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Abstract

Background: Nuclear factor kappa B (NF-kB) has been shown to play an important role in
regulating the expression of many genes involved in cell survival, immunity and in the inflammatory
processes. NF-«kB activation upregulates inducible nitric oxide synthase leading to enhanced nitric
oxide production during an inflammatory response. NF-kB activation is regulated by distinct kinase
pathways independent of inhibitor of kB kinase (IKK). Here, we examine the role of protein kinase
C isoforms and janus activated kinase 2 (JAK2) activation in NF-kB activation and LPS-stimulated
NO production.

Methods: Murine RAW 264.7 macrophages were treated with lipopolysaccharide (LPS), Phorbol
I2-myristate |3-acetate (PMA) and a combination of LPS and PMA in the presence or absence of
various inhibitors of PKC isoforms and JAK2. Nuclear translocation of the NF-xB p65 subunit, was
assessed by Western blot analysis whilst NO levels were assessed by Greiss assay.

Results: LPS-stimulated NO production was attenuated by PMA whilst PMA alone did not affect
NO release. These effects were associated with changes in p65 nuclear translocation. The PKCa,
B, v, & and { inhibitor G6 6983 (Go) had no effect on LPS-induced NO release. In contrast,
Bisindolymalemide | (Bis), a PKC a, B,, By, 1, 6 and ¢ isoform inhibitors completely inhibited LPS-
stimulated NO production without affecting p65 nuclear translocation. Furthermore, a partial
inhibitory effect on LPS-induced NO release was seen with the JAK2 inhibitor AG-490 and the p38
MAPK inhibitor SB 203850.

Conclusion: The results further define the role of NF-kB in LPS stimulated NO production in
RAW macrophages. The data support a function for PKCe, JAK2 and p38 MAPK in NF-xB
activation following p65 nuclear import.
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Introduction

Increasing emphasis is currently placed on the role of the
innate immune system in inflammatory responses, in par-
ticular those involving macrophages. As in other cells, the
transcription factor, NF-xB plays a pivotal role in changes
in gene expression during such inflammatory responses. A
range of inflammatory stimuli, including endotoxin [1,2]
and cytokines [3], produce activation and nuclear translo-
cation of NF«B following rapid degradation and release of
IxB.

One of the genes upregulated by NF-«B during an inflam-
matory response is the inducible nitric oxide synthase
(NOS2), that produces nitric oxide (NO), a highly reactive
free radical with important second messenger functions
involving the mediation of inflammatory events [4].
Increased expression of NOS2 and concomitant NO levels
have been reported in several inflammatory diseases, such
as Crohn's disease [5], asthma [6] and rheumatoid arthri-
tis [7]. The NOS2 gene promoter contains twenty two
putative transcription factor binding elements [8], how-
ever, so far only the NF-«B responsive kB element [9] and
an interferon-y-activated site (GAS) [10] have been shown
to enhance NOS2 expression.

Macrophages are the primary producers of NO in vivo
K

|- Lipopolysaccharide (LPS)
stimulates NO production in macrophages. The induction
of NOS2 protein expression in response to stimulation
with LPS involves the Janus kinase (JAK) family of protein
kinases [11]. Furthermore, both protein kinase C (PKC)
and Janus Kinase2 (JAK2) [12-14] have been implicated
in NF-kB activation. However, although nine isoforms of
PKC have been identified in macrophages [15] it is
unknown which of these are involved in NF-«B activation.

PKC activation has been identified as an early response in
LPS-stimulated macrophages [16] and is essential for the
up-regulation of NO production [16,17] However, the
function of PKC isoforms involved in upregulation of NO
production remains to be determined. Thus PMA, a direct
activator of the PKC family of kinases, was used to inves-
tigate the role of PKC in LPS-stimulated NO production
and NF-«B activation in RAW cells. PMA has been shown
to induce a PKC mediated proteasomal-independent
pathway of NF-«B nuclear translocation in human intesti-
nal epithelial cells [18].

