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ABSTRACT Alcaligenes faecalis is a Gram-negative rod that is ubiquitous in the environ-
ment and is an opportunistic human pathogen. Here, we report the whole-genome sequenc-
ing analysis of A. faecalis HZ01, which presents mycobacterial growth inhibitory activity and
was isolated from a contaminated culture of Mycobacterium chubuense ATCC 27278.

A lcaligenes faecalis is a Gram-negative rod, nonfermenting, aerobic, mobile, and peritri-
chous bacterium (1). This opportunistic pathogen is widely distributed in the environ-

ment and is related to nosocomial diseases (2, 3), with biotechnological potential in the
pharmaceutical industry and in bioremediation of contaminated environments (4), such as
the production of antibacterial substances (5–7). Although A. faecalis represents a promising
source for new bioactive substances, there is limited literature on genomic approaches (8).

During the development of previous studies, we observed a contaminant microor-
ganism that had grown on a Mycobacterium chubuense ATCC 27278 culture at 37°C on
Middlebrook 7H10 medium and exhibited mycobacterial growth inhibitory activity
(Fig. 1A to C). In a similar study, it was verified that the antibacterial activity of A. faecalis
is via a live-cell and contact-dependent mechanism (9). The ATCC strain was obtained
from our mycobacterial collection. To isolate the contaminant microorganism, we
selected three colonies showing a halo of mycobacterial growth inhibition, and then
they were individually streaked on another Middlebrook 7H10 medium plate and incu-
bated at 37°C for 48 h. The contaminant microorganism was identified as A. faecalis by
matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF
MS) of pure cultures of the three isolates obtained originally and was stored at 280°C in
nutrient broth supplemented with glycerol (final concentration of 15% [vol/vol]) (10).

Following the bacterial culture in MacConkey agar in a 37°C incubator for 48 h, we
performed genomic DNA extraction using the QIAamp DNA minikit (Qiagen, Hilden,
Germany) and library preparation using the Nextera XT DNA library preparation kit
(Illumina, San Diego, CA, USA). Whole-genome sequencing (WGS) was conducted on
the Illumina NextSeq 500 platform with 2 � 150-bp paired-end reads.
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The sequencing quality was evaluated using FastQC v0.11.9 (11), before and after
the reads were trimmed with Trimmomatic v0.39 (12). De novo assembly was per-
formed with SPAdes v3.14.0 (13), assembly quality was evaluated with QUAST v5.0.2
(14), and annotation was performed with the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) v5.2 (15). For genome comparison, the Artemis Comparison Tool and
BLAST Ring Image Generator (BRIG) v3.0 were used (16, 17). For variant calling, we
used Snippy v4.6.0 (https://github.com/tseemann/snippy). We used PlasmidSeeker v1.3
and PlasmidFinder v2.1 to investigate the presence of plasmids (18, 19). We used
default parameters for all software.

A total of 8,369,218 reads were obtained, and the genome coverage was 606�. We
obtained a total of 7,854,398 reads after quality trimming. By mapping the reads obtained
against A. faecalis subsp. faecalis (ATCC 8750) (https://genomes.atcc.org/genomes/
a6829cff570e4f50) using the Burrows-Wheeler aligner (20), we observed that 86.68% of
the reads were properly paired against the reference genome. After de novo assembly, we
obtained 57 contigs; the largest contig had 848,880 bp. The draft genome obtained had a
total length of 4,141,412 bp, with a GC content of 56.79% (Fig. 1D). The N50 and N75 values
were 669,949 bp and 410,060 bp, respectively. There was no presence of plasmids. We
found 7,873 complex variants, 191 deletions, 188 insertions, 993 multiple-nucleotide poly-
morphisms (MNPs), 4,7401 single-nucleotide polymorphisms (SNPs), and a total of 5,6647
variants.

Due to increasing challenges in treating multidrug-resistant infections, such as
mycobacterial diseases, and the global shortage of successful drug therapy options,
the discovery of new antimicrobial agents is necessary to improve patient outcomes.

Data availability. The A. faecalis HZ01 WGS data were deposited in DDBJ/ENA/
GenBank under accession number JAFMOE000000000 (the version described in this paper
is JAFMOE010000000), BioSample accession number SAMN17762316, BioProject accession
number PRJNA698913, and SRA accession number SRR13612681.
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FIG 1 Antimycobacterial activity of Alcaligenes faecalis HZ01. (A) Mycobacterium chubuense ATCC 27278 culture from which A. faecalis HZ01 was originally
isolated. (B) Antibiosis test exhibiting A. faecalis HZ01 (central line) antimycobacterial activity on Mycobacterium thermoresistibile ATCC 19527 (lines on the
left) and Mycobacterium aichiense ATCC 27280 (lines on the right), using the cross-streak method. (C) Antimycobacterial activity analysis of A. faecalis HZ01
cell suspension (C.1), cell-free supernatant (C.2), and lysed pellet (C.3) on a M. thermoresistibile ATCC 19527 culture. (D) Genomic comparison of the A.
faecalis HZ01 isolate against the reference genome of A. faecalis ATCC 8750.
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