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Abstract: Tuberculosis remains one of the deadliest diseases. Emergence of drug-resistant and
multidrug-resistant M. tuberculosis strains makes treating tuberculosis increasingly challenging.
In order to develop novel intervention strategies, detailed understanding of the molecular
mechanisms behind the success of this pathogen is required. Here, we review recent literature
to provide a systems level overview of the molecular and cellular components involved in divalent
metal homeostasis and their role in regulating the three main virulence strategies of M. tuberculosis:
immune modulation, dormancy and phagosomal rupture. We provide a visual and modular overview
of these components and their regulation. Our analysis identified a single regulatory cascade for these
three virulence strategies that respond to limited availability of divalent metals in the phagosome.
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1. Introduction

Mycobacterium tuberculosis (Mtb) is the most successful known intracellular pathogen infecting
roughly one third of the world population and killing about 1.3 million people in 2017 alone [1].
Treating Mtb infection is increasingly difficult due to increasing number of drug-resistant,
multidrug-resistant and extensively drug-resistant strains [1]. In order to come up with new drug
targets and treatment strategies, there is an urgent need to understand the molecular mechanisms
supporting the success of this versatile pathogen. Here, we will review the regulation of three important
survival strategies of Mtb: immune modulation, dormancy and phagosomal rupture [2–4].

Firstly, Mtb is a master in immune modulation. Its ability to interfere with host cell signalling
pathways allows it to carefully balance production of cytokines involved in activation of the
pro-inflammatory and anti-inflammatory response [5,6]. By balancing the pro- and anti-inflammatory
immune response, Mtb delays phagosome maturation, harvests essential nutrients and stimulates
the formation of granulomas. At early infection states, these granulomas are initially dominated by
alveolar macrophages and shield the bacteria from more effective immune cells [7].

Secondly, when residing in the hypoxic granuloma, Mtb enters a metabolically near inactive and
non-replicating dormant state in which it is immune to most types of drugs [8]. Mtb manipulates the
macrophages to accumulate lipids, providing it with the nutrients required to sustain dormancy for
multiple decades [7,9–12].

Thirdly, Mtb has a highly regulated pore formation system that it uses to rupture the phagosome
and gain cytosolic access, resulting into necrosis of the host cell and dissemination of the bacilli [13,14].
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The fine-tuned regulation of these three virulence strategies is what makes Mtb such a successful
pathogen. A large body of literature exists on these virulence strategies and on their molecular
components. However, there have been few attempts to provide a systems wide overview of these
three virulence strategies, their molecular components and their regulation. Divalent metals play
an important role in the regulation of some key aspects of these strategies [15–17]. Here, we will
present an overview of their involvement in this regulatory process. Detailed inspection of available
knowledge pinpoints a single regulatory cascade as a main control hub for these three virulence
strategies, representing their interconnectivity as subsequent stages encountered in pathogen host
interaction. A modular overview of the molecular components involved in divalent metal homeostasis
and their components involved in these three virulence strategies can be found in Figure S1 and Table
S1. In the following, we will discuss these components and the environmental cues that control them
and we will highlight the role of divalent metals in the phagosome.

2. Divalent Metals at the Interface of M. tuberculosis Host Interaction

Divalent metals such as iron, zinc and manganese are required for proliferation and survival of
all living organisms. Divalent metals appear, in all living beings, nearly exclusively as constituents
of proteins and act as cofactors in many essential enzymes and environmental sensors [18]. Iron is
the most commonly used divalent metal cofactor [18]. Iron containing enzymes are involved, among
other processes, in electron transfer, maintaining redox balance and detoxification [19]. Manganese has
the strongest affinity for ATP and is the preferred cofactor in cAMP production [20,21]. Zinc is used
as cofactor by numerous enzymes and DNA binding proteins and additionally functions to scaffold
additional proteins [22].

To prevent growth of bacteria, the host uses high affinity iron binding proteins such as lactoferrin,
ferritin and transferrin to keep concentration of free iron in the blood low, in the so-called iron
sparing response [16,23]. These proteins also bind other divalent metals such as manganese, albeit
with lower specificity than iron. Similarly, calprotectin functions as high affinity calcium binding
protein but also binds manganese, zinc and iron in the blood [24]. During infection, macrophages
withdraw approximately 30% of the total circulating iron from the blood stream making macrophages
environments rich in divalent metals [25]. Some intracellular pathogens use this defence mechanism
to their advantage by stimulating phagocytosis by macrophages to get access to divalent metals and
other nutrients. During initial infection, Mtb predominantly encounters resident, replicative alveolar
macrophages populating the lungs which are rich in divalent metals while having reduced bactericidal
abilities compared to other macrophages [12,25].

Upon ingestion by a macrophage, Mtb is engulfed in a special compartment called the
phagosome, in a process known as phagocytosis. The phagosome then fuses with vesicles containing
enzymes and other proteins that facilitate bacterial digestion. Phagocytosis is a rapid process and
leads to phagosomal-endosomal fusion in approximately 3–4 min, acidification of the phagosome
within 23–32 min and fusion with lysosome in 74–120 min, based on experiments with epithelial
macrophages [26]. However, Mtb blocks phagosome maturation in an early phase leading to fusion
with early endosomes and a pH of approximately 5.5 [27].

The macrophage continuously exports divalent metals out of the phagosome via Nramp1 and
Nramp2 in a pH dependent manner. Many cell types express Nramp2 while only macrophages
express Nramp1. Nramp1 is mechanistically similar to Nramp2 but has a much higher specificity for
manganese (Mn) compared to Nramp2 [17,27,28]. Mn is required as cofactor for the bacteria to break
down oxidative compounds produced in the phagosome such as H2O2 [16,20,29]. Thus, restricting Mn
availability in the phagosome by recruitment of Nramp1 is an essential defence against intracellular
pathogens. Nramp2 functions optimally around pH 6, a condition found in the early phagosome
while Nramp1 has an optimal activity at a pH of 4.5 Nramp1 is attached to the membrane of maturing
phagosomes and is associated with increased recruitment of endosomes and/or lysosomes containing
vacuolar V-H+-ATPase, resulting in acidification of the phagosome from pH 6.5 to 5.5 [27,30]. Nramp2
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is regulated separately from Nramp1 and co-localizes with transferrin receptors to early endosomes
as well as with V-H+-ATPase. V-H+-ATPase provides the electro-genic force needed for Nramp1
and Nramp2 to operate [31,32]. Metal availability in the phagosome is tightly regulated by the host
through the combined action of Nramp1 and Nramp2. Therefore, blocking phagosome maturation is
an effective strategy to create an environment in which Mtb can outcompete divalent metal export from
the phagosome. Mtb uses special high affinity siderophores (mycobactin) to gain access to divalent
metals from both extracellular transferrin and the intracellular iron pool [25].

