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Discovering new mTOR inhibitors 
for cancer treatment through 
virtual screening methods and  
in vitro assays
Ling Wang1,2,*, Lei Chen1,*, Miao Yu1, Li-Hui Xu4, Bao Cheng1, Yong-Sheng Lin1, Qiong Gu1, 
Xian-Hui He3 & Jun Xu1

Mammalian target of rapamycin (mTOR) is an attractive target for new anticancer drug development. 
We recently developed in silico models to distinguish mTOR inhibitors and non-inhibitors. In this study, 
we developed an integrated strategy for identifying new mTOR inhibitors using cascaded in silico 
screening models. With this strategy, fifteen new mTOR kinase inhibitors including four compounds 
with IC50 values below 10 μM were discovered. In particular, compound 17 exhibited potent anticancer 
activities against four tumor cell lines, including MCF-7, HeLa, MGC-803, and C6, with IC50 values of 
1.90, 2.74, 3.50 and 11.05 μM. Furthermore, cellular studies and western blot analyses revealed that 17 
induces cell death via apoptosis by targeting both mTORC1 and mTORC2 within cells and arrests the cell 
cycle of HeLa at the G1/G0-phase. Finally, multi-nanosecond explicit solvent simulations and MM/GBSA 
analyses were carried out to study the inhibitory mechanisms of 13, 17, and 40 for mTOR. The potent 
compounds presented here are worthy of further investigation.

The mammalian target of rapamycin (mTOR) plays a critical role in several signaling pathways, controlling cell 
growth, proliferation, angiogenesis, protein translation, energy homeostasis, and lipid metabolism1,2. mTOR exists 
in two complexes: mTOR complex 1 (mTORC1) and complex 2 (mTORC2). The mTORC1 consists of Raptor, 
LST8, PRAS40 and Deptor and, regulates protein synthesis through the phosphorylation of p70S6K1 and 4E-BP13. 
The mTORC2 consists of Rictor, LST8, SIN1, Deptor and Protor and, regulates cell proliferation and survival 
through the phosphorylation of Akt/PKB4. Aberrant activation of the mTOR signaling pathway has been commonly 
observed in many cancers and therefore has attracted considerable attention as an oncology drug discovery target2.

Rapamycin and its analogs (rapalogs) have been successfully applied to treat specific cancers in the clinic, 
suggesting that mTOR is a promising anticancer drug target5. However, recent studies have shown that existing 
rapalogs do not completely inhibit mTORC1 activity and have no inhibitory effect against mTORC26,7. In addition, 
treatment with rapamycin and rapalogs usually results in the hyper-activation of Akt, thus reducing its benefits 
as an anticancer agent8. There is great interest in clinically testing the hypothesis that ATP-competitive mTOR 
inhibitors will show broad and profound anticancer activity, which may offer therapeutic advantages over rapalogs.

In recent years, ATP-competitive mTOR inhibitors, such as mTOR selective inhibitors (e.g., OSI-0279, INK-
12810, and CC-22311) and dual mTOR/PI3K inhibitors (e.g., PF-0469150212, BEZ23513, and GSK212645814) are 
discovered and being tested in clinical trials. These inhibitors are applied for elucidating the biochemistry of the 
mTOR signaling pathway, but ATP-competitive mTOR inhibitors for clinical use are not commercial available. 
Moreover, these inhibitors have side-effects, including skin rash, weight loss, mucositis, depression, thrombocy-
topaenia, and hyperlipaemia15,16. Hence, there is a continually growing need to discover novel mTOR inhibitors 
for further development into therapeutic candidates for cancer treatment11,17.
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In the previous work, we developed an in silico method to predict mTOR inhibitors with multiple classification 
approaches including recursive partitioning (RP), naïve Bayesian (NB) learning18 using Atom Center Fragments 
(ACFs) as the features. The method has been validated for being capable of hopping new mTOR inhibitor scaffolds18. 
In this study, we continued our earlier efforts aimed at identifying and characterizing novel mTOR inhibitors. An inte-
grated virtual screening strategy using combining multiple classification models with molecular docking approach 
was employed to discover new ATP-competitive mTOR inhibitors (Fig. 1). The hits selected via virtual screening 
were then validated using an in vitro mTOR kinase assay. In particular, in vitro anti-proliferative assay demon-
strated that compound 17 exhibited potent anticancer activities against four tumor cell lines, including MCF-7,  
HeLa, MGC-803, and C6. The mechanisms of cell death induced by compound 17 were also probed by a series 
of chemical biology studies, including cell cycle analyses, quantification of apoptosis, and western blot analyses.