The present study uses pharmacological tools to indicate
a role for PKCe in LPS-stimulated NF-xB-mediated NO
release in RAW macrophages. We also implicate a role for
JAK2 and p38 MAPK on these effects.

http://www.journal-inflammation.com/content/4/1/23

Methods

Cell Culture

RAW 264.7 cells (ECACC, Salisbury, UK) were main-
tained in 25 cm? flasks in DMEM medium supplemented
with 2 mM L-glutamine and 10% v/v FCS, without antibi-
otics, at 37°C in a humidified atmosphere of 95% air and
5% CO,. For Western blotting, cells were grown in 25 ¢m?
flasks, whilst for the measurement of NO the cells were
grown to 95% confluence in 96-well plates and stimula-
tion carried out within these plates. Cells were stimulated
by replacing the culture medium with medium containing
LPS, LPS with phorbol-12-myristate-13-acetate (PMA) or
PMA alone in the presence or absence of various inhibi-
tors.

Inhibitors used were: the PKC inhibitors G6 6983 (Go)
and Bisindolymalemide 1 (Bis); the JAK2 inhibitor AG-
490; the p38 MAP kinase inhibitor SB 203580 (Calbio-
chem, Nottingham, UK). Bis shows high selectivity for
PKC a, By, By v, 8 and ¢ isoforms at 20 pm [19] whilst Go
inhibits PKC a, B, v, 8 and ¢ isoforms at 10 um [20]. AG-
490 was used at 10 mM, a concentration previously
shown to inhibit JAK2 [21], and SB 204580 at 10 mM, a
concentration previously shown to inhibit the p68 MAP
kinase family [22]. For the purpose of specific inhibition
of PKC translocation, the following MALY-TAT linked
peptides (kindly supplied by Dr M. Lindsay, AstraZeneca,
Charnwood, UK) were used: MALYO1 (TAT- RFARKGAL-
RQKNHEVK), MALY10 (TAT-EAVSLKPT), MALY II (TAT-
LSETKPAVO) at concentrations previously shown to
inhibit translocation of PKC isoforms [23]. For Western
blotting cells were incubated for 0, 1, 2, 3 or 5 hours,
whilst for the NO assay, cells were incubated for 24 hours.

Assessment of NF-xB-p65 nuclear translocation by
Western blot analysis

RAW 264.7 cells were harvested in ice cold PBS after stim-
ulation with LPS from 0 to 5 h. Cells were then lysed in 70
ul of buffer A (10 mM HEPES pH 7.9, 1.5 mM MgCl,, 10
mM KCl, 0.25% v/v noident P-40, 0.5 mM dithiothreitol
(DTT), 0.5 mM phenylmethylsulfonyl fluoride (PMSF) in
de-ionised water (dH,O) for 20 min on ice, to yield the
cytoplasmic cellular fraction, as described previously [24].
The samples were microfuged at 12,000 g for 15 sec to pel-
let the unlysed nuclei and the supernatant (cytoplasmic
fraction) was collected. The nuclei were lysed in 15 pl of
buffer B (20 mM HEPES pH 7.9, 1.5 mM MgCl,, 0.42 M
NaCl, 0.5 mM DTT, 25% v/v Glycerol, 0.5 mM PMSF in
diH,0) for 20 min on ice, and microfuged or centrifuged
at 12,000 g for 60 sec to pellet the cellular debris. The
supernatant (nuclear fraction) was collected and 60 pl of
buffer C (20 mM HEPES pH 7.9, 50 mM KCI, 0.5 mM
DTT, 0.2 mM EDTA, 0.5 mM PMSF) was added to it. At
this stage the protein concentration of the samples was
assessed by BioRad protein assay ™ (Biorad, UK).