Within Mtb iron, zinc and manganese homeostasis are regulated by IdeR, Zur (previously known
as FurB) and MntR respectively [19,22,33]. Ligation of Fe2+ to IdeR and Zn2+ to Zur stabilizes the
formation of dimers that have strong affinity to binding sites involved in suppressing the genes in
their respective regulons [15,19,34]. MntR in Bacillus subtilis contains two manganese binding sites as
well as a dimerization site similar to IdeR and Zur [35]. There is a significant overlap between IdeR,
Zur and MntR regulated genes, see Figure 1. An overview of the regulation of molecular components
by divalent metal regulators, IdeR, Zur and MntR can be found in Figure S1 and Table S1. Each of
these three regulators suppresses the main operon of genes coding for the ESX-3 secretion system and
associated PE, PPE and Esx proteins homologues of ESAT-6 and CFP-10 (EsxA and EsxB) [33]. We will
further discuss the ESX-3 transport system in a section below. In the following sections, we will discuss
main characteristics of genes regulated by Fe, Zn and Mn respectively.
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2.1. Iron Homeostasis and Redox Sensing

Mtb produces high affinity hydrophilic and lipophilic siderophores termed carboxy-mycobactin
and mycobactin, respectively. Mycobactin can bypass the phagosome membrane to scavenge iron
from the extracellular iron storage protein transferrin [25,36–38]. In addition, Mtb actively synthesizes
deoxy-mycobactin during iron starvation [39].

Mtb combines the expression of a dedicated iron acquisition machinery with cellular components
involved in immune modulation. By limiting acidification of the phagosome, Mtb maintains favourable
conditions in which it can outperform active export of divalent metals by the macrophages transporter
Nramp1. Mtb’s success in acquiring iron is illustrated by a 20-fold increase of iron concentrations in
the phagosome between 1 and 24 h of macrophage infection [40]. However, high iron concentrations
renders Mtb much more vulnerable to the formation of oxygen and nitrogen radicals upon phagosome
maturation, as iron functions as a catalyst in the formation of radicals via the Fenton reaction [41]. Tight
regulation of iron homeostasis is, therefore, essential, making IdeR an interesting drug target [42]. Mtb
has adapted to deal with oxidative stress outside of the cell but is relatively vulnerable to endogenously
generated oxidative stress in comparison to M. smegmatis [41]. Due to this vulnerability, vitamin-C
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is an effective drug to combat Mtb in the early stage of infection by inducing the Fenton reaction in
iron rich phagosomes [43]. The oxidative conditions encountered in the phagosome leads to oxidation
of the intracellular iron pool. Oxidation of the iron pool de-represses IdeR regulated genes among
which some are involved in virulence. Upregulating expression of virulence genes in low iron and
oxidative conditions is a common response in intracellular pathogens and has been observed in Shigella
dysenteriae, Corynebacterium diphtheniae, Yersinia pestis and Yersinia pseudotuberculosis, as well as in
Mtb [44,45].

The iron pool within Mtb and the phagosome functions as redox sensor to the oxidative conditions
encountered in the early phagosome. In oxidative conditions, ferrous iron (Fe2+) is oxidized to ferric
iron (Fe3+) [46]. Ferric iron does not bind to IdeR, leading to upregulation of IdeR suppressed genes
in oxidative conditions [42]. Genes suppressed by IdeR code for proteins involved in siderophore
synthesis (mbtA-G), secretion (mmpL4/5, mmpS4/5) and uptake (irtAB) as well as 11 genes coding for the
ESX-3 secretion system, among others [47–49]. Even though IdeR mainly functions as iron dependent
repressor, IdeR also induces transcription of four genes. Among the induced genes, bfrB and, to a
lesser extent bfrA, code for mycobacterial ferritin-like iron storage proteins, which prevent overload
of iron within Mtb [19,50]. Analysis of the promoter region of bfrB revealed it contains two tandem
IdeR binding sites involved in alleviating repression by Lsr2. Lsr2 is a histone like regulator that
binds AT-rich regions virulence islands, including those coding for ESX-1, espACD and PDIM coding
genes, acting as a global regulator to aid in the adaptation to extremes in oxygen availability [50–55].
Combined regulation of bfrB by Lsr2 and IdeR, suggests iron storage by BfrB is suppressed by Lsr2
during infection under changing oxygen conditions unless IdeR detects availability of intracellular
ferrous iron which indicates a lack of oxidative conditions. Under low iron conditions, BfrA is required
to mobilize stored iron. On the other hand, on high iron conditions, BfrB is needed for iron storage [56].
BrfB was shown to be required for the long term persistence of Mtb in iron-starved granulomas [23].

Iron homeostasis is an essential process for bacterial survival, therefore its cellular components
are interesting drug targets. This was shown in a knockout study of the mmpS4/5 siderophore secretion,
which resulted in limited intracellular availability of iron as well as intracellular accumulation of
siderophores toxic to Mtb [57]. Another interesting drug target is HupB, a nucleoid-associated protein
that protects Mtb against reactive oxygen species, regulates siderophore synthesis and was proposed
to facilitate transfer of iron from ferri-carboxymycobactin to mycobactin [58,59]. HupB stimulates
transcription of its own operon in the absence of IdeR-Fe2+ [59].

IdeR also regulates genes involved in response to oxidative and acidic stress, among which the
two-component system PhoPR. Two-component systems contain a histidine kinase sensor that senses
specific environmental stimulus and a response regulator that gets phosphorylated by the sensor upon
specific environmental stimuli. Many two-component regulators, among which PhoPR, also regulate
their own operon [60]. Presence of multiple binding sites allows both positive and negative regulation
depending on the concentration and phosphorylation state of the response regulator, as is the case for
PhoPR [61,62]. PhoPR is the main regulator of the oxidative and acidic stress response but also it is the
initial step in a regulatory cascade controlling pore formation and phagosomal rupture. Six putative
IdeR binding sites upstream of the phoP-phoR operon were located, of which five were observed to
bind IdeR in the presence of iron [63]. This points to a possible link between iron homeostasis and
PhoPR regulation of the oxidative stress response and virulence genes.

Nevertheless, the exact role of IdeR in upstream binding of PhoPR remains to be determined.
Oxidation of the iron pool is also sensed by proteins containing iron-sulphur clusters such as the

enzyme aconitase (Acn) and the regulators FurA and WhiB1-7. Acn catalyses the isomerization of
citrate to isocitrate via cis-aconitate in normal conditions. However, in low iron or oxidative conditions
it binds to and suppresses translation of IdeR-mRNA while increasing translation of TrxC-mRNA [64].
The function of Acn as redox sensitive translational regulator is conserved in many organisms [46,65].

FurA (ferric uptake regulator A) regulates the oxidative stress response by modulating expression
of the operon coding for FurA and the KatG catalase [66]. KatG is essential for the breakdown of H2O2
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radicals formed upon phagosome endosome fusion and activates the anti-cell-wall drug isoniazid.
Recently, transcriptional activation of furA-katG was found to be regulated by RbpA, which is induced
by H2O2 in a SigE dependent manner [67].

A third iron sensitive regulator is WhiB7. WhiB proteins are iron-sulphur cluster-containing
redox-sensing transcription factors. WhiB7 expression is auto-regulated by binding to its own promoter
in response to antibiotics or redox stress [68]. An 80-fold upregulation of WhiB7 was observed
upon treatment with antibiotics that bind to the 30S ribosomal subunit such as kanamycin and
streptomycin [68]. WhiB7 is upregulated by iron starvation and was shown to induce transcription of eis
and tap [69], two antibiotic resistance genes. Upregulation of eis increases secretion of IL-10 and slightly
represses production of TNF-α by the host. IL-10 and TNF-α are involved in the anti-inflammatory
and pro-inflammatory responses respectively [70].