Results and Discussion
Virtual screening for mTOR inhibitors. The flowchart of the virtual screening for the present study is 
shown in Fig. 1. In our previous study, a series of in silico classification models were developed for the prediction 
of mTOR inhibitors. In the present study, the previous multiple classification approach was employed to filter 
compounds in SPECS and GSMTL libraries in order to construct the mTOR inhibitor-like library. The RP model 
(MP+ FPFP_4) was first applied for a total of 204,195 molecules and 26,596 compounds were retained. Then, 
the NB model (MP+ LCFP_6) was employed to further filter these 26,596 compounds, resulting in 23,561 com-
pounds. Finally, the ACFs model (ACFs layer =  3) was used to further refine these 23,561 compounds and 18,066 
compounds were retained. mTOR inhibitor-like library with enhanced mTOR inhibition (18,066 compounds) 
was subsequently used for the virtual screening with molecular docking approach.

Prior to the virtual screening, the performance of the Glide docking was evaluated by re-docking the native 
ligand (PP242, PDB entry 4JT5) into mTOR kinase domain (Figure S1). As shown in Figure S1, the root mean 
square of distance (RMSD) between the experimental conformation of PP242 and the best conformation generated 
by Glide docking is 0.61 Å, suggesting that the Glide docking algorithm is qualified for docking small molecules to 
the mTOR active pocket. All structures from the mTOR inhibitor-like library were first docked and scored by the 
Glide SP score. The top 5,000 saved structures from the previous step were re-docked and scored by the Glide XP 
score. After this docking procedure, the 500 compounds with top Glide XP scores were stored separately for clus-
tering and visual analyses. These compounds was inspected to check whether they had interactions with the ATP 
binding pocket of mTOR kinase, including hydrogen bond interactions with Val2240 and π -π  stacking interaction 
with Trp2239. This step makes sure selected candidates not only have a higher docking score but also a rational 
binding mode. An In house S-cluster algorithm19 was applied for structure diversity analysis to assure the hits 
selected from the virtual screening were unique and unrepeated. Finally, 41 compounds were chosen for bioassay.

In vitro mTOR kinase assay. The mTOR kinase inhibitory activities of the 41 final virtual hits were deter-
mined using an ELISA-based activity assays that utilize a p70S6K-GST fusion protein as a specific mTOR sub-
strate (see the Experimental Section for details). For the initial screening, all the activities were measured at a 
concentration of 10 μ M. The compounds were retested to exclude false positives when they showed greater than 
20% inhibition of mTOR kinase activity. Detailed results of the bioassays are shown in Table 1. Among the 41 
tested compounds, 15 compounds exhibited more than 20% inhibition of mTOR kinase activity and 7 compounds 
(13, 17, 20, 21, 27, 36, and 40) were studied further to determine their IC50 values (Table 1). Dose-response 
curves for mTOR inhibition by active compounds are shown in Figure S2. In addition, original docking ranks and 
Glide docking scores are listed in Table S2. In the present study, wortmanin suggested and supplied by CBA104-
1KIT from Calbiochem, which has been reported as mTOR kinase inhibitor with an IC50 value of 0.2 μ M20, and 
under Phase IV clinical trials (also targeting PI3K kinase), was used as a positive control. Wortmanin was deter-
mined with an IC50 value of 0.14 μ M in this study, indicating that our in vitro mTOR kinase assay method is both 

Figure 1. Flowchart of mTOR inhibitor discovery. 
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accurate and reliable. As shown in Table 1, four hits (13, 17, 20, and 40) exhibited IC50 values less than 10 μ M. 
Compound 40 showed the most potent inhibitory activity against mTOR, with an IC50 value of 1.47 μ M. Other 
promising compounds were 21, 27, and 36, which exhibited IC50 values of 14.38, 28.65 and 14.88 μ M, respectively.

Structural novelty and drug-likeness analysis of the confirmed mTOR inhibitors. The chemical 
structures of 15 active molecules are shown in Fig. 2. To evaluate the novelty of these hits with respect to known 
mTOR kinase inhibitors, pairwise Tanimoto similarity indices between these hits and mTOR inhibitors obtained 
from ChEMBL (IC50 <  10 μ M, Figure S3)18 were calculated based on the FCFP_4 fingerprint via the “Find Similar 
Molecules by Fingerprints protocol” in Discovery Studio 3.5 (Accelrys Inc., San Diego, USA). As shown in Figure S3,  
these hits have low Tanimoto similarities (0.13 ~ 0.38, except 25 of 0.421) with the known mTOR inhibitors. The 
three most active compounds (13, 17, and 40) exhibited Tanimoto similarity values of 0.193, 0.138 and 0.346, 
respectively. All these results suggested that these mTOR inhibitors discovered in this study are structurally novel. 
In other words, the simple method (e.g., 2D similarity method) cannot discover the novel active compounds 
resulting from the virtual screening strategy presented in this study.

