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Abstract

A knowledge-based grouping of genes into pathways or functional units is essential for describing and understanding cellular
complexity. However, it is not always clear a priori how and at what level of specificity functionally interconnected genes should be
partitioned into pathways, for a given application. Here, we assess and compare nine existing and two conceptually novel functional
classification systems, with respect to their discovery power and generality in gene set enrichment testing. We base our assessment
on a collection of nearly 2000 functional genomics datasets provided by users of the STRING database. With these real-life and diverse
queries, we assess which systems typically provide the most specific and complete enrichment results. We find many structural and
performance differences between classification systems. Overall, the well-established, hierarchically organized pathway annotation
systems yield the best enrichment performance, despite covering substantial parts of the human genome in general terms only. On
the other hand, the more recent unsupervised annotation systems perform strongest in understudied areas and organisms, and in
detecting more specific pathways, albeit with less informative labels.
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Introduction
When interpreting genome-wide functional genomics experi-
ments, scientists often rely on statistical tests and visualization
methods to gain initial systems-level insights. Functional
enrichment analysis, also termed ‘gene set enrichment analysis’,
is a widely used approach to accomplish this. It is typically applied
to transcriptomics or proteomics profiling experiments, but is
also used for perturbation screens, genome-wide association
data, bioinformatics inferences and other data modalities.
For the analysis, sets of genes derived from gene annotation
frameworks such as the Gene Ontology [1] are tested for
statistical enrichment (or overrepresentation), for example in one
experimental condition versus the other. The gene sets considered
for these tests typically correspond to either pathways, protein
families, subcellular compartments, disease genes or other
knowledge-based groupings. Testing for sets of genes instead of
single genes increases statistical power because it can capture
small but coherent changes in gene-level metrics, even in the
presence of substantial noise or when no individual gene is by
itself changing consistently [2].

Functional enrichment can be performed by a wide variety
of convenient GUI-based enrichment tools, including DAVID [3],
GSEA [2], Enrichr [4] and Panther [5], among others. Each tool uses
one or several pathway systems or annotated gene set collections
to test against.

One of the caveats in functional enrichment is that the results
depend on the quality and completeness of the annotation sys-
tems used [6–8]. It is well established that there is a relatively
small number of richly annotated genes, whereas the majority of
genes is only sparsely annotated [7, 9, 10]. This annotation bias
is likely due to study biases that can be explained and predicted
for any given gene [11], and it has been shown to impact further
biomedical research [7, 10]. As a recent example, Maertens, et
al. [12] reveal systematic biases in popular annotation systems
such as GO Biological Process and show that a majority of genes
associated with clinical outcomes in cancer are understudied.

As of yet, there have been no comprehensive evaluations
assessing the most commonly used functional annotation
systems, with regard to their role as providers of gene sets for
functional enrichment analysis. This may be due to the fact
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Figure 1. Assessing differences between functional pathway annotation systems. A diverse collection of 3651 enrichment query datasets is collected,
with permission, from STRING users. After filtering for redundancy, 1959 datasets are resubmitted in a standardized setting for enrichment testing
against established classification systems. These 11 pathway annotation systems, including the three Gene Ontology categories, are compared based
on their structural properties and their performance in enrichment analysis using the CAMERA preranked method.

that these annotation databases are very heterogeneous and
enrichment testing may not have been the primary objective
during their original design. Instead, they each focus on a
certain context, such as detailed metabolic pathway maps (KEGG
[13]), curated human pathways (Reactome [14]), comprehensive
annotation of protein function (UniProt [15]), identification of
protein families and domains (SMART [16], InterPro [17], Pfam
[18]) or formalized ontologies of gene function or cellular location
on multiple levels of granularity (Gene Ontology [19]).

Three studies so far have compared functional annotation
databases in specific use cases. However, these focus either on cell
signaling databases only and/or base their comparison on a single
use case, considering one specific disease or class of diseases:

Tieri & Nardini [20] compare the databases Reactome, KEGG,
Nature Pathway Interaction Database (PID) and InnateDB based
on the number of rheumatoid arthritis pathways, given verified
disease gene or protein identifiers and the coherence of the
results.