In summary, oxidation of the iron pool is an important environmental cue to activate molecular
components involved in iron sequestering, immune modulation and virulence. IdeR, FurA, Acn,
WhiB7, Lsr2 and SigE are all involved in the response to the oxidative conditions encountered in the
phagosome and subsequent adaption through expression of a vast repertoire of molecules involved in
iron homeostasis as well as genes involved in modulation of the immune response.

2.2. Manganese Homeostasis and cAMP Production

Manganese is one of the most abundant metal elements in nature [71]. Mn is involved in
enzymes of diverse functionality such as photosynthesis and detoxification: Mn is used as cofactor
for both synthesis and degradation of H2O2, superoxide and radicals [16]. The oxidative burst
is a very effective bactericidal process to defend against intracellular pathogens such as Mtb and
Y. Pestis [54,72,73]. As previously stated MntR is a regulator of Mn homoeostasis, however MntR
is dispensable for Mtb growth in human and/or mice macrophages due to the limited availability
of Mn in the phagosome. Manganese transport on the other hand is required for virulence and to
break down oxygen radicals [33]. Mtb contains two superoxide dismutases, SodA and SodC. SodA
uses manganese as preferred cofactor and requires CtpC for metalation and export to the phagosome.
Interestingly, ctpC transcription is induced in the presence of PhoP, while sodA is predicted to contain
upstream cAMP-CRP binding sites implicating it in its regulation [60,74]. CRP is a cAMP dependent
regulatory protein.

Another role of Mn we would like to discuss here is the Mn dependent activation of cAMP
production in the early phagosome which was first proposed by S. Reddy et al. in 2001 [21]. S. Reddy
and co-workers studied the kinetics of membranes containing Mtb adenylyl cyclase CyA (Rv1625c).
Their study revealed that the Michaelis-Menten constant (Km) for Mn-ATP is 70-fold lower than for
Mg-ATP. This results in a 47-fold activation by 1 mM Mn-ATP compared to 1 mM of Mg-ATP at
physiological conditions [21]. Mn is also essential for the CRP regulated, virulence associated type III
phosphodiesterase Rv0805 [75,76].

During infection, intracellular cAMP concentration increases ~50 fold and this is associated with a
decrease in pH from 6.7 to 5.5 [77]. Among the 15 Adenylate Cyclases (AC) present in Mtb H37Rv, CyA
has the highest measured cAMP production while AC (Rv1264) functions optimally at pH 6, which
is typically found in early phagosomes [77,78]. Mtb was shown to secrete cAMP in a burst into the
macrophage cytosol, resulting in a 10-fold increase in the host’s TNF-α concentration, an important
inducer of granuloma formation [79]. Rv0386 is needed for this cAMP burst [79].

The MntR regulon contains mntH (Rv0924c), coding for Mramp, an Nramp homolog that imports
manganese (Mn) in a pH dependent manner; mntABCD (Rv1283c-Rv1280c) coding for an ATP
dependent manganese transporter and Rv2477c coding for a manganese dependent ATPase which
optimally functions at pH 5.2 [80]. Interestingly, Rv2477c was postulated to be involved in resistance to
tetracyclines and macrolides [80]. Additionally, MntR and Zur regulate Rv2059-Rv2060 coding for two
components of an incomplete ABC transporter of unknown function. Therefore, it is more likely that
this transporter is involved in transporting other divalent cations like Co2+, Cu2+ or Ca2+ to substitute
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Mn and Zn in some conditions. A second possibility is that this operon codes for a divalent cation
exporter to counter the side effect of unwanted uptake of divalent cations such as Cu2+ by the high
expression of manganese and zinc transporters [33]. Manganese uptake plays an important role in
virulence of many bacteria. For instance, supplementing Salmonella typhimurium with manganese prior
to infecting macrophages, decreased its lethal dose 50-fold [81]. Similarly, manganese acquisition
in the gut was shown to allow S. typhimurium and Salmonella enterica to evade neutrophil killing by
calprotectin and reactive oxygen species, while patients with mutations in manganese transporter
Nramp1 were shown to be much more susceptible to pathogens such as Mtb [20,27,54,72,82,83].

MntR regulates WhiB6 which regulates espACD and some DevR (previously known as DosR)
regulated genes [84]. DevR is the main regulator of dormancy and espACD is involved in pore
formation [85] and will be discussed below. The WhiB6 iron sulphur cluster is necessary for the
negative control of the DevR regulon and positive control of the ESX-1 secretion system, whereas
apo-WhiB6 induces the DevR regulon and suppresses ESX-1 expression in M. marinum [85]. A model
was proposed where holo-WhiB6 positively regulate ESX-1 operon while upon reaction with reactive
oxygen species and NO, apo-WhiB6 and WhiB6-DNIC are formed respectively. Both apo-WhiB6
and WhiB6-DNIC activate DevR regulated genes to shift metabolism and maintain energy and redox
homeostasis [85].

MntR interacts with the toxin-antitoxin system RelJ and RelK in which MntR functions as
antitoxin [86,87]. Additionally, VapBC26 and VapB30 toxin-antitoxin system both requires Mg or
Mn for their ribonuclease activity, which inhibits growth [88,89]. These results indicate Mn might
function as environmental cue in the regulation of growth.

2.3. Zinc Homeostasis

The third and final divalent cation we would like to discuss is zinc, the only redox stable divalent
metal of the three. As previously stated, zinc homeostasis is regulated by Zur (FurB), a Zn2+ dependent
repressor. Zur knockout studies identified 32 genes that are upregulated in the zur knockout mutant of
which 24 belong to eight transcriptional units that were shown to be directly regulated by Zur [22].
Zur expression levels are regulated by SmtB encoded by an upstream gene, which is co-operonic with
zur. SmtB functions as a repressor which is deactivated upon binding to Zn2+ [22].

There are three possible zinc uptake systems regulated by Zur. Firstly, Zur regulates the sitABC
like genes (Rv2059-2060), which are also regulated by MntR that were previously discussed. This
suggest that this transporter might function as Zn importer [20,90,91]. Secondly, Zur regulates
Rv0106 coding for a protein similar to the B. subtilis putative zinc low-affinity transporter YciCas [90].
Thirdly, EsxG-EsxH proteins were shown to be able to bind zinc, which might implicate them in zinc
transport [92].

Other interesting targets of Zur are five genes coding for ribosomal proteins that can function in
the absence of zinc, in contrast to their zinc dependent counterparts which normally bind to the 30S
ribosomal subunits [22,93]. Although Zur was found to be able to positively regulate some genes in
other pathogenic bacteria via repression of non-coding small RNAs, no such regulation was found in a
zur knockout Mtb mutant [15].

2.4. ESX-3 Secretion System

The ESX-3 secretion system is the only one of the five ESX systems that is essential for in vitro
growth of Mtb [94,95]. ESX-3 is involved in divalent metal homeostasis and immune modulation. ESX-3
is involved in divalent metal homeostasis and immune modulation. ESX systems secret extracellular
proteins [96,97].