The drug-likeness properties of 15 hits were assessed using Qikprop (Table 2)21. As shown in Table 2, all of these 
inhibitors satisfied most of the drug-likeness rules defined in Qikprop. The molecular weights of the hits are less 
than 500 (except 6), the number of hydrogen bond donors is fewer than 5 (except 17) and the number of hydrogen 
bond acceptors is fewer than 10 (except 6). The predicted octanol/water partition coefficient (QPlogPo/w) is in 
the acceptable range i.e., − 2.0 to 6.5 and − 6.5 to 0.5, respectively. Oral absorption index (PHOA) values of 15 hits 
are in the acceptable range (Table 2). Moreover, active compounds presented in this study (except compound 6) 
don’t contain problematic substructures suggested from Pan Assay Interference Compounds (PAINS)22 based on 
substructure search results. Although compound 6 contains rhodanine substructure from PAINS, it shows low 
activity against mTOR (Table 1). All of these results suggested that the novel mTOR inhibitors identified in the 
present study provided valuable alternatives for further lead optimization.

Characteristic binding patterns of the confirmed hits. The binding modes of six inhibitors (13, 17, 20, 
21, 36, and 40) with mTOR were predicted by molecular docking. Subsequently, the energy profile and stability 
of the predicted binding poses of three most potent inhibitors (13, 17, and 40) were investigated through MD 
simulations and MM-GBSA calculations. 13 (IC50 =  5.83 μ M) represents a unique chemotype that consists of 
ternary rings, linker, and benzene acetamide. The ternary rings are surrounded by Val2240, Trp2239, Met2345, 
Leu2185, Leu2354, and Thr2245 (Figs 3a and 4a), while benzene acetamide is inserted in a deep pocket contain-
ing Asp2195, Asp2357, Phe2358, and Lys2187. 13 can form hydrogen bonds with the side chains of Val2240 and 
Asp2195 (Figs 3a and 4b). Distance analyses suggest that the hydrogen bond between 13 and the side chain of 
Val2240 is conserved during 10 ns MD simulations (Figure S4a). Previous studies demonstrated the hydrogen 
bond between inhibitor and Val2240 was necessary for mTOR inhibitory activity23–25, which was consistent with 
our analysis. The hydrogen bond between 13 and the carboxyl oxygen atom of Asp2195 is maintained for the 
first 5 ns in our simulations and occasionally disappears after 5 ns (Figure S4b), suggesting this hydrogen bond 
is not stable in water. Moreover, 13 can form extensive stacking and arene-H interactions with the indole group 
of Trp2239 (Fig. 3a) and the side chain of Met2345 (Fig. 4b). The binding free energy was estimated using the 
MM/GBSA method to gain information on the different components of interaction energy that contributes to 
13 binding, and detailed results are listed in Table S3. Both van der Waals and electrostatic components play key 

Compound
% of mTOR inhibition 

at 10 μMa IC50 (μM)b

6 22% ND

9 23% ND

12 30% ND

13 76% 5.83 ±  1.85

17 61% 7.59 ±  2.44

18 38% > 50

20 55% 9.20 ±  2.15

21 50% 14.38 ±  2.02

25 36% > 50

26 33% > 50

27 38% 28.65 ±  2.65

33 21% ND

36 31% 14.88 ±  1.01

37 22% ND

40 91% 1.47 ±  0.33

Wortmaninc – 0.14 ±  0.02

Table 1.  Virtual screening hits and their in vitro assay results for mTOR inhibitions. a% Inhibition values 
are the mean ±  SD of triplicate measurements at 10 μ M. bIC50 values for mTOR shown are the mean ±  SD of 
triplicate measurements. cUsed as a positive control compound. ND: not determined. Wortmanin is suggested 
and supplied by CBA104-1KIT from Calbiochem.
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roles in 13 binding, and the van der Waals contribution (− 53.44 kcal/mol) is approximately 2-fold greater than 
the electrostatic component (− 24.14 kcal/mol). Electrostatic solvation (Δ Gele,solv) disfavors binding because of 
the de-solvation penalty for 13 and mTOR. The non-polar component of solvation (Δ Gnonpol,solv), which corre-
sponds to the burial of solvent-accessible surface area (SASA) upon binding, provides a slightly favorable con-
tribution (Table S3). Energy decomposition analysis led to the identification of key residues that contribute to 
binding affinity at the active site. Generally, if the interaction energy between the residue and inhibitor is lower 
than –1 kcal/mol, that residue is considered to be important in inhibitor binding (i.e., it is hot residue)26,27. As 
shown in Fig. 4a, hot residues can be divided into three clusters for 13 binding, i.e., (i) “hydrophobic chamber” 
(residues Ile 2163, Trp2239, Val2240, and Met2345), (ii) “inner hydrophobic pocket” (residues Ile2237, Leu2185, 
Tyr2225, and Ile2356), and (iii) “deeper pocket” (residues Asp 2357 and Phe2358). The major contribution for 
each hot residue is from van der Waals interactions (Fig. 4a). Our energy decomposition analyses results are 
consistent with the binding mode results. For Asp2195, the electrostatic contribution (− 7.72 kcal/mol) is in favor 
for 13 binding, but electrostatic solvation (Δ Gele,solv, 9.82 kcal/mol) is unfavorable for 13 binding, resulting in an 
overall unfavorable contribution from Asp2195 (Δ Gsubtotal =  1.51 kcal/mol, Fig. 4a). This result also agrees with 