Page 2 of 9

(page number not for citation purposes)



Journal of Inflammation 2007, 4:23

Samples (10 pg) were separated by 10% SDS-PAGE and
proteins transferred to a nitrocellulose membrane (Amer-
sham-Pharmacia, Amersham, UK) by electroblotting.
Equal protein loading was confirmed by Ponceau S stain-
ing of the membrane. Non-specific protein binding was
blocked by incubation of the membrane in PBS-T + 1% w/
v milk overnight at 4°C. Membranes were then washed
twice in PBS-T for 5 min before incubation for 1 hour at
room temperature (RT) with rabbit anti-p65 antibody
(1:4000, Santa Cruz, Wembley, UK). Membranes were
then washed twice in phosphate buffered saline (pH 7.4)
containing 0.05% v/v Tween 20 (PBS-T) and 1% w/v milk
for 5 min followed by an hour incubation at room tem-
perature (RT) with goat anti-rabbit HRP conjugate
(1:4000, Dako, UK). All antibodies incubations were car-
ried out in PBS-T containing 1% w/v milk. Membranes
were washed three times for 5 min in PBS-T before incu-
bation with ECL substrate (Amersham-Pharmacia, UK),
followed by exposure to an autoradiographic film and
subsequent semi-quantification of band intensity by den-
sitometry (UVP Ltd, Cambridge, UK).

Nitrite determination by Greiss assay

NO levels were assessed by nitrite quantification as
described previously [25]. Briefly, 90 pul of sample (cell
culture medium) was incubated for 5 min in dark at RT
with 90 ul of suphanilamide (1% w/v in 4 M HCl). 90 pl
of napthylethylenediamine (1% w/v in dH,0) was then
added and a further 5 min incubation was carried out in
dark at RT. Absorbance was read at 540 nm.

All reagents were purchased from Sigma (Poole, UK)
unless otherwise stated above.

Statistical analysis

Data are reported as mean + SEM. Statistical analysis was
performed in Prism 5 (Graph Pad Software, Inc. San
Diego, USA) using one way analysis of variance (ANOVA)
followed by Tukey's Multiple Comparison Test (TMCT)
when ANOVA indicated a statistical significance existed.

Results

The effect of LPS and PMA on RAW cell NO production
Constitutive NO production by RAW 264.7 macrophages
(Fig. 1) was at the lower limit of the sensitivity of the assay
(3 uM,). LPS induced a concentration-dependent increase
in NO production with a maximum response at 50 pg/ml
at 24 h (Figure 1b.). For subsequent experiments, LPS (1
pg/ml) was chosen for its ability to stimulate high levels
of NO production whilst not possessing the significant (p
< 0.001) toxicity seen with 10 and 50 pg/ml (38% and
51% reduction in viability respectively).

LPS stimulation induced NO production with nitrite lev-
els peaking at 33 uM (p < 0.001, Fig. 1), in agreement with
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the results of others [26,27]. In contrast, PMA alone (0.5-
500 ng/ml) had no effect on NO production but signifi-
cantly attenuated LPS-induced NO production by ~50%
(Fig. 1) even at concentrations (50 ng/ml) previously
shown to activate NF-«B.

The effect of LPS on NF-xB activation

LPS (1 pg/ml) induced a significant 4-fold induction of
p65 nuclear translocation which was maintained for up to
5 hours (p < 0.05, Fig. 2). PMA alone also significantly
induced NF-xB activation (data not shown), however,
combined effect of PMA and LPS-stimulated NF-xB
showed an 8-fold increase within 30 minutes PMA
reduced the duration of LPS-stimulated p65 nuclear trans-
location from > 5 to less than 2 hours (Fig. 3).

The role of PKC in LPS stimulated RAW cell NO
production

Effects on PKC isoforms degradation have been reported
following PMA treatment at the concentration of PMA
used in this study (50 ng/ml) [28]. The induction of
NOS2 activity upon activation of PKC by LPS stimulation
has also been demonstrated previously using a non-selec-
tive inhibitor of all PKC isoforms [16]. However, the role
of specific PKC isoforms has remained unclear. The MALY
peptides have been reported to mimic the PKC variable
regions 1 and 2 (V1-2). These regions are necessary for
binding PKC to the receptors for activated C kinase
(RACK) and thereby prevent nuclear-cytoplasmic translo-
cation of specific PKC isoforms [29]. The addition of a
TAT sequence (GGGGYGRKKRRQRRR-GGGG) to the
MALY peptides ensures that they are transported into the
nucleus, an important facet for some PKC enzymes. Pre-
treatment with these translocation inhibitor-peptides had
no effect on NO production in these cells (Table 1). In
addition, the PKC inhibitor G6 6983 (Go, 10 uM) had no
effect on LPS-stimulated NO production (Fig. 4).