Regulatory binding site for all three divalent metal regulators IdeR, Zur and MntR can be found
in the ESX-3 core operon promoter [48,92], as summarized in Table 1. The triple control of ESX-3 might
allow Mtb to switch partly to other divalent metals in the absence of one of these three. This hypothesis
is supported by the observation that siderophore knockout mutants low in iron contain much higher
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zinc concentrations [32]. However, many ESX-3 associated genes are regulated by only one or two of
these regulators, indicating dedicated roles in homeostasis of specific metals [98].

Table 1. Suppression of ESX-3 core genes and associated genes by IdeR, Zur and MntR.

Gene IdeR Zur MntR

esx3-operon 1 − − −
esxG-esxH − − −

esxQ −
esxR-esxS − −

esxW −
ppe3 − −

ppe4-pe5 − − −
ppe9 +
pe13 2 −

ppe19 −
ppe20 −
ppe37 −
ppe38 2

ppe48 −
pe_pgrs61 −

Plus symbols (+) indicate positive regulation, while minus symbols (−) indicate negative regulation. 1 Rv0282-Rv291;
2 Reported as Zur regulated by Maciag et al. based on direct experimental evidence on two conditions [22]; predicted
not to be in the Zur regulon through a large scale analysis of transcriptomics datasets and analysis of binding sites
in upstream sequences [99].

All three divalent metal regulators regulate EsxG and EsxH which play an essential role in
secretion of PE and PPE proteins [98]. PE and PPE proteins comprise nearly 10% of the coding potential
of the Mtb genome and, for many of them, immune modulating properties have been reported [100].
A large number of studies exist on the immune modulating properties of ESX-3 secreted PE and PPE
proteins [95,98,100–105]. The ESX-3 secreted protein pair EsxG-EsxH, targets the endosomal sorting
complex to impair fusion of the phagosome with the lysosomes, while increasing association with
the endocytic pathway leading to fusion with transferrin containing vesicles [92,95,97]. PE5-PPE4
were found to be critical for the siderophore-mediated iron-acquisition functions of ESX-3 [98]. PPE38
inhibits macrophage MHC Class I expression, dampens CD8+ T-Cell responses and was shown to
be required for virulence of M. marinum [104,105]. PPE37 was found to reduce the production of
pro-inflammatory factors TNF-α and IL-6 [102]. PE_PGRS61 binds TLR2 in a Ca2+ dependent manner,
leading to increased IL-10 production. Finally, PE5 and PE15 trigger activation of the host MAP kinases
required for IL-10 production [100,103]. IL-10 is an important anti-inflammatory cytokine. IL-10
reduces the expression of iNOS, limiting production of nitric oxide (NO) in the phagosome [95,100].
Enhanced IL-10 expression plays an important role in inhibiting early protective immunity and
blocking phagosome activation [106,107]. In addition, a direct role for IL-10 in Mtb reactivation has
been observed [106]. Interestingly, IL-10 also modulates lipid metabolism by enhancing uptake and
efflux of cholesterol in macrophages [106–108]. Mtb is known to induce foamy macrophages using
immune modulating proteins as well as secreted lipids. This leads to deregulation of the macrophages
lipid metabolism via the macrophages’ lipid-sensing nuclear receptors PPARγ and TR4 [12,107]. One
study reported observing Mtb to exploit host vesicle trafficking and lipid storage by recruitment of iron
bound mycobactin to lipid droplets which move to the phagosome and discharge their content [36].
Another study found that Mtb uses membrane vesicles containing immune modulating molecules as
well as mycobactin to interact with the macrophage during infection [109]. Further research is needed
to investigate the proposed synergy between modulation of host vesicle trafficking, lipid acquisition
and iron acquisition.
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3. Three Main Virulence Strategies of Mtb

The three virulence strategies discussed in this review, namely immune modulation, dormancy
and phagosomal rupture, represent subsequent stages in Mtb-host interaction. These strategies extend
and complement each other, which is reflected in their regulation. While many pathogens directly
express components involved in phagosomal rupture, Mtb keeps a low profile and activates key
virulence strategies, such as phagosomal rupture, only when immune modulation fails and the
phagosome becomes inhospitable. However, immune modulation also complements phagosomal
rupture and dormancy, since immune modulation leads to conditions, such as granuloma formation
and cholesterol accumulation, which are needed to prepare Mtb for dormancy and phagosomal rupture.

3.1. Immune Modulation

Mtb uses a number of virulence proteins, complex lipids and secreted metabolites, to modulate
the immune response and arrest phagosome maturation to prevent fusion with late endosomes
and lysosomes [2,77,97,110–113]. In case of successful immune modulation, phagosome maturation
is halted resulting in a pH of approximately 5.5 [27,30]. The macrophage controls intracellular
trafficking, including phagosome maturation, through 42 distinct Rab GTPases. Rab5 is associated
with phagosomes immediately after phagocytosis and normally diffuses quickly, allowing Rab7 to
associate to the phagosome, which allows fusion of the phagosome with lysosomes. Studies with
M. bovis have shown that Mycobacteria halts phagosome maturation, by blocking vesicle fusion between
stages controlled by Rab5 and Rab7, with no Rab7 being accumulated in macrophages even after 7
days [111]. Similarly, for Mtb Rab7 was shown to be recruited by the phagosome but its premature
release prevents fusion of the phagosome with late endosomes [110,114].

In addition to the earlier discussed ESX-3 secreted proteins, several other proteins and molecules
are involved in blocking phagosome maturation. Secreted tyrosine phosphatase (PtpA) is involved
in the exclusion of the vacuolar V-ATPase, thereby preventing acidification and fusion with
lysosomes [112,115]. cAMP secreted by Mtb blocks phagosome lysosome fusion by inhibiting actin
assembly [113]. Additionally, a number of virulence lipids interfere with the phagosome’s Golgi
trafficking, needed for maturation of the phagosome [114,116]. Among these virulence lipids are
monomycolate, dimycolate, sulpholipid-1, diacyl trehalose, polyacyl trehalose as well as phthiocerol
dimycocerosate (PDIM). Of these lipids, PDIM was shown to play a role in phagosomal rupture and
will be discussed in the section below.

Mtb is very successful in balancing the expression of molecular systems involved in activating
the pro- and anti- inflammatory responses of the host to direct the immune response to favourable
conditions for its survival. Mtb achieves this balance through multitude sensors and that integrate
many environmental cues. One important family of regulators involved in sensing internal conditions
are the iron-sulphur cluster containing WhiB family of regulators, already mentioned in the section on
iron homeostasis. Different WhiB regulators have different redox potential and sensitivity to oxidative
agents such as O2 and NO and for some, thioredoxin like protein disulphide reductase activity has
been reported [68,117–119]. Many whiB genes are regulated by cAMP-CRP [68], as summarized in
Figure 2.