Figure 2. Chemical structures of the 15 confirmed active compounds. 



www.nature.com/scientificreports/

5Scientific RepoRts | 6:18987 | DOI: 10.1038/srep18987

the unstable hydrogen bond between phenyl acetamide group of 13 and the carboxyl oxygen atom of Asp2195 
(Figure S4a). It is quite possible that 13 possesses a relatively polar of acetamide group that cannot form sufficient 
interactions with Asp2195.

The predicted binding mode of 17 and mTOR is shown in Figs 3b and 4d. 17 can form three hydrogen bonds 
with the side chains of Val2240 and Gly2238, and these hydrogen bonds are maintained over the course of 10 ns MD 
simulations (Figure S4b). Similar to 13, the pyrimidine group of 17 also forms an arene-arene stacking interaction 
with the indole group of Trp2239 (Figs 3b and 4d). Previous studies23,28 suggested that Trp2239 is not present in 
canonical protein kinases (e.g., PI3Ks); it would contribute to the inhibitory specificity for mTOR over PI3Ks. Our 
western blot analyses demonstrate that 17 cannot inhibit the PI3Ks pathway (See cellular assays section). All of 
these results suggest that if an inhibitor can form stronger interaction with Trp2239 (especially arene-arene stacking 
interactions, e.g., Δ Gsubtotal =  − 4.61 kcal/mol for 17, Fig. 4b), it may be a selective mTOR inhibitor. Additionally, an 
arene-H stacking interaction is formed between the pyrimidine group of 17 and the side chain of Cys2243 (Fig. 4b). 
Residue-based free energy analyses suggest that the hot residues for 17 binding are similar to the hot residues in 
13 (Fig. 4c), except for Asp2357 and Phe2358. It is possible that there are no any substituents in the Benzene group 
of 17 which cannot reach the “deeper pocket” to interact with Asp2357 and Phe2358 compared with 13. This may 
explain why the binding free energy of 17 is relatively higher than 13 (Table S3). All of these results are consistent 
with the bioassay results (Table 1).

40 exhibited the most potent inhibitory activity against mTOR, with an IC50 value of 1.47 μ M. As shown in 
Fig. 3f and 4f, 40 forms all of the favorable interactions exhibited in 13 and 17, i.e., (i) hydrogen bonds with the 
side chain of Val2240 (conserved during MD simulations, Figure S4c), (ii) arene-arene stacking interactions with 
the indole group of Trp2239, and (iii) similar hot residues with 13 for 40 binding (Fig. 4e). Similar to 13, the 
hydrogen bond between 40 and the carboxyl oxygen atom of Asp2195 is not stable (Figure S4c). Moreover, addi-
tional arene-H stacking interaction is observed between the benzene group of 40 and the side chain of Asp2357. 
All of these favorable interactions suggest the binding free energy of 40 is lower than that of 13 and 17 (Table S3), 
which also agree with the trend of our experimental observation. 20 and 21 show similar binding modes, while 
36 exhibits a similar binding mode with 13. Detailed binding modes of 20, 21, and 36 are depicted in Fig. 3c–e.

Cellular assays. The three most potent compounds (13, 17, and 40) were selected for in vitro anti-proliferative 
assays using five cancer cell lines from different tissues (Fig. 5), including MCF-7 (human breast cancer cell), 
HeLa (human cervical cancer cell), MGC-803 (human gastric cancer), C6 and U87 cells (Glioma cell). 13 and 40 
do not show anti-proliferative activity against these cancer cell lines (data not shown), which may be due to the 
effect of a drug efflux pump21,28. 17 exhibits inhibitory effects on the proliferation of MCF-7, HeLa, MGC-803, 
and C6 in a dose-dependent manner, with IC50 values of 1.87, 2.74, 3.51 and 10.19 μ M, respectively (Fig. 5). Most 
human breast cancer cells and cervical cancer cells become resistant to current chemotherapeutic drugs due to 
mutation of apoptotic mechanisms29,30. It has been reported that MCF-7 cells are resistant to most of the drugs 
approved by the US Food and Drug Administration (FDA), including paclitaxel, doxorubicin, 5-fluorouracil, 
etoposide, and camptothecin31,32. Kinase profile assay results suggest that compound 17 is multiple kinase inhib-
itors (mTOR, DNA-PK, and p110 alpha, Table S4), suggesting it significantly exhibits anticancer activities in cell 
lines in the present study. Anti-proliferative assay results demonstrate that 17 can be a promising lead for further 
development into therapeutic candidates for treatment of these cancers.