In contrast, bisindolymalemide I (Bis, 20 uM) completely
inhibited LPS (1 pg/ml) -stimulated NO production (Fig.
4). This was not due to an inhibitory effect on peak NF-xB
p65 nuclear translocation as Bis (20 pM) had no effect on
LPS-stimulated nuclear translocation at 3 hr (Fig. 5). This
time point was chosen as it represented the time at which
NF-xB p65 nuclear translocation was at its peak (Fig. 2).
The results also contrast with the effect of PMA which
returned p65 nuclear translocation to baseline within 2
hr.

The effect of AG-490 on LPS induced RAW cell NO
production

AG-490, a potent inhibitor of JAK2, caused a concentra-
tion-dependent inhibition of LPS-stimulated NO produc-
tion and this was significant at 10 uM (Fig. 6). JAK2 has
been shown to be activated in response to a wide variety
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a. The effect of PMA on LPS stimulated NO production in RAW 264.7 cells. RAW cells were stimulated for 24 hr
with either vehicle alone (control), | pg/ml LPS, 50 ng/ml PMA or | pg/ml LPS with 50 ng/ml PMA. NO levels were assessed by

Greiss assay. LPS alone significantly increased NO production

whereas PMA alone had no effect. PMA significantly inhibited LPS

-stimulated NO production. Figure Ib (inset) displays the concentration-response curve for LPS-stimulated NO production
over 24 hrs. Results are expressed as mean + SEM; ***p < 0.001 vs control, **p < 0.001 vs LPs-stimulated; n = 6 for the effects

of PMA and n = 9 for the concentration-response curve.

of stimuli [30] and AG-490 to block induced NOS2
expression in IL-1B/TNFa/IFNy-stimulated human epi-
thelial-like colon carcinoma DLD-1 cells [31] and in IFNy/
LPS stimulated RAW cells [32]. This present finding
extends the previous studies and further indicates the
involvement of JAK2 in NF-kB-induced LPS-stimulated
NO production and NF-kB activation in RAW cells.

The effect of SB 203580-induced inhibition of p38 on LPS
induced RAW cell NO production

P38 MAP kinase has previously been implicated in NF-xB
activation [33] and in IFNy/LPS stimulated NOS2 expres-
sion in RAW 264.7 cell, although this has not been
reported for LPS-stimulated cells alone [34]. SB203580
inhibited LPS-stimulated NO production in a concentra-
tion-dependent manner with an IC;, of ~3 pM indicating
selectivity of this effect. Maximal inhibition (~35%) was
seen at 10 uM (Fig. 7).

Discussion

This study investigated the effect of distinct kinase path-
ways on their ability to modulate NF-xB activation and
thereby modify LPS stimulated NO production in RAW
macrophages. Previous findings have been extended, with
NF-kB-mediated NO production stimulated by LPS is
shown to be multifactorial in nature, involving the co-
ordinated activation of PKCg, JAK2 and p38 MAPK. The
differential effects of the PKC inhibitors Go and Bis sug-
gested that PKCe was involved in NO release.

Under unstimulated conditions, p65 is restricted to the
cytoplasm by a set of inhibitory proteins and, upon stim-
ulation, translocated to the nucleus. This stimulation can
be modulated by phosphorylation of p65 at serine resi-
dues. The degree of activation by NF-«xB is thus likely to
result from a combination of p65 nuclear translocation
and post-translational modifications of p65 [35].
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Figure 2

NF-kB activation in LPS stimulated RAW 264.7 cells.
RAW cells were stimulated with LPS (I pg/ml) for between
0-5 hours. Cells were harvested and nuclear NF-xB-p65 lev-
els were assessed by Western blotting. (a) Representative
Western blot of p65 expression. Equal amounts of nuclear
proteins are loaded onto each lane. (b) Graphical representa-
tion of % increase in p65 nuclear localisation shown in (a)
above. Data is presented as mean * sem, *p < 0.05,n = 6
independent measurements.