WhiB1 is an essential regulator that senses NO, is regulated by cAMP-CRP and is associated
with resuscitation [119,120]. WhiB4 is associated to the oxidative stress response while WhiB5 is
required for resuscitation [121,122]. DNA binding has only been experimentally proven for WhiB1,
WhiB2, WhiB3, WhiB6 and WhiB7 [68,85]. Interestingly, WhiB1-3 are induced during infection and,
upon nutrient limitation, by exogenous cAMP. This indicates they are involved in sensing the redox
state of Mtb [123]. For WhiB1-3 it was shown that their DNA binding ability is enabled by NO by
bringing their iron-sulphur cluster in their nitrosylated or apo-form [68,124]. whiB2 and whiB3 are
down regulated in presence of O2 while whiB3, whiB6 and whiB7 are upregulated in the early or late
hypoxic response. Of the whiB genes, whiB7 is most upregulated in the macrophage with a 13 fold
induction while being 80 fold induced by antibiotics that bind the 30S ribosomal unit [118]. WhiB3
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senses NO and O2 via its iron-sulphur cluster [73] and regulates genes involved in assimilation of
propionate, a by-product of cholesterol degradation, into virulence lipids [125–128]. Virulence lipids
regulated by WhiB3 include sulfolipids, diacyltrehaloses and polyacyltrehaloses, which results in both
higher pro- and anti-inflammatory cytokine levels and function as redox sync [126,129]. WhiB3, PhoP
and Lsr2 bind to and regulate the whiB3 operon. MprAB might induce whiB3 through upregulation
of Rv0081, which was predicted to induce the whiB3 operon [129]. In addition, WhiB3 together with
DevSTR regulates expression of tgs1 which is needed for the production of triacylglycerol, a storage
lipid without which Mtb cannot resuscitate from dormancy [9,73,130]. WhiB1 is associated with
resuscitation as it induces transcription of whib1, rpfA, ahpC and groEL2 in the absence of NO upon
upregulation of WhiB1 by cAMP-CRP [119]. Interestingly, WhiB1 also interacts with GlgB, which is
essential for optimal growth of Mtb, by reducing intramolecular disulphide bonds [68,119,122].
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Figure 2. WhiB1-7 transcriptional response to environmental stresses. Proteins from the WhiB family
are presented in the squares. The circles in the top indicate environmental cues (O2, NO, cAMP
availability) or infection stages (initial or long term hypoxic response). Squares represent different
environments (mouse lung and JJ774 macrophage like cells). Arrows indicated regulation (green
for induction, red for inhibition of transcription) with the line width indicating the strength of the
interaction based on the fold change of their transcript level in a given conditions [68,118].

For a full review of WhiB proteins we refer to the excellent paper by Larsson et al. [118]. For a
review of the function of WhiB like proteins and a network view of WhiB1-3 regulated genes and their
connection to other virulence factors such as cAMP and CRP we refer to the review by Fei Zheng et al. [68].
An overview of WhiB regulators and the environmental cues they respond to can be found in Figure 2.

Two highly regulated virulence systems are EspACD, involved in phagosomal rupture and
GroEL2, an abundant chaperonin involved in blocking apoptosis. Regulation of GroEL2 is
summarized in Figure 3. GroEL2 is a highly antigenic gene and is associated with increased
release of IL-10 and TNF-α which is also associated with cAMP secretion into the cytoplasm of
the macrophage [77,79,113,124,131]. GroEL2 forms a dimer and is normally associated to the cell
wall. However, Hip1 cleaves cell wall associated GroEL2 to form monomers that are able to cross the
phagosome membrane and inhibit apoptosis by interacting with mitochondrial mortalin [132,133].
In this way, Hip1 modulates the macrophage responses by limiting macrophage activation and
dampening the activation of TLR2-dependent pro-inflammatory responses [133]. Interestingly, Hip1
has also been reported to function as lipase, making the proteolytic function of Hip1 somewhat
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disputed [134]. Mtb inhibits apoptosis of the macrophage through aggregation of mitochondria around
the phagosome and increased activation of mitochondria resulting in limited cytochrome C release,
an important inducer of apoptosis [135].Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  10 of 29 
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CMR and HrcA positively regulate groEL2 expression upon acidic and anaerobic stress [124,136].
CRP induces whiB1 expression in presence of cAMP while WhiB1 represses its own operon as well as
GroEL2 in the presence of NO [124,137]. GroEL2 is therefore only expressed in the presence of cAMP
or pH and redox responsive transcription factor CMR or heat stress, while NO is absent (Figure 3).
GroEL2 expression is induced 24 h post infection but not at 2 h after infection while other CMR
regulated genes, like Rv1265 and PE_PGRS6, are induced at 2 h post-infection [138].

3.2. Phagosomal Rupture and Pore Formation

The second main virulence strategy deployed by Mtb is phagosomal rupture. A model of
regulation of pore formation can be found in Figure 4.

ESX-1 and ESX-1 secreted proteins EsxA (ESAT-6) and EsxB (CFP-10) have been implicated
in phagosomal rupture of many Mycobateria such as M. marinum, M. kansii and Mtb [139–142].
The virulence lipid phthiocerol dimycocerosates (PDIM) and EsxA from Mtb were shown to interact
with the host cell membrane and in concert, induce phagosome membrane damage and rupture in
infected macrophages [142,143]. A recent study reported that many claims about pore formation
at neutral pH are due to contamination with detergent from the washing step [4]. The same study
found membrane-lysing capabilities for EsxA only to occur below pH 5, to be contact dependent and
accompanied by gross membrane disruptions rather than discrete pores. For the sake of simplicity,
we refer here to the process of cytosolic access as phagosomal rupture although more research is needed
to find out if cytosolic access is only achieved through lesions or also through formation of pores.
Additionally there are reports of Mtb and other Mycobacteria to escape the phagosome [144]. However,
the data generate by electron microscopy—the only direct approach—remains controversial.
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The ESX-1 secretion system is involved in secretion of virulence proteins among which those shown
to be involved in pore formation and phagosomal rupture EsxA (ESAT-6) and EsxB (CFP-10), secretion
associated proteins EspA-D, EspF and secreted immune modulating PE and PPE proteins [96,145–147].
Although EsxB is the main pore forming protein, other ESX-1 secreted genes are required for EsxB
secretion and proper functioning of the ESX-1 secretion machinery. EspD stabilizes the extracellular
levels of EspA and EspC and it is required for EsxA secretion but does not require ESX-1 for its own
secretion [148]. Secretion of EspA, EspC, EsxA is codependent on each other, suggesting they might be
secreted as a multimeric complex or that they are part of the secretion machinery itself [149,150]. This
theory is supported by a study showing that EspA forms dimers by disulphide bond formation after
secretion; disruption of this disulphide bond affects cell wall stability as well as the functioning of
the whole ESX-1 secretion system [151]. Recently, an EspC-multimeric complex was observed to form
filamentous structure that could represent a secretion needle [152]. Inactivation of MyCP1 protease
causes hyper-activation of ESX-1 while protease inhibition leads to attenuated virulence during chronic
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infection [153,154]. A balanced activation and deactivation of ESX-1 through MycP1 proteolysis of EspB
is required during chronic infection. MyCP1 and MyCP5 are required for stability of the ESX-1 and
ESX-5 secretion complex respectively [155]. Without ESX-1, Mtb is unable to disrupt the phagosome
membrane and make contact with the cytosol, leading to highly diminished pathogenicity [145].

