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Background: Interactions between prognostic and pharmacodynamic (PD) biomarkers have received little attention.

Methods: Prognostic and PD utilities were assessed with linear mixed-effects models using published data on repeated
measurements of circulating caspase-cleaved (ctCK18) and total (tCK18) cytokeratin 18, in 57 patients with metastatic colorectal

cancer undergoing chemotherapy.

Results: The model for tCK18 (but not cCK18) separated the prognostic/PD interaction from the pure prognostic effect, illustrating
the principle of dual prognostic and PD characteristics for a given biomarker.

Conclusion: These models provide the framework for the analysis and interpretation of longitudinal data to detect prognostic/PD

biomarker interactions.

With the introduction of mechanism-based or ‘targeted” therapies
in oncology, there is a need to develop biomarkers to prioritise new
agent development (predictive and prognostic), optimise dosing
schedules (pharmacodynamics, PD), and rationalise combination
selection (Tan et al, 2009; Cummings et al, 2010). Prognostic
biomarkers provide evidence about a patient’s disease outcome
independent of treatment; predictive biomarkers assess the
probability of benefit or toxicity from a specific intervention; and
PD biomarkers provides evidence that there is a direct pharma-
cological effect of a drug (Dancey et al, 2010). The interaction
between prognostic and predictive biomarkers is well established
(Peterson and George, 1993; Mandrekar and Sargent, 2009; Buyse
et al, 2010), but possible interactions between prognostic and
PD biomarkers have received little attention. This is clinically
important for a given biomarker, as the magnitude and/or
direction of changes in PD characteristics may differ depending
on its baseline prognostic level.

We previously published on repeated measurements of
circulating caspase-cleaved and total cytokeratin 18 (ctCK18;
tCK18), as biomarkers of epithelial cell death, in patients with
metastatic colorectal cancer (mCRC) undergoing conventional

chemotherapy, and provided evidence that serum concentrations
of tCK18 are both prognostic and PD (Greystoke et al, 2012).
However, in that study, the analysis was limited to simple
regression modelling. Here, we assess prognostic and PD utilities
within a linear mixed-effects framework, which takes account of
intra-individual correlation between repeated biomarker measure-
ments and allows for changes in the variance of the data with time.

MATERIALS AND METHODS

Fifty-seven patients with mCRC underwent repeated sampling
during conventional chemotherapy, in a single cancer institute, as
detailed elsewhere (Greystoke et al, 2012). The timings of repeated
sampling varied depending on clinical practice, but were typically
collected on days 1, 3, 8, 15, 21, 28, 35, 42, 49, and 56, and
thereafter determined by clinical indication.

We measured tCK18 and cCK18, respectively, using validated
M65 and M30 ELISAs (Greystoke et al, 2008). Response to therapy
was assessed by CT scan every 2 months during therapy.
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Statistical analysis. Prognostic characteristics were categorised as
progressive disease or clinical benefit (stable or partial response
combined) based on RECIST 1.0 (Therasse et al, 2000).
PD characteristics were modelled from the repeated biomarker
measurements and truncated at 120 days to avoid biases
of unbalanced censoring. We fitted linear mixed-effects models
(Weiss, 2005), separately for cCK18 and tCK18, after log
transformation. Models incorporated a random intercept for the
population and random slopes for the linear and quadratic time
effects. We included type of chemotherapy treatment (first line vs
others) as an explanatory variable and tested the significance of
the time-by-response interaction, both as fixed effects.

The models were estimated using restricted maximum
likelihood. Forward selection was used to determine which fixed
effects to include; Akaike Information Criterion was used to decide
the optimum model. The assumptions of linearity, normality of
residuals, and random effects, homoscedasticity and independence
of within-subject errors were checked using diagnostic plots
(Fitzmaurice et al, 2008). All analyses were performed using R
statistical software (The R Project for Statistical Computing;
http://www.r-project.org/). A P-value of 0.05 was taken as
statistically significant.

RESULTS

Compared with patients experiencing clinical benefit, those with
disease progression had higher median baseline cCK18 (383 vs
225U1° Y P=0.019) and tCK18 (999 vs 389Ul % P=0.004)
levels. In 25 patients with progressive disease, there was an initial
decrease in both biomarker levels during cycle 1 followed by a
progressive upward trend thereafter (Figure 1). In 32 patients with
clinical benefit, an initial decrease in biomarker was observed in
tCK18 only, with no subsequent change.

Longitudinal chemotherapy-related effects. For cCK18, fixed
effects and random intercept and random slope models were
tested, including time-by-response interactions, either in linear or
quadratic forms. All two-way interactions were tried, but none
found to be significant leading to a model described by the
equation 1 in Supplementary Material 1. The optimum model
succeeded in expressing the prognostic characteristics of cCK18, as
the two lines have different starting points in the y axis - the
intercepts for clinical benefit and progressive disease were 214 and
355U1 ", respectively, similar to the observed mean values
(Figure 2). This model did not incorporate a time-by-response
interaction, suggesting that there is not a prognostic/PD
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interaction, and making it irrelevant to separate out the
prognostic/PD interaction from the pure prognostic effect.