It is evident from many studies that LPS-stimulated NO
release from RAW macrophages is NF-xB dependent [36].
In the present study, although PMA enhanced the amount
of p65 nuclear translocation, it also decreased the period
over which LPS was able to maintain NF-xB nuclear trans-
location and this may be linked to the reduction in NO
release.

Inhibition of PKCe by Bis had no effect on nuclear trans-
location in our study confirming a previous report in LPS-
stimulated blood monocytes [37]. This data, in conjunc-
tion with the data showing a lack of effect of a TAT-linked
MALY inhibitor, indicates that PKC is not involved in the
nuclear translocation or DNA-binding of NF-kB. Thus,
PKCe probably acts on nuclear NF-kB to either affect its
nuclear retention or more likely to affect p65 transcrip-
tional activity through a posttranslational modification
event leading to differential recruitment or activation of
transcriptional co-activators. Indeed, a PKC phosphoryla-
tion site exists on the p65 subunit and such phosphoryla-
tion is known to increase the transactivation potential of
NF-«xB without affecting its DNA binding or nuclear trans-
location [38,39]. Furthermore, the data presented here
suggests that the effect of PMA on LPS-stimulated NO
release is not through a PKC-mediated effect but that PMA
induces additional pathways that regulate LPS-induced

http://www.journal-inflammation.com/content/4/1/23
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Figure 3

NF-«B activation in LPS and PMA stimulated RAW
264.7 cells. RAW cells were stimulated with LPS (I pg/ml)
and PMA (50 ng/ml) for between 0—120 minutes. Cells were
harvested and nuclear NF-xB-p65 levels were assessed by
Western blotting. (a) Representative Western blot of p65
expression. Equal amounts of nuclear proteins were loaded
onto each lane. (b) Graphical representation of % increase in
p65 nuclear localisation shown in (a) above. Data is pre-
sented as mean of 2 independent experiments.

NF-xB activation and NO production. Thus, altered PKC
activity may also impinge upon the NF-xB functional
response either by affecting co-factor or histone phospho-
rylation [40].

A role for JAK2 in LPS and IFN stimulated NO production
in RAW cells has been described previously [41]. How-
ever, JAK2 was hypothesised to work solely through
STAT1 activation and be activated by IFNy. There is cur-
rently growing evidence for cross talk between the JAK2
and the NF-kB signalling pathway [42] and also the JNK
pathway indirectly through an effect on PI3K [43,44].
JAK2 has been demonstrated to phosphorylate IkB
thereby facilitating NF-«xB activation [14]. AG-490 has
also been reported to inhibit LPS stimulated NF-«B activa-
tion and subsequent NOS2 induction in a skin dendritic
cell line [45].

As with JAK2, the results from the present study suggest
that the p38 MAPK protein (MAP) kinase is also involved
in NF-xB activation [29,33] and therefore LPS-induced
NO production. Previous reports have shown equivocal
data as to the role of p38 MAPK in these events [46,47].
Although p38 MAPK does not appear to be involved in
NO release induced by other agents in RAW cells [48]. The
IC;, of inhibition of SB203580 indicates relative selectiv-
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Table I:
Nitrite (uLM); mean + SEM
Control Concentration of peptide alone | ug/ml LPS with stated concentration of peptides below
10 uM 100 uM 0uM I uM 10 uM 100 uM