Compound MWa HDb HAc QPlogPo/wd PHOAe

6 530.62 0 11.15 3.89 86.15

9 268.28 3 6.50 1.04 76.51

12 246.19 3 6.50 − 0.93 42.63

13 397.44 2 8.00 2.60 78.29

17 310.32 7 7.00 − 0.49 36.24

18 385.34 1 8.20 1.35 64.90

20 314.75 0 5.50 2.39 93.30

21 270.27 0 6.00 1.17 85.13

25 369.44 0 6.20 3.54 100.00

26 364.38 1 6.00 3.46 100.00

27 356.39 2 6.25 2.85 88.63

33 424.67 3 6.00 2.94 77.19

36 471.34 2 9.00 3.80 95.70

37 256.26 0 3.75 2.78 100.00

40 436.55 3 5.50 5.13 100.00

Wortmaninf 428.44 3 13.40 0.31 39.30

Table 2.  Assessment of drug-like properties of the lead molecules and wortmanin as verified by Qikprop. 
aMolecular weight (256.26–530.62). bHydrogen bond donors (< 5). cHydrogen bond acceptors (< 10). 
dPredicted octanol/water partition co-efficient logP (recommended range: − 2.0 to 6.5). ePercentage of human 
oral absorption (< 25% is poor and > 80% is high). fUsed as a positive control compound.
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To elucidate the mechanisms of cell death induced by 17, we analyzed the effect of 17 on nuclear morphology 
using Hoechst 33342 staining. Detailed results are shown in Fig. 6. We observed that the nuclei of compound 
17-treated HeLa cells exhibited hyper-condensed chromatin or shrunken and fragmented nuclei. This observation 
allowed for clear discrimination of treated cells from untreated non-apoptotic HeLa cells, which have a normal, 
round, and unpunctuated nucleus. These results demonstrated that the mechanism of cell death induced by com-
pound 17 was via apoptosis. The percentage of apoptotic HeLa cells were 6.5% and 7.7% at the concentrations of 
2.74 and 5.48 μ M, respectively (Fig. 6d). To further confirm the nuclear morphology observation, Western blotting 
was used to detect caspase-3 activation and PARP cleavage, two biochemical markers of apoptosis. Compound 
17 markedly increased the levels of cleaved (activated) caspase-3 and PARP compared with control (Fig. 6e). The 
induction of apoptosis is positively correlated with the concentration of compound 17.

To further explore the mechanism of cell growth inhibition by compound 17, we examined the effects of 
compound 17 on cell cycle distribution in HeLa cells using flow cytometry. As shown in Fig. 6, the G2/M-phase 
and S-phase were reduced compared with controls, while the G1/G0-phase was increased (Fig. 7). These results 
demonstrated that 17 induced an arrest of cell cycle at the G1/G0-phase, contributing to its anti-proliferative effect 
on cancer cells.

In vitro mTOR kinase assay confirmed that 17 did inhibit mTOR kinase activity (Table 1). The mTOR pathway 
is frequently activated in human cancers (e.g., HeLa and MCF-7). To assure compound 17 inhibits the mTOR 
pathway inside the cell, western blotting was employed to check the activity of mTORC1 (Complex 1) and mTORC2 

Figure 3. Predicting binding modes for compounds 13 (a), 17 (b), 20 (c), 21 (d), 36 (e), and 40 (f). Hydrogen 
bonds are depicted by red dotted lines. These figures were prepared using PyMol software (http://www.pymol.org/).

http://www.pymol.org/
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(Complex 2). HeLa cell line was selected for western blot analysis after treatment with compound 17 at 2.47 and 
5.48 μ M; detailed results are shown in Fig. 8.

mTORC1 activity was evaluated by determining the phosphorylation level of its targets, p70S6K and 4E-BP1, 
in the HeLa cell line. As shown in Fig. 8, the phosphorylation levels of p70S6K and 4E-BP1 were suppressed by 
the treatment of compound 17 at 2.47 and 5.48 μ M, respectively. Quantitative of the phosphorylation levels of 
p70SK6 and 4E-BP1 are positively correlated with the concentration of 17 (Fig. 8). These results demonstrated 
that mTORC1 was well inhibited inside HeLa cells by 17.