Chowdhury and Sarkar [21] compare 24 different cell signaling
databases based on the number of pathways and entities con-
tained, the functional areas covered, and the sources and data
representation models that they are based upon.

Maleki et al. [6] is the only publication so far that assesses
functional annotation databases for use in functional enrichment
analysis. They compare the three Gene Ontology hierarchies,
KEGG, BioCarta and Reactome in their similarity, number of path-
ways and gene set sizes. Enrichment-specific comparisons are
performed for juvenile idiopathic arthritis based on three GEO
datasets for this disease. They specifically derive a metric that
is meant to inform the choice of a certain functional annotation
system for a specific use case. However, their method relies on
determining the list of genes relevant to the biological question
in advance, which is not a viable approach in a more exploratory
setting, and may potentially exacerbate existing research biases.

In addition to the three studies comparing annotation
databases, Bateman et al. [8] assess not individual databases but
instead the collections available in MSigDB, the gene set database
that is the default option for the enrichment tool GSEA. Two of the
collections cover gene sets from functional annotation databases,
including Gene Ontology, and selected sets from BioCarta, KEGG,

Reactome, PID and others. The comparison and performance
evaluation are based on a limited number of drug response
expression experiments in human cancer cell lines.

Thus, to our knowledge, there are no assessments so far that
evaluate a broad range of annotation databases as providers of
gene sets for functional enrichment, or that base their evaluation
on more than one type of input data. Furthermore, the available
assessments are almost exclusively focused on human diseases,
despite functional enrichment being applied across all pheno-
types and domains of life.

Here, we take advantage of the broad and diverse user base
of the STRING database, in order to assess and compare 11
functional gene annotation systems. With the users’ permissions,
we have collected query datasets submitted anonymously to the
STRING functional enrichment tool over a period of 7 months.
This amounts to a benchmark collection of nearly 2000 unique,
real-life query inputs, originally submitted specifically for the
purpose of genome-scale enrichment testing (see Figure 1).

The STRING database (https://string-db.org) is an online
resource used mainly to explore protein–protein associations,
covering over 14 000 different organisms in the current version
(11.5) [22]. As an accessory feature, it also allows functional
enrichment analysis on user-uploaded multi-gene queries. In
version 11.0, STRING considerably expanded this functionality
by adding a genome-scale enrichment mode for gene–value lists
and by introducing two additional functional annotation systems
that are based on the STRING database itself: STRING network
clusters and tagged PubMed publications. The network clusters
are the result of unsupervised, hierarchical clustering of the
STRING protein–protein association networks, while the tagged
publications sets comprise the genes or proteins discussed in each
paper based on automatic named-entity recognition.

Here, our goals are to systematically assess (i) differences in
coverage depth and focus among the pathway collections, (ii)
biases in user query interests and to what extent these biases may
match pathway annotation biases, (iii) quantitative differences
in enrichment findings among pathway systems for a given set
of queries and (iv) to which extent the unsupervised annotation
systems may provide complementary insights and help to address
understudied organisms and biological processes.

https://string-db.org
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Figure 2. Functional pathway annotation systems assessed here. Basic characteristics of each annotation system are shown alongside four metrics
that are specific to the human annotations: the number of terms, term size distribution, gene coverage and genome coverage. Terms here refer to
pathways, keywords or any other type of gene set. A version that does not exclude large terms for the right-most two panels is shown in Figure S2 (see
Supplementary Data available online at http://bib.oxfordjournals.org/). (∗ = reference proteomes in UniProtKB).

Methods
Functional pathway annotation systems
All analyses and comparisons are based on the functional anno-
tation systems as mapped to and integrated into STRING v11:
Reactome pathways, KEGG pathways, UniProt keywords, the three
Gene Ontology (GO) hierarchies (Biological Process, Cellular Com-
ponent and Molecular Function), SMART protein domains, Pfam
protein families, InterPro protein families/domains, STRING clus-
ters and tagged PubMed publications (see also Figure 2). All anno-
tations are used as provided by the corresponding databases,
except for the removal of 23 terms or keywords. These removed
terms/keywords are the three root terms of the Gene Ontol-
ogy (‘Biological Process’, ‘Cellular Component’ and ‘Molecular
Function’), and 20 of the UniProt keywords: the 10 root terms, plus
the 10 ‘technical terms’ (i.e. the children of KW-9990). The version
numbers and release dates of all functional annotation systems
are shown in Table S1 (see Supplementary Data available online
at http://bib.oxfordjournals.org/).

