipeline
composition (Figure 5A). This indicated that, although
pre-processing substantially influenced biomarker per-
formance, the genes in the signature characterized the
overall partition and determined whether it was a poor
or good biomarker. The Buffa metagene had the most
consistent patient classifications across pipelines, but
hazard ratios still ranged from 1.51 to 1.87. Although,
we evaluated only hypoxia signatures, patient classifica-
tions did not agree across signatures (Figure 5A,B and
Additional file 7: Figure S4). Signatures of ensemble
classifications that were statistically significant generally
classified a larger fraction of patients (Additional file 7:
Figure S4B).
What is the optimal ensemble size?
Having shown that the ensemble-approach improved
classification for most biomarkers and datasets, we ex-
plored the limits of its performance. We wondered if 24
distinct pipelines were always necessary, and therefore
evaluated the number of pipeline variants required for
optimal performance (maximum risk stratification, as mea-
sured by the hazard ratio) of the ensemble classifier. If cre-
ating an ensemble of four pipeline variants is equally
successful to one from eight variants, then it is not benefi-
cial to introduce the complexity and computational-costs
of pre-processing with four extra pipelines.
Focusing on signatures with a significant 24-pipeline

ensemble, different combinations of pipelines, ranging
from combinations of only 2 to all 24, were evaluated.
These analyses indicated that in general increasing the
number of pipeline variants resulted in an increase in
absolute effect size which started to plateau as the num-
ber of methods in the ensemble increased (Figure 5C).
In parallel, the percentage of patients classified with the
ensemble method decreased and plateaued (Figure 5D).
Most signatures shared the same shape but with differ-
ent rates of hazard ratio increase. The Sorensen signa-
ture on the HG-U133A dataset plateaued at about four
pipeline variants. Therefore, in this case, randomly choos-
ing four pipeline variants to combine provided roughly the
same risk stratification as using all 24 pipelines. Conversely,
for the Winter metagene signature in either dataset, the
mean hazard ratio continued to increase all the way up to



Figure 4 (See legend on next page.)
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(See figure on previous page.)
Figure 4 Risk stratification across classification pipelines and prognostic signatures. Comparison of all hazard ratios (measure of risk
stratification) and corresponding p-values from Cox proportional hazard ratio modeling on (A) HG-U133A platform, (B) HG-U133 Plus 2.0 platform.
The hazard ratio is represented by the size and colour of the dot and the background shade represents the p-value. Further the difference between
hazard ratios on HG-U133A and HG-U133 Plus 2.0 were visualized (C). A positive value (blue) represents higher log2 hazard ratios in HG-U133 Plus 2.0
and a negative value (red) represents higher in HG-U133A.
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24 pipelines, though the curve was steeper at the beginning
then in the end. Although the hazard ratio stopped in-
creasing in some cases, stability continued to increase as
the number of methods in the ensemble increased. This is
demonstrated in Additional file 8: Figure S5 by the tighten-
ing of the hazard ratio range as the number of pipelines is
increased.
Considering the Winter metagene signature in HG-

U133A data, the ensembles created from nine or more
Figure 5 Signature comparison. Analysis of consistency between signatu
the individual pipeline variants. The pipelines are compared using the perc
B, shows the ensemble scores (range 0 to 24) per patient for each signatur
are ordered by the number of patients classified unanimously; the signature w
the far left and the least consistent one is on the right. Finally, the scatter
used to create the ensemble classification is varied. In C, each point is the
the effect of the number of methods combined on the number of patient
statistically significant prognostic power with the ensemble classifier (inclu
2.0, the Hu signature and the Winter Metagene signature have equivalent n
line is hiding the Hu signature.
of the 24 pipelines outperformed all single pipeline clas-
sifiers (Additional file 8: Figure S5 and Additional file 9:
Table S4). Many ensembles did not require all 24 variants
to be an improvement over all non-ensemble methods
(Additional file 8: Figure S5, Additional file 9: Table S4,
Additional file 10: Table S5). Even if the ensemble of 24
variants was not an improvement over non-ensemble
methods, there may still have been an ensemble of a subset
of the variants which was superior to the non-ensemble
res. In A, heatmaps are shown for the pair-wise comparison of all
ent agreement between the patient grouping for the two pipelines.
e, patients are on the y-axis and signatures on the x-axis. The signatures
hich was most consistent across single pipeline classifications is on
plots compare all significant signatures when the number of pipelines
log2 of the mean hazard ratio of 2000 permutations. D, similarly shows
s classified. For each array platform, only the signatures which have
ding all 24 methods) by Cox modeling are shown. For HG-U133 Plus
umbers of patients classified, therefore the Winter Metagene signature