Figure 4. Ligand−residue interaction energies from MM/GBSA energy decomposition for 13 (a), 17  
(c) and 40 (e), and two-dimensional ligand-residue interaction maps of 13 (b), 17 (d) and 40 (f). Delta Gsubtotal 
represents total estimated binding free energy for each residue. Delta Gele represents non-bonded electrostatics 
interactions. Delta Gvdw represents non-bonded van der Waals interactions.
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Previous studies demonstrated that the kinase domains of mTORC1 and mTORC2 exhibited similar 3D struc-
tures, especially in the ATP binding pocket17,23,25,33. Accordingly, we checked mTORC2 activity by measuring Akt 
phosphorylation levels on Ser473 in HeLa cells. As shown in Fig. 8, compound 17 can reduce P-Akt Ser473, sug-
gesting that mTORC2 is well inhibited inside the cell of HeLa. In other words, the mechanism of HeLa cell death 
induced by 17 was apoptosis, and induction was achieved by targeting both mTORC1 and mTORC2 simultaneously.

To evaluate whether compound 17 inhibits the PI3K pathway, the Akt phosphorylation level on Thr308 was 
determined. Figure 8 suggested that P-Akt Thr308 (the PDK1 target, a downstream kinase, in the PI3K pathway) 
was not affected by treatment with 17 compared with the controls. All of these results demonstrated that compound 
17 is a selective mTOR inhibitor.

Accordingly, the novel mTOR inhibitors identified in the present study provided valuable alternatives for fur-
ther development into therapeutic candidates for cancer treatment. The development of derivatives from several 
of these potent compounds (especially compound 17) is currently under investigation.

The study aims to discover hits with new scaffold against mTOR using virtual screening method. This goal 
had been achieved. The parallel signaling (e.g., MEK/ERK and STAT3/5) of TOR KD or KO cells inhibited by 
compound 17 will be examined in future study.

Methods
mTOR inhibitor like library and virtual screening. Two virtual libraries, SPECS (197,116 compounds)34 
and GSMTL (Guangdong Small Molecule Tangible Library, 7,079 compounds)35, were selected to construct a 
mTOR inhibitor like library. In the libraries, all compounds containing inorganic atoms were removed prior to 
any processing. Then, all the structures of the compounds were chemically standardized (including adding hydro-
gen atoms, ionizing at the pH range from 5.1 to 9.1, and generating stereoisomers and valid single 3D conformers) 
by means of the LigPrep module in Maestro (version 9.4, Schrödinger).

Three classifiers (RP model: MP+ FPFP_4, NB model: MP+ LCFP_6, and ACFs model: mTOR Predictor) were 
employed to derived the mTOR inhibitor-like library from SPECS and GSMTL.

The co-crystal structure of mTOR with PP242 (PDB entry 4JT5)23 was used as the structural template for vir-
tual screening with molecular docking approaches. The template was manipulated with the “Protein Preparation 
Wizard” workflow in Maestro. The main manipulations are removing all water molecules, protonation, and optimi-
zation based on OPLS_2005 force field. Then, a docking grid was generated using the “Receptor Grid Generation” 
module of Maestro. The grid encloses a box centered on the native ligand with a dimension of 10 ×  10 ×  10 (x ×  
y ×  z, Å). The scaling factor of 0.8 was set for van der Waals radii of receptor atoms with a partial atomic charge 
less than 0.15.

Standard precision of Glide docking procedure (Glide-SP) was employed to screen the mTOR inhibitor-like 
library. For each compound, up to 50,000 conformations were generated for docking. The best docking pose of the 
compound was kept based upon Glide scoring function (G-score). Thus, the compounds in the mTOR inhibitor-like 
library were sorted with G-score. Then, the top 5,000 ranked compounds were re-docked and scored with Glide 
extra precision (Glide-XP), which performs the conformational sampling more rigorously and uses a refined 
scoring function. Thus, the top 5,000 compounds were re-sorted by Glide-XP. Again, the top 500 compounds were 
selected from the 5,000 re-ranked compounds for clustering. Clustering and visual analyses were carried out to 

Figure 5. In vitro anti-proliferative activity of 17. The relative inhibition rates of anti-proliferative activity 
were determined by MTT assays. The highest concentration of 17 is 100 μ M. IC50 values were determined from 
the results of at least three independent tests of four cell lines.
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remove redundancies resulting from similar structures and, check the docking poses and interactions between the 
ligands and receptor. Finally, 41 compounds were selected and purchased for bioassays.

Chemistry. All compounds tested for mTOR inhibitions were acquired from the SPECS and GSMTL. 
Compound purity was assessed by HPLC equipped with a XDB-C18 column (250 mm ×  4.6 mm, 5 μ m parti-
cle size) and a UV/VIS detector setting of λ  =  254 nm. Compounds were eluted with the two solvent systems 
(CH3OH as the organic phase in method I and CH3CN as the organic phase in method II). HPLC analysis of the 
compounds assayed confirmed the purity to be ≥ 95% (Table S1). 1H-NMR and MS spectra data were recorded on 
a Bruker AvanceIII spectrometer at 400 MHz using TMS as reference (Bruker Company, USA) and Agilent 6120 
using methanol as solvent(Agilent, German), respectively. Detailed results can be found in Figure S7.