ESX-1 and secreted factors EsxA and EsxB are regulated by the two-component systems PhoPR,
previously mentioned. The importance of PhoP for virulence was confirmed in knockout studies that
showed phoP knockout mutants to be attenuated in mouse bone marrow derived macrophages, lungs,
livers and spleen [156]. A single point mutation in phoP in Mtb H37Ra decreases the DNA affinity of
PhoP and strongly contributes to the reduced virulence of this strain [157]. PhoPR regulated genes are
upregulated in acidic and oxidative conditions encountered during the first two days of infection [40].
Recent studies show that PhoP interacts with SigE, which is upregulated in acidic pH and upon cell
stress during the first three days of infection [40,158]. Additionally, polyphosphate was needed for
normal transcription of phoP as well as for transcriptional regulation of sigE by MprAB, although these
results could not be reproduced [159,160]. PhoP/R influences transcription of some 80 (according to
some sources up to 150 [161]) genes directly as well as the transcription of a large number of genes
indirectly via upregulation of WhiB6, EspR, DevS/R and WhiB3 [60,129].

EspR is a transcriptional regulator upregulated by PhoP. EspR induces transcription of the
espACD (Rv3612-16c) operon which is essential for phagosomal rupture and potential escape from the
phago(-lyso)some [148,151,162]. PhoP, therefore, controls, directly (espB/E-L) or indirectly (espA/C/D),
the 13 Esp proteins secreted by ESX-1 [162–164]. Recently it was found that holo-WhiB6 increases
transcription of its own operon, the ESX-1 regulon and suppressed the DevR regulon, while apo-WhiB6
formed in anaerobic conditions and by prolonged exposure to NO, suppresses the ESX-1 regulon
and induces the DevR dormancy regulon [85]. Interestingly, gene expression of EsxB by WhiB6 was
highly induced after 30-min of NO exposure, decreased at 60 min and is highly reduced after 3 h of
exposure to NO, indicating a short but intense activation of espACD by holo-WhiB6. Additionally
binding sites for WhiB6 and Rv0081, a transcriptional factor regulated by MprAB, were predicted
upstream of espACD [84]. These results suggest WhiB6, which is induced by PhoPR and MntR, plays
an essential role in the regulation of phagosomal rupture and dormancy.

Induction of transcription of espACD by EspR requires the presence of PhoP [162]. In addition,
MprAB, Lsr2 and CRP bind to the promotor region of espACD operon. Lsr2 represses transcription of
both the espACD and the ESX-1 operon [84], while CRP binding inhibits expression of espACD [165].
Lsr2 binds to AT rich regions in the DNA, mostly virulence genes and is required for adaptation to
extreme oxygen conditions [53,54]. We hypothesize it is likely that Lsr2 represses the operon containing
ESX-1 genes and espACD in oxidative conditions. This could serve to avoid further aggravation of the
immune response. MprAB functions as a repressor of the espACD operon in cellular stress conditions,
however MprA/B is also required for full expression of espACD. It is plausible to assume both positive
and negative regulation by MprAB occurs based on the presence of multiple binding sites for MprA
and two transcriptional start in the espACD operon [84].

Like the post-translational activation of GroEL2 by HiP1, membrane lysing capability of EsxA is
activated only upon dissociation of EsxA from EsxB in acidic environment (pH 4–5) encountered when
the phagosome matures. Acetylation of proteins in Mtb is cAMP dependent [141]. Acetylation improves
dissociation of EsxA from EsxB at higher pH, a model where acetylation leads to reduced virulence
was proposed [166]. Taken together, these studies indicate pore formation is strictly regulated, most
likely only occurs when cAMP is depleted (no cAMP-CRP), might be inhibited by sudden changes in
oxidative conditions (Lsr2), the phagosome acidifies and become hypoxic (PhoPR) and pore formation
is transiently induced by WhiB6 upon NO sensing [85]. MprAB further modifies activation of espACD,
most likely both positively upon initial cell damage and negatively after prolonged cell stress and
accumulation of polyphosphate, as indicated in Figure 4.

It should be mentioned that in addition to their role as regulators, Lsr2, CRP and EspR have also
been characterized as nucleoid-associated proteins and as such might serve additional functions such
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as structuring the organization of the chromosome and, as has been shown for the ESX-1 and espACD
operon, protecting DNA region from oxygen radicals [53,165,167].

3.3. Dormancy and Modulation of Granuloma Formation

The third virulence strategy deployed by Mtb is onset of dormancy. Dormancy is a non-replicating
and metabolically near inactive state at which Mtb is immune to most drugs and can survive for
decades [3,9]. Dormancy occurs upon formation of mostly hypoxic granulomas [168]. Immune
modulation that stimulates granuloma formation will therefore be discussed as a part of the dormancy
virulence strategy.

When Mtb runs out of cAMP to secrete thereby suppressing phagosome lysosome fusion,
the macrophages phagosome will fuse with late endosomes and lysosomes. As a result, the phagosome
becomes increasingly hostile with lower pH, production of oxygen radicals and NO and fusion with
vesicles containing lysozymes. In contrast, conditions encountered in granulomas are slightly more
favourable for Mtb. Granulomas have reduced capacity to form oxidative radicals [11].

Mtb stimulates TNF-α production which leads to granuloma formation among others through
secretion of cAMP into the cytosol [70,106,169]. A number of studies indicate that granuloma may be
dispensable for preventing bacterial dissemination and may actually contribute to Mtb persistence
and shield Mtb from more successful immune cells [7,10,11]. According to some models, Mtb
containing granuloma’s contain two types of macrophages: classically activated and alternatively
activated [7]. Mtb shifts the macrophage population within the granuloma from being classically
activated to alternatively activated macrophage which produce more anti-inflammatory cytokines
(TGF-β, IL-10) and arginase. These diminish the amount of arginine available to iNOS, which results
in reduced NO production [7,11,170]. A balance of pro-inflammatory and anti-inflammatory response
via stimulation of TNF-α and IFN-γ production is needed for granuloma formation while IL-10 is
the main negative regulator for this response, inhibiting formation of dense and hypoxic mature
fibrotic granuloma’s [7,106]. Moreover, parameter sensitivity analysis for a granuloma model, showed
IL-10 had the strongest influence on myofibroblast numbers at 300 days post infection and indicated
IL-10 to play a major role in preventing differentiation of immune cells needed to develop protective
immunity [7,106].

A number of regulators allow Mtb to sense and adapt to hypoxia and maturation of the phagosome.
The most important of these regulators is the two-component regulator DevRST which regulate genes
coding for proteins that help Mtb prepare for dormancy and subsequent resuscitation [171–173].
A visual representation of DevRST response to environmental cues is present as part of Supplementary
File 1. Both DevS and DevT can activate the DevR regulon through phosphorylation of DevR, which
autoregulates its own operon through cooperative binding to two binding sites [172–175]. DevT
provides initial activation of the DevR regulon through phosphorylation of DevR and has the strongest
sensitivity to CO and a weaker binding to NO and O2 compared to DevS. DevS is sufficient for DevR
activation after 5 days of infection [176,177]. DevS phosphorylates DevR even in the presence of small
concentrations of NO, negatively regulates the DevR regulon through phosphatase activity in the
presence of O2 while positively regulating the DevR regulon in reducing conditions [176,178,179].

Interestingly, even under non-inducing conditions and as such no phosphorylation of DevR,
the DevR regulon is activated upon high enough concentrations of DevR, providing a possible
explanation for enduring induction of the DevR regulon which might occur after prolonged
autoactivation of its own regulon [175]. Among DevR regulated genes there are a few types of
regulation. While some genes are strongly upregulated within a few hours of infection others are only
mildly induced after 12–24 h in hypoxic and high NO conditions [174]. DevR and other two-component
regulators can fine tune expression of genes through the presence of multiple binding sites and through
phosphorylation which stimulates cooperative binding [173].