Figure 6 Methods comparison. Compare the contribution of
annotation, dataset handling and algorithm choice as a function of
the number of pre-processing methods included in the ensemble
classification for the Hu signature and Winter metagene. Each
point represents the log2 of the average hazard ratio using the
ensemble approach of all combinations of x pipelines for the specific
factor specified.
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methods (Additional file 8: Figure S5, Additional file 9:
Table S4, Additional file 10: Table S5). These data provide
a compelling rationale to consider and evaluate ensemble
pipelines for all microarray-based biomarkers.

Methods comparison
After showing that ensembles are beneficial, we wanted
to look at whether we can determine the combination of
pipelines that lead to higher hazard ratios in order to
add the most benefit for each additional pre-processing
pipeline. There is a clear relationship between the num-
ber of patients classified in the ensemble and the gain in
hazard ratio, meaning that the ensemble is choosing to
exclude the right subset of patients (Additional file 11:
Figure S6A). Methods that produce less-correlated clas-
sifications gain more from the ensemble classification.
However, if we look at which methods are diverse by a
different metric such as the profiles of prognostic ability
of each gene as a single gene classifier, there is only a
slight but not obvious increase in hazard ratio from
using more diverse pipelines in the ensemble classifica-
tion (Additional file 11: Figure S6B).
To help direct pipeline choices, we sought to address

whether certain aspects of the pipeline resulted in better
or worse performance. For each aspect of the pipeline
(dataset handling, gene annotations, and pre-processing
algorithms), the hazard ratios were grouped per variant
of that aspect and compared. This was done for both
platforms separately and combined.
On both platforms there was a significant difference

between annotations. On HG-U133A, alternative anno-
tation had higher hazard ratios (p = 2.61 × 10−2, paired
t-test). In direct contrast, HG-U133 Plus 2.0 performed
better with default annotation (p = 1.31 × 10−3, paired
t-test). By contrast, the optimal pre-processing algo-
rithm was similar in both platforms, with RMA and
MBEI performing better than GCRMA and MAS5
(p = 3.23 × 10−3-3.53 × 10−7, paired t-test). RMA and
MBEI showed similar results (p = 0.241, paired t-test)
as did GCRMA and MAS5 (p = 0.074, paired t-test).
Furthermore, we analyzed the effect of changing the num-
ber of variants in the ensemble when creating only ensem-
bles from common pipeline variants (Figure 6). Once
again, variant success is not necessarily consistent across
signatures.

Ensemble of signatures
To further filter out unreliable classifications we investi-
gated combining the classifications from two signatures.
The Buffa metagene and the Winter metagene performed
best across our analyses. These two signatures share
24 genes (out of 52 for Buffa metagene, out of 102 for
Winter metagene). Expansion of the ensemble classifica-
tion to only classify patients that both signatures agreed on
(intersect of patients classified by both signatures) im-
proved risk stratification (the hazard ratio) compared to
ensemble evaluations of both signatures (Additional file 12:
Figure S7).
To complete the analysis and expand the number of

patients classified, we also pooled the unanimous classi-
fications (the union of both signatures, excluding pa-
tients that were classified in contrasting risk groups).
This failed to improve risk stratification compared to en-
semble evaluations of both signatures; however, prognostic
performance was improved over all the signatures’ individ-
ual pre-processing methods. Further, many more patients
were classified than with the basic ensemble technique
(Additional file 12: Figure S7), suggesting that ensembles
of signatures could be used to further remove noise or to
increase the number of patients given confident molecular
classifications.