In vitro mTOR kinase inhibition assay. mTOR activity was evaluated using a purified recombinant 
mTOR fragment (amino acids 1360-2549, CBA104-1KIT from Calbiochem). The K-LISATM mTOR activity kit is 
an ELISA-based activity assay for detection of phosphorylation of a p70S6K-GST fusion protein (a specific mTOR 

Figure 6. 17 induced apoptotic cell death in HeLa cells. Representative nuclear staining of HeLa cells with 
Hoechst 33342. Changes in cellular nuclear morphology examined using fluorescence microscopy. (a) Control 
cells uniformly strained blue without condensed chromatin, with normal, round, and unpunctuated nucleus, 
recorded as non-apoptotic. Cells incubated with 17 at concentrations of (b) 2.74 μ M, (c) 5.48 μ M for 24 hours. 
17-treated cells with condensed and fragmented nuclei (red arrow) were scored as apoptotic cells compared 
with the control. (d) Quantitative of apoptosis in HeLa cells. (e) Western blotting showing the activation of 
capase-3 cleavage of PARP in cell treated of compound 17 for 24 h. Representative plots of three independent 
experiments was performed. ***P <  0.001 versus control.
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substrate) in the presence of ATP. The assay was optimized for use with mTOR as described in the Calbiochem 
protocol. The assay takes place in 96-well plates and can be divided into two phases: an mTOR kinase reaction 
phase and phosphorylated substrate detection phase.

In the kinase reaction phase, the following components were mixed in the same well: 5 μ L of a solution con-
taining 5 μ g/mL mTOR substrate (recombinant p70S6K-GST fusion protein) in Tris-buffered saline (1 L TBS: 
sodium chloride 8.8 g, Tris Base 2.4 g, HCl 13 mL, Tween-20 10 ml, ddH2O), 5 μ L ATP solution containing 20 mM 
ATP diluted in kinase assay buffer (pH 7.4, 0.01% Tween 20, 1 mM EDTA, 10 mM MgCl2, 1 mM DTT), 65 μ L of 
human recombinant mTOR kinase at the optimal concentration (80 ng/well) diluted in kinase assay buffer, and 
5 μ L of serial dilutions of inhibitors diluted in DMSO and kinase assay buffer. For each inhibitor concentration, 

Figure 7. Effects of compound 17 on the distribution of cell cycle of HeLa cells. (a) Control cells without the 
treatment of compound 17. Cells incubated with compound 17 at concentration of (b) 2.74 μ M, (c) 5.48 μ M 
for 24 hours. (d) Quantitative measurement of the distribution of cell cycle in HeLa cells. M1: sub-G1/G0; M2: 
G1/G0; M3: S; M4: G2/M. Representative plots of three independent experiments were performed. ***P <  0.001 
versus control.

Figure 8. Effects of compound 17 on the mTORC1, mTORC2, and AKT activity in HeLa cells by Western 
blotting. Inmunoblot analysis of phosphorylation blocking effects of 17 for p70SK6, 4E-BP1, Akt (S473), and 
Akt (T308) (Left). Quantitative measurement of the phosphorylation levels of these proteins (Right). β-actin 
was used as a loading control. *P <0.05, and ***P <0.001 versus control.
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the assay was run in triplicate. The final reaction volume was 100 μ L per well, and samples incubated for 30 min 
at room temperature.

The kinase reaction was stopped by adding 10 μ L kinase stop solution to each well. The phosphorylated sub-
strate was detected using Anti-p70S6K-pT389 antibody, followed by detection with HRP-Antibody Conjugate 
and TMB Substrate. Then, ELISA stop solution was added to each well to stop the reaction, and relative mTOR 
inhibition activity was determined by reading the absorbance at dual wavelengths of 450/540 nm. To exclude 
any possible nonspecific/promiscuous or artificial inhibition of mTOR, all mTOR kinase assays are repeated 
in the presence of 0.01% Triton X-100, as suggested by Shoichet and coworkers36,37. None of the observed 
inhibitory activities was affected by the addition of the nonionic detergent, confirming the active compounds 
are reliable.

In vitro cell proliferation assay. Cell proliferation was measured with an MTS assay (CellTiter 96 Aqueous 
ONE Solution kit; Promega, Madison, USA). MCF-7, HeLa, MGC-803, C6 and U87 cells in log-phase were 
seeded (5 ×  103 cells/well) in 96-well plates for 24 h, and then the medium were replaced with fresh medium 
containing different concentrations of compounds. The working concentration of DMSO did not exceed 0.2%. 
After incubation for 48 h, the cells were further incubated with 20 μ L of MTS for 1–4 h at 37 °C in a humidified 
incubator with 5% CO2. The absorbance at 490 nm was measured using a mircoplate reader (Model680, Bio-Rad; 
Hercules, CA, USA). The inhibition rate (%) was calculated as equation (1):

(%) =




−





 ( )

,

,

A
A

inhibition 1
1

compd

control

490

490

IC50 values were determined from the results of at least three independent tests and calculated from the inhibition 
curves.