MALY Ol 0.70 2.00 0.77 44.6 46.1 47.2 51.6

+0.2 +1.6 +0.3 +27 +42 + 5.1 +20
MALY 10 0.70 0.87 0.85 44.6 473 40.3 46.4

+0.2 +04 +0.3 +33 +0.8 1.9 +09
MALY Il 0.70 0.64 0.66 44.6 46.2 434 45.9

+0.2 +0.3 +0.3 +28 +09 £29 +0.5

RAW cells were stimulated with medium alone (control), LPS (I pig/ml) or various concentrations of the MALY TAT-linked PKC translocation
inhibitor peptides (MALYOI = cPKC inhibitor, MALY O = PKC specific, MALYIl = scrambled PKC inhibitor peptide), with or without LPS for 24
hr. NO production was assessed by Greiss assay. Results represent mean + SEM (n= 3) and are representative of two separate experiments.

ity and further analysis of LPS-induced p38 MAPK activa-
tion or the use of more selective inhibitors may provide
additional evidence for its role effects in these cells and for
p38 inhibitors potential in the treatment of LPS activated
disease.

In conclusion, the findings of the present study demon-
strate the role of NF-«xB in LPS stimulated NO production
in RAW cells and indicate the importance of cross-talk

40
30
=
=
g 20
)=
=
10
Q — m— l
Control LPS LPS+ Go LPS +Bis
Stimulants

Effect of PKC inhibitors on LPS induced NO produc-
tion in RAW 264.7 cells. Cells were treated with vehicle
(control) or LPS (1 pg/ml) in the presence or absence of PKC
inhibitors Go 6978 (Go, 10 uM) or bisindolylemaleimide (Bis,
20 uM) for 24 hours. The culture medium was then har-
vested and assayed for nitrite content by Greiss assay. The
data show that only Bis was able to inhibit LPS-stimulated
RAW cell NO production. Results are expressed mean *
SEM, #**p < 0.001, n = 9.

with other kinase pathways, namely PKCe. Furthermore,
the present findings further define the involvement of
PKCe and JAK2 in inducing NO production, probably
through their effects on NF-xB induced NOS2 expression.
Figure 8 provides a pictorial summary of these findings.
However, these conclusions have been drawn on the basis
of use of well characterised inhibitors, rather then actual
measurement of the activity of the target proteins which

a). Control LPS LPS+Bis
b). 800
g
&
o 600
x®
@
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® 400
o
=
i
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5 200
@
5}
=
=, 1R
0 1
Control LPS LPS + Bis

Figure 5

Effect of bisindolylemaleimide (Bis) on LPS stimu-
lated NF-«B activation in RAW 264.7 cells. RAW cells
were stimulated with LPS (I pg/ml) in the presence or
absence of Bis (20 uM) for 3 hr. Cells were harvested and
nuclear NF-kB-p65 levels were assessed by Western blot-
ting. (a) Representative Western blot of p65 expression.
Equal amounts of nuclear proteins were loaded onto each
lane. (b) Graphical representation of % increase in p65
nuclear localisation is shown in (a) above. Data is presented
as mean * SEM, n = 3 independent measurements.
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Figure 6

Effect of JAK2 inhibitor on LPS-stimulated NO pro-
duction in RAW 264.7 cells. Concentration dependent
effect of the JAK2 inhibitor AG-490 (0—10 uM) on LPS (I pg/
ml)-stimulated NO production measured at 24 hr. Cells
were stimulated and the culture medium harvested and
assayed for nitrite content by Greiss assay. The data show
that AG-490 was able to inhibit LPS-stimulated NO produc-
tion. Results for the effects of the inhibitor are expressed
mean * SEM, *¥*p < 0.01 vs no inhibitor, n = 6.
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Effect of SB203580 on LPS stimulated NO produc-
tion. Concentration dependent effect of the p38 MAPK
inhibitor SB203580 (0—10 uM) on LPS (I pg/ml)-stimulated
NO production measured at 24 hours. Cells were stimulated
and the culture medium harvested and assayed for nitrite
content by Greiss assay. The data show that SB203580 was
able to inhibit LPS-stimulated NO production. Results for the
effects of the inhibitor are expressed mean + SEM, **p <
0.001 vs no inhibitor, n = 6.
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would provide further confirmation of this regulatory net-
work. The work presented here further illustrates the com-
plex network of signalling pathways involved in
modulation of NF-kB-mediated gene transcription.
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