CO is released by the enzymatic activity of heme oxygenase-1 (HO-1) in lungs infected by
Mtb [180,181]. CO is an important dormancy inducer. Interestingly, Mtb has a unique heme scavenging
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and degrading systems that does not produce CO allowing Mtb to degrade heme without inducing the
immune response or its own dormancy regulon.

Interestingly, there is evidence for two DevR regulated proteins to be involved in stabilizing the
30S ribosomal units under hypoxic conditions, while slowing down translation and protein synthesis in
the process [168,182]. Mtb uses lipids such as cholesterol as primary nutrient in this phase of infection
via genes regulated by KstR and IdeR [127,129], while increasing production of triacylglyceride (TAG)
via tgs1 which is under control of DevR and Whib3 [73].

Protein-protein interaction was observed between DevT and NarL, a lone two-component
response regulator involved in nitrate and nitrite respiration in Escherechia coli [183–185]. Although
the genes regulated by NarL in Mtb are unknown, we argue it is plausible that NarL is involved in
regulation of nirB, narU, narX, narU, nuoB that are currently thought to be part of the DevR regulon.

NO is produced in the maturing phagosome and is an important dormancy cue sensed by DevT
and DevS. Mtb expresses two truncated heme proteins, GlbN and GlbO, that help it detoxify from
nitrate containing oxygen radicals such as NO while residing in the macrophage [186–189].

Interestingly, GlbN is co-transcribed with lpRl coding for Lipoprotein LprI, which Acts as a
lysozyme inhibitor [190]. The GlbN-lpR1 Activated isoniazid inhibits truncated haemoglobin N
that protects against reactive nitrogen and oxygen species as well as AcpM, which is required for
mycolic-acid production [15,191–193]. NO was found to help Mtb to survive in hypoxic and acidic
conditions through anaerobic respiration [185,194]. In addition, nitrate respiration plays an important
role in dormancy and protection against hypoxic and acidic stress [194,195].

Although DevRST and WhiB3 are involved in the preparation for dormancy, the enduring hypoxic
response measured in a devR knockout mutant showed 230 genes to be differentially expressed with
roughly half of them upregulated in in the first day of hypoxia and the other half only upregulated at
4 and 7 days of hypoxia [196]. These results indicate many genes involved in the enduring hypoxia
response are not regulated by DevR. Resuscitation from dormancy is more elusive and less studied than
dormancy. Resuscitation involves ClgR and both SigH and SigE are upregulated upon reaeration [197].
Also cAMP-CRP plays a role in resuscitation as it upregulates rpfA one of the five resuscitation
promoting factors [137,198,199].

4. Success through Tight Regulation of Virulence Strategies

Mtb anticipates changes in the interaction with the host by upregulating both internal and
external sensors and regulators involved in sensing progression of the immune response. This allows
the bacteria to adjust more quickly to progression of the immune response. External sensors involved
in survival in the macrophage consists mostly of two-component regulators [161] (such as DevRST,
PhoPR, MprAB, SenX3-RegX3, NarL) while for internal sensors, WhiB family proteins and regulators
such as CRP and CMR are used. These sensors and regulators appear interconnected, thus forming
a single regulatory cascade that controls the three virulence strategies, as represented in Figure 5.
This regulatory cascade integrates many internal (cAMP, Mn, Mg, oxidative conditions and presence of
NO) and external environmental cues (phagosome pH or cell wall damage) for fine-tuned regulation
of key virulence systems. Examples of such virulence systems downstream this cascade are GroEL2,
ESX-1, EsxAB and EspACD. Pore formation by EsxA depends on the regulation of ESX-1 by PhoP,
Lsr2 and WhiB6 and on regulation of EspACD by Lsr2, EspR, PhoPR, MprAB, WhiB6 and Rv0081. Post
translationally, pore formation by EsxA is regulated by proteolytic activity of MycP1, acetylation of EsxA
and dissociation of EsxA-EsxB upon acidification of the phagosome [13,53,54,84,85,139,141,165–167].
Similarly, GroEL2 is regulated by CRP, WhiB1, HrCA and Mg2+ starvation and post-translationally
regulated by proteolytic cleavage by Hip1 [124,132,133,136–138].



Int. J. Mol. Sci. 2018, 19, 347 15 of 29
Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  15 of 29 

 

 
Figure 5. Overview of the regulatory cascade that integrates environmental cues to active the immune 
modulation, dormancy and phagosomal rupture virulence strategies. Arrows indicated regulation 
(green for induction, red for inhibition of transcription) with dashed lines for uncertain effects. 
Regulators are depicted in green, proteins and other molecules dark blue while operons are depicted 
in squares. The large arrow on the top represents the progression of the immune response. 

There is a great amount of overlap in this cascade, so that multiple environmental signals are 
considered in the regulation of these genes, as indicated in Figure 5. For example, some PhoPR 
regulated genes are predicted to have cAMP-CRP binding sites [200]. These genes are upregulated 
upon oxidative stress and low pH but suppressed in the presence of cAMP-CRP, as is the case for 
espACD [201]. Some PhoPR regulated genes are also regulated by DevRST, WhiB3 and by MprAB. 
An even larger overlap exists in genes regulated by DevRST and MprAB, indicating integration of 
CO, NO, hypoxia and cell stress in the regulation of these genes [202–204]. We argue that based on 
the overlapping regulation of the three virulence strategies, these strategies extend and overlap each 
other. The order of activation of these strategies is likely to vary depending on the dynamics between 
Mtb and the host. Timing of specific virulence strategies also vary for different Mtb strains [144]. Some 
strains gain cytosolic access within hours of phagocytosis while others require 3–10 days [13,144]. 
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Figure 5. Overview of the regulatory cascade that integrates environmental cues to active the immune
modulation, dormancy and phagosomal rupture virulence strategies. Arrows indicated regulation
(green for induction, red for inhibition of transcription) with dashed lines for uncertain effects.
Regulators are depicted in green, proteins and other molecules dark blue while operons are depicted in
squares. The large arrow on the top represents the progression of the immune response.

There is a great amount of overlap in this cascade, so that multiple environmental signals are
considered in the regulation of these genes, as indicated in Figure 5. For example, some PhoPR
regulated genes are predicted to have cAMP-CRP binding sites [200]. These genes are upregulated
upon oxidative stress and low pH but suppressed in the presence of cAMP-CRP, as is the case for
espACD [201]. Some PhoPR regulated genes are also regulated by DevRST, WhiB3 and by MprAB.
An even larger overlap exists in genes regulated by DevRST and MprAB, indicating integration of
CO, NO, hypoxia and cell stress in the regulation of these genes [202–204]. We argue that based on
the overlapping regulation of the three virulence strategies, these strategies extend and overlap each
other. The order of activation of these strategies is likely to vary depending on the dynamics between
Mtb and the host. Timing of specific virulence strategies also vary for different Mtb strains [144]. Some
strains gain cytosolic access within hours of phagocytosis while others require 3–10 days [13,144].