Discussion
The purpose of pre-processing is to remove “noise” from
the data. However, since no method is perfect, each pre-
processing pipeline removes a somewhat different aspect
of the “noise”. Indeed, groups around the world have
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focused on identifying the “optimal” pre-processing tech-
nique for different types of data [37,38]. The principle
of ensemble classification is that by combining pre-
processing approaches we can select the parts of the data
which are reliable across the multiple approaches. The
central tendency of this pool of methods is thus predicted
to lie closer to the “true” value, and thereby to provide a
better biomarker.
Although different pre-processing methods may cause

some variation in the analysis, pre-processing is ex-
pected to have a minor effect on the core experimental
results and conclusions [38,39]. Our previous work has
indicated this is not the case and pre-processing caused
major outcome differences in non-small cell lung cancer
[9]. Here we systematically extend and deepen these
analyses to explore the variation caused by algorithmic
diversity in pre-processing.
At the single gene level substantial differences in prog-

nostic power were seen in univariate analysis. Therefore
pre-processing is part of the reason different studies
identify different biomarker genes. Many authors will
use public data to show that a given gene is prognostic;
however, essentially all genes (~75%) can meet that cri-
terion, depending on which platform and pre-processing
technique is used. Single genes did not appear to behave
the same across pipelines demonstrating variation in
classification results are expected and signatures are
dependent on the pre-processing platform they were dis-
covered on. The fluctuation in prognostic ability for each
gene partially explains why we get different results for
multi-gene signatures and why there is such difficulty
validating biomarkers between research groups [40].
In combination with data showing a plurality of gene

sets are associated with outcome in breast cancer and
other cancers [41-43], the variation suggests that min-
ing of public data for prognostic significance is very
prone to over-fitting and multiple-testing concerns. There-
fore robust, permutation-based approaches need to be
developed [44].
In non-small cell lung cancer, Starmans et al. [9]

showed one example of a permutation-based approach
where an ensemble biomarker classifier improved sur-
vival separation between low risk and high risk patient
groups. Here we extended this finding showing that the
method replicates on two microarray platforms repre-
senting 10 separate datasets in breast cancer for a series
of 15 biomarkers. Across both platforms, there was not
a single pipeline that unfailingly outperformed all other
pipelines; therefore, the ensemble classification provides
a generalized approach to improve biomarkers, both in
terms of performance and stability, without determining
the actual optimal pre-processing pipeline.
Furthermore, in many of the cases, the ensemble clas-

sifications outperformed all single pre-processing methods.
The ultimate value of the ensemble classifiers as a concept
was demonstrated with the Buffa metagene and Winter
metagene. For these two signatures, any ensemble classifier
comprising at least nine pipelines on HG-U133A or 20
pipelines on HG-U133 Plus 2.0 arrays generated superior
risk stratifications compared to all the classifiers that used
only a single pre-processing pipeline. Consequentially, en-
semble classifiers are most definitely beneficial and should
be used.
The ensemble approach did not improve all bio-

markers. Biomarkers with generally bad risk stratifica-
tions across pre-processing pipelines still showed poor
performance when combined in an ensemble. The ensem-
ble approach magnified the separation of risk groups ra-
ther than corrected for a poor initial biomarker. Therefore
the ensemble approach can also be used as a metric to as-
sess the quality of biomarkers, distinguishing between
poor and good signatures. By the statistical significance
and consistency in risk stratification improvement across
the datasets, the Buffa and Winter metagenes are shown
to be strong, consistent signatures. By the same metric,
Seigneuric 0% early and Starmans cluster 1, 2, 3 appear to
be poor signatures validating previous findings where
these signatures did not show prognostic power [20].
A disadvantage of the ensemble classification is that