User query data collection
Since version 11, STRING has provided genome-wide functional
enrichment testing for all of its organisms. In addition to simple
gene set overrepresentation testing, STRING also accepts gene or
protein lists with experimental summary statistics such as fold
changes, P-values, t-statistics, scores or ranks, without requiring
any cutoffs. Upon submission of such a genome-scale query, users
are asked for their consent to anonymized, aggregated use of

their submission with an opt-out option. For this study, all 3651
submissions with consent from between July 2019 and February
2020 were used. The only information collected was the gene–
value pairs provided by the user. No metadata was collected, and
the user-provided data has been analyzed in aggregated form only.

Query data processing
We developed an analysis pipeline to re-process the user-
submitted datasets for the assessment of functional annotation
databases (detailed in Figure S1, see Supplementary Data
available online at http://bib.oxfordjournals.org/). From all user
inputs, we removed gene–value pairs with nonfinite or ‘NA’
values. After this first filter, we set the following criteria for
inclusion: (i) at least 500 genes can be mapped to STRING
identifiers, (ii) no values are above |1e200|, (iii) at least 10 unique
input values occur and (iv) the most frequently occurring value
in any given user input makes up less than 80% of all values of
this input. The last two conditions were put in place in order to
exclude inputs with too many repeated values, since they are not
suitable for rank-based functional enrichment testing.

In addition, we aimed to identify and remove redundant sub-
missions (a notable fraction of users submit the same or very
similar queries multiple times). To achieve this, we kept only the
largest user input of groups of datasets that either contained the
exact same set of genes (± 2 genes), or correlated with each other
with a Spearman ρ2 correlation of 0.8 or more (either between
the original or the absolute values). Specifically, the two types of
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Spearman ρ2 values and symmetric difference were calculated for
each pair of user inputs. Next, we performed a separate single
linkage agglomerative clustering for each of the three metrics
(using 1 − ρ2 as a distance metric for the Spearman values). The
minimum distance for each cluster was 1–0.8 for the Spearman
distances and 2 for the symmetric difference. If two or more
inputs fell into the same cluster in any of the three clusterings,
only the largest input of each cluster was retained. For Spearman
correlation, only input pairs with 100 or more genes in common
were calculated, otherwise correlation was set to 0.

Functional enrichment testing
Although STRING possesses its own highly performant func-
tional enrichment tool, we chose an already established func-
tional enrichment method for this assessment study to ensure
an independent evaluation. We used CAMERA preranked [37], an
enrichment tool provided by the limma Bioconductor package
(v3.42.0), used under R v3.6.3. In contrast to the standard CAMERA
method, CAMERA preranked is a univariate method, meaning
that it uses only a list of gene–value pairs from a genome-scale
experiment, instead of an entire expression matrix. This type of
analysis mode matches the user query data from our benchmark
collection, where users typically provide P-values, fold changes or
gene scores for each gene. We restricted the enrichment testing
to pathways /gene sets (here: ‘terms’) that overlap with the user’s
query input data by at least three genes.

The P-values obtained were corrected for multiple testing
within each functional annotation category using the Benjamini–
Hochberg procedure, as implemented within CAMERA. We
considered all terms with a corrected P-value lower than 0.05
as significantly enriched.

For Figure 4, an additional nonredundant version of the enrich-
ment results was produced by removing all detected terms that
were subsets of another detected term within the same pathway
annotation system.

Added novelty of enrichment results
In order to assess complementarity between the pathway anno-
tation systems, terms detected as enriched by only one of the
annotation systems were considered. The genes associated with
each term were filtered to those actually present in the user query,
and the nonredundant enrichment results were analyzed. A term
was labeled as not detected by other annotation systems if at least
50% of the filtered genes of this term were not contained in any
single enriched term in all other annotation systems. The number
of user inputs with at least one such complementary term was
plotted for each annotation database.