For tCK18, the optimal model (equation 2, Supplementary
Material 2) succeeded in capturing the prognostic characteristics,
with the two curves having different starting points on the y axis -
the intercepts for clinical benefit and progressive disease,
respectively, were 464 and 896Ul ' (Figure 3). The model
incorporates a significant quadratic time-by-response interaction.
The progressive disease group has a steeper curve for mean tCK18
concentration, increasing in time (approximately 12% every 10
days). On the other hand, the curve for the clinical benefit group
tends to be relatively flat. This model had the ability to capture the
PD utility of tCK18, whereas separating out the prognostic/PD
interaction from the pure prognostic effect.
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Figure 2. Predicted values (y axis) from the multivariate linear
mixed-effects model of the log-transformed caspase-cleaved CK18
(cCK18), measured in the original scale. Each line corresponds to a
different type of response to treatment. The table shows the fixed
effects components for the optimal fitting model — the complete model
is reported in the Supplementary Material. The intercepts for clinical
benefit was 214U |~ (anti-lognaturall 5.365)); the intercept for
progressive disease was 355U 1712144+ (214 x (anti-lognatural

[0.507] -1))l.
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Figure 1. PD monitoring of tCK18 and cCK18 in 57 patients with metastatic CRC undergoing conventional chemotherapy, categorised by
treatment response. The y axis is percentage change in biomarker, taken against value at day 1. Curves were generated using Lowess smoother.

Shaded area represents 95% Cl.
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Figure 3. Predicted values (y axis) from the multivariate linear mixed-
effects model of the log-transformed total CK18 (tCK18), measured in
the original scale. Each curve corresponds to a different type of
response to treatment. The table shows the fixed effects components
for the optimal fitting model — the complete model is reported in the
Supplementary Material. The intercepts for clinical benefit was

464 U1~ (anti-lognaural6.139]; the intercept for progressive disease
was 896 U1~ [464 + (464 x (anti-lognaturall0.656] -1))I. The slope of the
progressive disease group was approximated as 12% per 10 days (anti-
lognaturall — 0.077 +0.511] per unit t9). *A number of models were built
and tested against the least Akaike Information Criterion (AIC) value.
For the model without the interaction term, AIC =261.5128; for the
model with the interaction term, AIC =257.7854, and this model was
preferred.

Diagnostic tests indicated no violations of the model assump-
tions (Supplementary Material 3-5).

DISCUSSION

PD biomarkers can provide evidence of drug action, help select an
optimal drug dose and schedule, and inform on the design of
combination therapy schedules (Sarker and Workman, 2007).
Here, we have examined the utility of tCK18, a proof of concept
PD biomarker of drug-induced epithelial cell death, in patients
with metastatic CRC undertaking standard of care chemotherapy.
We had previously determined that at baseline tCKI18 was
prognostic. Statistical modelling in this study indicated that
patients with high baseline tCK18 concentrations (poor prognosis)
exhibit a PD change in this biomarker, whereas patients with low
baseline tCK18 (better prognosis) do not. The implication of these
findings is that where the PD characteristics of a biomarker are
being studied, there is a general principle that prognostic/PD
interactions need to be explored.

Study strengths and limitations. Strengths of this study include
the following. The linear mixed-effects models handle both time-
varying and time-invariant covariates and provide a flexible, yet
parsimonious model for the covariance, using likelihood-based
methods to estimate the model parameters efficiently. Specifying a
mixed model requires many steps (both a weakness and a
strength), each of which requires an informed choice
(Fitzmaurice et al, 2008). This study shows that the linear mixed

models approach offers a feasible method to investigate interac-
tions between the prognostic and PD characteristics of biomarkers,
despite its complexity.

The study findings should be interpreted in light of some
limitations. First, patient recruitment was within a standard care
setting, such that treatment selection and follow-up protocols were
not precisely controlled. This weakness was partly addressed by the
inclusion of ‘type of chemotherapy treatment’ (first line vs others)
in the multivariate model. Second, treatment response was defined
in retrospect. In clinical practice, researchers need to know the
trajectories of the measurements early in the study, with the gold
standard for biomarker qualification being prospective treatment
protocol-driven clinical data.

Context of other studies. The utility of biomarkers as
both prognostic and PD has been explored in a small number of
previous studies. For example, circulating nDNA levels were
elevated in patients with lymphoma (Deligezer et al, 2006) and
lung cancer (Holdenrieder et al, 2008) compared with healthy
controls and were demonstrated to have both prognostic and PD
utilities. In a review of 25 studies of the utility of circulating
tumour cells (CTCs) in early clinical trials, including breast,
colorectal, and prostate cancer, Devriese et al (2011) reported that
while the majority of studies comments on the prognostic
significance of specific targets in CTCs, only five or 20%
commented on the PD effects of these CTC targets.

None of the above studies addressed the issue of interactions
between the prognostic and PD utility of biomarkers in cancer. The
majority of studies implemented different survival analysis
techniques, such as log-rank tests or multivariate Cox regression
models for the assessment of the PD behaviour of different
biomarkers, with the overall survival or progression-free survival
being used as end points (Hahn et al, 2008; Kudo et al, 2011).
As the distributions of biomarkers were positively skewed, some
studies used non-parametric tests to satisfy the assumptions of
unequal variance between sample groups (Greystoke et al, 2011).

Unanswered questions and future research. In our analysis,
we did not account for patient censorship, but instead, minimised
this potential bias by truncating the time period. In future studies,
where censorship (invariably due to cancer-related death) is an
issue, joint models for longitudinal and survival data would be an
alternative approach (Ibrahim et al, 2010). These models would
allow the repeated measurements to be extrapolated from the
observed measurement times to the specific event time in a way
that utilises the entire measurement history. Ultimately, the
repeated measurement process would be adjusted for any loss of
information arising from death or loss of individuals (Lang et al,
2012). However, this type of modelling increases the complexity.

The results presented in this paper show a need to recognise the
interaction of the prognostic and PD characteristics of a biomarker,
and to better understand the underlying mechanisms of this
interaction in future studies.
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