a fraction of patients are not classified. Only patients
with robust risk classification across pipelines in the
ensemble are assigned to risk groups. Here, using only
the statistically significant ensembles 16% to 80% of
the patients were not classified. The signatures show-
ing significance on both platforms tend to have a higher
percentage of patients classified (36% to 80%) than the
signature significant on only on platform (16% to 68%)
and the signatures not significant on either platform
(15% to 46%). Nevertheless a patient classified as unreli-
able with one signature may be robustly classified using
a different signature. This was shown by intersecting
the Buffa and Winter metagenes, which resulted in im-
proved prognostic power compared to the single pre-
processing pipelines and classified more patients than
with the two ensembles individually. One might consider
taking this into account in biomarker-developement by
attempting to construct ensembles that minimize the
fraction of unclassified patients in the training dataset,
although unclassified patients could resort to standard
clinical care.
An important note about our approach to using

the ensemble classification is the diversity of the pre-
processing methods. Our choice of signature evaluation
meant that a log2-transform on the data does not create
different classifications. For example, the multiple methods
MAS5 and log2 MAS5 pre-processing are actually only
one pipeline variant and aren't filtering out additional un-
reliable patients. Here, the array of 24 pre-processing
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methods in reality only gives 16 unique classifications so
there is less diversity than the numbers indicate. However,
for other signatures, such as the risk-score and clustering
methods evaluated previously [12], up to 24 unique classi-
fications are possible.
In multiple signatures, the ensemble of all 24 pre-

processing pipelines is an improvement but not the opti-
mal ensemble classification (Additional file 8: Figure S5).
So future analysis to refine the process and finesse which
pipelines to use and how they should be combined
would be advantageous. An important future direction
is exploring how ensemble methods can be improved
by incorporating greater algorithm diversity. Continual
addition of diverse methods may increase the optimal
ensemble classification or the optimal ensemble may be
a certain combination of pipelines and new additions
may not lead to an increase. In some cases, such as the
Hu signature on HG-U133 Plus 2.0 addition of another
separate data handling pipeline is not likely to increase
the risk stratification but adding a merged data handling
pipeline would be advantageous (Figure 6).

Conclusions
We systematically show that differences in pre-processing
create differences when using biomarkers. This effect of
pre-processing is important for the research community to
recognize and consider, as accurately accounting for it will
advance biomarker discovery, validation and ultimately
clinical application. We found that the Buffa metagene is
the most consistent biomarker and therefore most clinical
useful signature evaluated and we show that application of
ensemble classification technique is beneficial for improv-
ing risk stratification both in terms of effect size and stabil-
ity of biomarkers.

Additional files

Additional file 1: Table S1. Prognostic signature descriptions.

Additional file 2: Table S2. Gene counts per prognostic signature.

Additional file 3: Figure S1. Correlation of gene univariate analysis.
Analysis of consistency between methods for the prognostic ability of
each gene shown in Figure 2. The heatmap shows pairwise comparison
of all the pipeline variants where the comparison is Spearman's
correlation estimate of the FDR-adjusted p-values (q-values) for univariate
Cox proportional hazard ratio modeling analysis of genes analyzed on
the set of pipelines.

Additional file 4: Figure S2. Platform comparison by signature.
Comparison of hazard ratios for the series of prognostic signatures on
HG-U133A and HG-U133 Plus 2.0. Hazard ratios were derived from Cox
proportional hazard ratio modeling. Each triangle represents the ensemble
classifier's hazard ratio and the circles represent the individual pipeline
variants. The 95% confidence interval is shown for each ensemble. For
the individual pipeline variants, the 95% confidence intervals are shown
in Additional file 5: Table S3.