Coverage depth analysis
In order to calculate the coverage depth, for each functional
annotation database we counted how many different terms each
human protein-coding gene has been assigned to. Since very large
pathways with hundreds of genes typically provide little func-
tional insights but disproportionately affect coverage statistics, we
analyzed coverage for all terms, as well as for specific terms only
(terms annotating 250 genes or less).

Term size versus effect size/significance analysis
Since CAMERA provides an enrichment P-value but not an effect
size, we separately calculated the effect size for each enriched
term as (mean deviation of the term’s input ranks from the mean
input value)/(maximum possible deviation from the mean input

rank). Thus, the effect size of each tested annotation term ranges
between 0 and 1.

For every enrichment test performed, we then plotted the
effect sizes, and the P-values calculated by cameraPR against the
respective term size. No restrictions of term size were imposed.
For the resulting density plots, the enrichment results for the
tagged PubMed publications were downsampled by a factor of 100
for better comparability with the results from other annotation
systems.

Generating the STRING clusters
In order to generate the STRING clusters, the entire STRING
protein–protein association network (v11.0) of each organism was
used without any interaction score confidence cutoff. An overview
of the generation process of the STRING clusters is shown in
Figure S7A (see Supplementary Data available online at http://bib.
oxfordjournals.org/). HPC-CLUST [23] was used to perform aver-
age linkage clustering on the distance matrix, where the distance
between each protein pair was equal to 1.0 - STRING association
score. Protein pairs that did not have association scores in STRING
were assigned the prior probability of association (which is lower
than the lowest association score stored in the database).

All hierarchical clusters from the clustering procedure were
retained, that is, the hierarchical structure was not cut at a
specific distance threshold to produce a ‘flat’, nonoverlapping,
clustering. This means that a protein will be the member of a
cluster and of all its parent clusters. However, to increase the
usefulness as a functional annotation resource, we disregarded
all clusters that were smaller than five proteins. To reduce the
redundancy between parent and child clusters, we also retained
only clusters that were at least five proteins larger than their child
clusters, propagating this rule from the smallest clusters up to the
root. Clusters above a size of 200 proteins were disregarded and
not used in functional enrichment (neither in STRING’s functional
enrichment tools nor in the functional enrichment method used
in this benchmark). The full set of clusters without the cutoff at
200 is available at https://string-db.org/cgi/download.

Annotating the STRING clusters
For each STRING cluster generated above, we created an accession
ID (unique within a given organism) and a description analo-
gous to other functional annotation databases. The description
was generated automatically by searching for consensus anno-
tations based on similar terms in other functional annotation
databases. Here, uniqueness was not enforced. The annotation
reflects the degree of overlap (defined by F1 score) between the
two best-matching terms from the Gene Ontology (Biological
Process, Molecular Function, Cellular Location), Reactome, KEGG
pathways, UniProt keywords, InterPro, SMART and Pfam.

We calculated the F1 score between STRING clusters and all
other annotation terms. The term with the highest F1 score for a
given STRING cluster was chosen as its description if 80% or more
of the STRING cluster genes are contained in that term. For lower
overlaps, the two terms with the highest F1 scores were selected
as the description. If the overlap was lower than 40%, the cluster
was labeled ‘mostly uncharacterized, incl. [term1] and [term2]’,
and if the overlap was lower than 20%, the cluster was labeled,
‘uncharacterized, incl. [term1] and [term2]’ (see Figure S7B, see
Supplementary Data available online at http://bib.oxfordjournals.
org/). In the case of tied overlaps, the functional databases were
given priority over the orthology databases. Within hierarchical
databases, the smaller (more specific) term was chosen in case
of equal overlap. Finally, all else being equal, the shorter textual
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annotation was preferred. The degree of characterization of the
human STRING clusters is shown in Figure S7B and C (see Supple-
mentary Data available online at http://bib.oxfordjournals.org/).

Tagged PubMed publications
The tagged PubMed publications were generated using the text
mining channel of the STRING database itself, which maps the
protein and gene names found in the abstracts and, in many
cases, full texts of PubMed publications to the STRING protein
space. Each publication thus becomes an annotation term, with
the members being the proteins or genes mentioned in this pub-
lication as detected by the named entity recognition pipeline
for STRING v11.0 [24]. Only publications with at least two genes
tagged are used.