Pore or lesion formation is linked to immune modulation. Cytosolic access is need for secretion
of cAMP and other immune modulating factors, such as GroEL2, into the macrophage cytosol [144].
There are still many unanswered questions regarding the exact role and regulation of GroEL2. Firstly,
it is unknown at which conditions proteolysis of GroEL2 by Hip1 (Rv2224c) occurs. Secondly, Hip1 was
reported to mainly function as lipase in one study [134], further research is needed to confirm whether
GroEL2 is a direct substrate of Hip1. Strict regulation of GroEL2 suggests it to have an important role
in virulence.

Interestingly, there are many parallels in regulation of virulence systems between Mtb and other
pathogens. Understanding Mtb as one of the most successful intracellular pathogens can therefore
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provide insight in common strategies deployed by intracellular pathogens. For instance, positive
regulation of virulence genes by PhoPR and suppression by cAMP-CRP appears to occur in more
pathogens. In Y. pestis, PhoP directly binds to and transcriptionally activates crp and cyA leading to
merging of the PhoPQ and CRP-cAMP regulon [205]. Similarly, a major virulence island is positively
regulated by PhoP while being suppressed by cAMP-CRP in S. typhimurium [206]. In Mtb, PhoPR
regulates pro-inflammatory virulence genes such as the ESX-1 operon as well as genes involved in
protecting against oxidative stress, when cAMP is depleted. cAMP does not only suppress phagosome
maturation but also acts as an internal sensor of phagosome maturation, through pH dependent
secretion of cAMP.

Some aspects in the regulation of PhoPR and cAMP in Mtb require more research. Firstly,
the function of multiple IdeR binding sites upstream of the phoPR suggests complex regulation of
the phoPR operon by IdeR and thus by iron bioavailability. Secondly, the exact cue for activation of
PhoP remains unknown. Upregulation of phoPR in acidic conditions has been observed as well as
under Mg2+ starvation, however this later observation could not be reproduced [125]. Transcriptional
analysis of Mtb showed many genes in the PhoPR regulon to be upregulated during the first hours of
infection (20 min to 2 h) while the phagosome acidified from pH of 6.5 to pH 5.5 [66]. PhoPR stimulates
expression of aprABC, an Mtb specific pH sensing locus involved in the regulation of among others a
number of PhoP regulated genes [125]. These results indicated PhoPR directly or indirectly senses pH.
Recently, it was discovered that PhoP interacts with acid inducible extracytoplasmic sigma factor SigE,
providing a possible explanation for activation of the PhoP regulon at low pH [158]. Extracytoplasmic
sigma factors provide a means of regulating gene expression in response to various extracellular
changes, hence their name.

Secondly, we argue entrance of Mtb in the early phagosome is likely to lead to higher abundance
of Mn. Pathogenic Mycobacteria species such as Mtb and M. avium, have high manganese concentrations
at 1 and at 24 h after infection compared to non- pathogenic M. smegmatis [32]. Mn availability might
also be affected by Mramp, a pH dependent Mn H+ symporter with maximal activity between pH 5.5
and 6.5 matching the conditions found in the early phagosome. Mn is an important cofactor for cAMP
synthesis and it is likely to increase cAMP production in the early phagosome. cAMP-CRP and PhoPR
co-regulate virulence genes directly or via regulators such as WhiB6, which is linked to Mn deficiency.
Based on the strong affinity of PhoP for Mn we hypothesize Mn might play a role in both cAMP and
PhoPR regulation [20,83]. Depletion of Mn and secretion of cAMP might lead to de-repression of
cAMP-CRP suppressed genes such as espACD as well as activation of these genes through PhoPR.

Thirdly, polyphosphate is needed for optimal PhoP activation [159]. Polyphosphates are potent
inhibitors of type III adenylyl cyclases in M. bovis which agrees with the opposing roles of cAMP-CRP
and PhoPR in respectively inducing genes involved in the anti- and pro-inflammatory response in
Mtb and other pathogens. Polyphosphate is implicated in the activation of PhoP and is part of one of
two positive feedback loops in the regulation of mprAB and sigE [158–160]. Polyphosphates kinase
production is conserved in all bacteria and is associated to induction of dormancy and activation of
virulence genes in many pathogens [207]. Knockout polyphosphate kinases ppk1 mutants, have reduced
biofilm formation, are more susceptible to drugs and are impaired in growth in guinea pigs [159,208].
Interestingly, SigE is involved in regulation of polyphosphate. MprAB and SigX3-RegX3, induce
transcription of sigE upon cell wall stress or phosphate starvation, while anti sigma factor RseA binds
to and neutralizes SigE in reducing conditions [209,210]. RseA is degraded by ClpC1P2-dependent
proteolytic activity depending on its phosphorylation by the eukaryotic-like Ser/Thr protein kinase
PknB [210]. SigE, polyphosphate and MprAB are involved in a double positive feedback loops
through polyphosphate and ClpC1P2 of which a visual model is provided by Manganelli et al. [210].
Polyphosphate functions as phosphate donor for MprAB under low ATP condition. Additionally, SigE
regulates the transcription of the furA-katG operon in response to oxidative stress in Mycobacteria [67].
SigE knockout strains are strongly attenuated and a recent study shows a sigE knockout strain provide
an even more effective live vaccine than BCG [211]. Taken together, these studies indicate SigE plays
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an important role in adapting to low pH, cell wall and oxidative stress through upregulation furA-katG,
activation of some PhoPR induced genes, MprAB and inhibition of cAMP-CRP through polyphosphate
production. The interplay of SigE, polyphosphate and the hypothesized role of Mn in PhoPR and
cAMP regulation should be further investigated.

Another aspect we want to address is the link between IdeR, cAMP, cholesterol degradation
and phagosomal rupture. IdeR, KstR and KstR2 co-regulate the cholesterol degradation pathway in
M. bovis [127]. We suggest a similar synergy between IdeR regulation and cholesterol degradation in
Mtb. Transcription of cholesterol degradation genes in Mtb is dependent on the presence of CyA [212].
Regulation of cholesterol degradation by IdeR and cAMP would suggest access to cholesterol is
associated to the initial stage of Mtb host interaction when the iron pool is oxidized and cAMP
is produced to avoid phagosome maturation. Interestingly, EsxA and other pore forming toxins
specifically inserts themselves into phosphor lipid (phosphatidylcholine) and cholesterol-containing
liposomes [166,213]. Giant foamy macrophages rich in cholesterol are at the centre of Mtb containing
granuloma’s that turn necrotic [7,11,12,107,213]. Accumulation of cholesterol was shown to be essential
for uptake of Mtb by the macrophage [214]. Additionally, cholesterol was shown to increase association
of TACO, a coat protein that prevents degradation of Mycobacteria upon fusion with lysosomes [214].
We argue that accumulation of cholesterol in macrophages not only increases Mtb survival in the
phagosome by serving as carbon source but also might assists in phagosomal rupture and possibly in
escape from the phagosome.

In summary, in this review we provide an overview for understanding divalent metal homeostasis
and their role in regulating three essential virulence strategies of Mtb: immune modulation, dormancy
and phagosomal rupture. Sensors of environmental and internal cues, including divalent metal
availability, form a single regulatory cascade that controls these three virulence strategies. The role of
polyphosphate, cAMP and manganese in this cascade requires further investigation.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/19/2/347/s1.
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MntR Manganese-dependent transcriptional repressor
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