Cell cycle analysis. Cells cycle distribution was analyzed as previously described38. In brief, HeLa cells 
(1.5 ×  104/well) seeded in six-well plates were incubated with compound 17 for 24 h. Then, the cells were col-
lected, washed twice with phosphate-buffered saline (PBS), and fixed in 70% cold ethanol at − 20 °C overnight. 
Finally, the samples were stained with 50 μ g/mL propidium iodide and 30 μ g/mL of RNase A at 37 °C for 1 h. DNA 
content data were acquired using CELLQuest software on a flow cytometer (FACSCalibur; Becton Dickinson, 
Mountain View, CA, USA).

Quantification of apoptotic cells. HeLa cells (1.5 ×  104/well) were grown in the presence of compound 17 
for 48 h. Then, the cells were collected, washed with PBS, and fixed in 4% paraformaldehyde for 15 min at room 
temperature. Finally, the samples were stained with Hoechst33342 (10 μ g/mL) for 5 min. Stained nuclei were 
photographed under a fluorescence microscope with a 20×  objective (Nikon).

Western blot analysis. HeLa cells were cultured in a six-well plate in the presence of compound 17 for 
48 h. Samples were prepared by lysing PBS-washed cells with RIPA buffer (Beyotime, Haimen, China) consist-
ing of 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% SDS, and 50 mM Tris-HCl, pH 7.4, supplemented 
with NaF, NaVO4, EDTA and a protease inhibitor cocktail (Roche). Proteins were subjected to SDS-PAGE gel 
electrophoresis and transferred onto a polyvinylidene difluoride membrane (Hybond-P; GE Healthcare Life 
Sciences, Piscataway, NJ). Immunoblotting was performed using rabbit monoclonal antibodies (Cell Signaling 
Technology; Danvers, MA) against p70S6K1 phosphorylated on Thr 389 (#9234) and total p70S6K1 (#2708), 
4E-BP1 phosphorylated on Thr 37 (#2855) and total 4E-BP1 (#9452), Akt phosphorylated on Thr 308 (#4056) 
or Ser 473 (#4060) and total Akt (#4685), cleaved caspase-3 (#9664), PARP (#9532), and β-actin (#3700). 
Bands were revealed with enhanced chemiluminescence kit (BeyoECL Plus; Beyotime) and recorded on X-ray 
films (Kodak; Xiamen, Fujian, China). The densitometry of each band was quantified by FluorChem 8000 
(AlphaInnotech, San Leandro, CA).

Kinase profiling assay. To characterize the kinase selectivity of compound 17, we profiled its ability to bind 
to a panel of 24 structurally related kinases using the SelectScreen Kinase Profiling Service (Life Technologies 
Corporation, Madison, WI).

Statistical analysis. Statistical analysis was performed using GraphPad Prism 4.0 (GraphPad Software Inc., 
San Diego, CA). Data are presented as the mean ±  SD from at least three independent experiments, and differ-
ences are considered significant when P values <  0.05 as determined by the unpaired Student t test.

Molecular dynamics (MD) simulations. MD simulations were carried out to investigate the binding pat-
terns of the three inhibitors (13, 17 and 40) that showed the best inhibitory potency against mTOR. The docked 
structures of inhibitors in complex with mTOR were used as the initial coordinates for MD simulations. The 
protein and inhibitors were applied with ff99SB39 and Generalized Amber Force Field (GAFF)35,40 force field, 
respectively. Each system was solvated in a truncated octahedron box of TIP3P water molecules with a margin 
distance of 10 Å. Neutralizing counter ions were added to the simulation system. A production simulation run 
for 10 ns was performed using the NPT ensemble under a target temperature of 310 K and a target pressure of 1 
atm. Coordinate trajectories were saved every 1 ps for the whole MD runs. MD simulations were performed in 
AMBER 1241. A detailed preparation of inhibitors and mTOR protein as well as MD simulations can be found in 
the Supplementary Information.
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Binding free energy analysis. To provide insight into the interaction energies and energetic stabilities 
of the complexes and the contribution of each residue to inhibitor binding, the MM/GBSA method42–46 in the 
AMBER 12 suite was used to calculate the binding free energies for three inhibitors (13, 17 and 40), and then 
binding free energy was decomposed into individual residue contributions. Detailed calculations and analyses 
can be found in the Supplementary Information.
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