Additional file 5: Table S3. Hazard ratio 95% confidence intervals for
classifications on the individual pipeline variants.
Additional file 6: Figure S3. Risk stratification across classification
pipelines and prognostic signatures with equal number of patients classified.
Comparison of hazard ratios (measure of risk stratification) and corresponding
p-values from Cox proportional hazard ratio modeling between ensemble
classifications and individual classifications on a subset of patients with
the highest and lowest signature scores on (A) HG-U133A platform, (B)
HG-U133 Plus 2.0 platform. The hazard ratio is represented by the size
and colour of the dot and the background shade represents the p-value.

Additional file 7: Figure S4. Signature comparison. Analysis of
consistency across both significant prognostic signatures and signatures
that were not (compared to Figure 5 A and B which only should
significant signatures). Heatmaps are shown for the pair-wise comparison
(measured as percent agreement of patient classifications) of all the single
pipeline classifications for the individual pre-processing methods (A) and the
ensemble scores derived from these individual classifications per patient for
each signature (B). In B, the signatures are ordered by the number of patients
classified unanimously across all the pipeline variants. From left to right, the
number of patients classified in the ensemble for each signature decreases.

Additional file 8: Figure S5. Ensemble hazard ratio range. The range of
hazard ratios for ensembles from different number of pipeline variants.
The horizontal pink dashed line shows the highest hazard ratio of the
individual methods; all the ensembles above the line are improvements
on current pre-processing practice. The x-axis indicate the number of
pipeline variants combined to create ensembles. The grey background
shows the numbers of pipeline variants where all the ensembles created
are superior to every single individual method. The hazard ratio, p-value
and number of patients classified for each ensemble shown is provided
in Additional file 11: Table S4 and Additional file 12: Table S5.

Additional file 9: Table S4. The hazard ratios, p-values and number of
patients classified for all of the classifications on HG-U133A in Additional
file 8: Figure S5. To make the data easier to use, each signature is in a
separate a tab delimited table/text file and files for each platform are
packaged and compressed separately. Each row in the tables is a patient
classification and there are repeated rows since we were sampling the
pipelines with replacement. The first 24 columns of each table is whether
the pipeline specified in the column name is used in the ensemble
classification with 1 meaning the pipeline is in the ensemble and 0 meaning
it is not. Columns 25 – 27 are the hazard ratio, p-value and the number of
patients classified for the classification respectively.

Additional file 10: Table S5. The hazard ratios, p-values and number of
patients classified for all of the classifications on HG-U133 Plus 2.0 in
Additional file 8: Figure S5. To make the data easier to use, each signature
is in a separate a tab delimited table/text file and files for each platform
are packaged and compressed separately. Each row in the tables is
a patient classification and there are repeated rows since we were
sampling the pipelines with replacement. The first 24 columns of each
table is whether the pipeline specified in the column name is used in the
ensemble classification with 1 meaning the pipeline is in the ensemble
and 0 meaning it is not. Columns 25 – 27 are the hazard ratio, p-value and
the number of patients classified for the classification respectively.

Additional file 11: Figure S6. Method correlation effect on hazard
ratio. Comparison of the effect of method diversity in ensembles of 2
on the increase in hazard ratio from the maximum of the individual
classifications for Winter metagene classifications on HG-U133A (on the
left in pink) and HG-U133 Plus 2.0 (shown on the right in blue). Part A
measures how correlated methods are by their percent agreement
between methods (shown in Figure 5A) which is also equivalent to the
number of patients classified. Part B measures the relatedness of the
methods by the Spearman's correlation of how prognostic each gene is
for a method (Additional file 3: Figure S1).

Additional file 12: Figure S7. Combining signatures. Prognostic ability
of combining the ensemble approach for the Winter metagene and the
Buffa metagene was evaluated with Kaplan-Meier survival analyses. Hazard
ratios and p-values are from Cox proportional hazard ratio modeling. The
intersect is using only patients that are in agreement between Winter
metagene and Buffa metagene. The union is pooling the patients from
Winter metagene and Buffa metagene (excluding patients with conflicting
risk classifications between the two signatures).
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