Directional similarity between annotation
systems
Jaccard indices between all H. sapiens terms of all 11 functional
annotation systems were calculated. For each annotation system
pair, we defined the directional similarity as the average maxi-
mum Jaccard index between system A with system B.

∑n
i=1 max

1≤j≤m
j(AiBj)

‖A‖

This average depends on the direction of comparison, so that
the directional similarity of A with B is not equal to the overlap of
B with A.

Directional similarity was also applied in order to compare
the 11 annotation systems based on enrichment results obtained
on the set of H. sapiens query datasets. For each user query, the
enriched genes of each detected term were used in the directional
similarity calculation. The resulting similarity matrices were aver-
aged over all query datasets.

Results
Established pathway annotation systems differ
widely in number and sizes of their
pathways/terms
As a first step in our assessment of the nine established and
two novel functional gene annotation systems, we used three
simple metrics (Figure 2): the number of terms in each database,
the distributions of their term sizes (i.e. how many genes are
annotated with this term) and the distribution of gene coverage
depth, defined as the number of terms each gene appears in.
All comparisons shown here were made for the annotations of
protein-coding human genes. As gene groups can carry different
designations (‘pathway’, ‘process’, ‘cluster’, ‘keyword’, etc.) the
neutral word ‘term’ is used throughout.

The number of terms that are contained in each classification
system varies by several orders of magnitude (Figure 2). At one
end of the spectrum lies the KEGG pathways database, which
tends to have a relatively small number of pathways per organism
(but these pathways are in turn relatively large). Conversely, the
number of PubMed publications tagged with at least two human
genes vastly outnumbers all of the other classification systems
(albeit at the expense of considerable redundancy).

The number of distinct terms annotated for a given gene
also varies widely. Annotation systems with a deep hierarchy
(such as Gene Ontology and Reactome) cover each gene multiple
times, while homology-driven annotation systems using protein

domains may only list a handful of terms per gene. The high
variability in the depth of annotation within the system has been
linked to over-estimating the significance of the enriched terms
[9]. In this measure, among the functional annotation systems,
the SMART domains and the STRING network clusters stand
out by giving each gene an approximately equal weight in the
annotation, as evidenced by the narrow distribution of coverage
depths (Figure 2).

The annotation coverage depth of a given gene is not random:
It is correlated with properties of the protein it codes for, such
as tissue diversity, protein length, average tissue abundance, the
number of literature mentions and even protein orderedness
(Figure S6, see Supplementary Data available online at http://bib.
oxfordjournals.org/).

Most of the human genome is not annotated in
detail
None of the annotation systems fully cover, in an informative way,
the entire space of human protein-coding genes. This is particu-
larly visible when excluding relatively unspecific, large pathways,
here arbitrarily defined as encompassing more than 250 genes:
KEGG pathways then annotate just 33% of the human protein-
coding genome, but also SMART, GO Cellular Component and
Reactome each describe less than half of all genes. At the other
extreme, the STRING network clusters and the tagged PubMed
publications both annotate more than 97% of genes at least once
(Figure 2), albeit in many cases with less clarity and authority than
the manually curated classification systems.

Query interests of users are varied and show a
clear bias toward universally expressed genes
While the above reveals clear differences between the functional
annotation systems, it is unclear to what extent each of the sys-
tems is aligned with typical user queries. Here, a broad survey of
user datasets submitted to the STRING database (originally for the
purpose of rank-based enrichment testing) enabled a quantitative
assessment. Of the 3651 original user queries submitted to the
STRING database over a period of seven months, 1959 remained
after removing redundant or improperly formatted/sized queries.
Of these, 1188 (60.6%) were requesting enrichment searches for H.
sapiens, which is arguably the organism where most of the global
annotation efforts have been directed, and which we focus on
here. A detailed breakdown of the user queries per organism is
shown in Figure S3 (see Supplementary Data available online at
http://bib.oxfordjournals.org/).

Of the queries submitted for H. sapiens, few cover the entire
genome – presumably reflecting technical limitations during data
generation, and/or pre-filtering of query data by users. Only about
half of the human genes appear in more than 25% of user queries
(see Figure S3, see Supplementary Data available online at http://
bib.oxfordjournals.org/). The three most commonly submitted
genes were PKM, ENO1 and GAPDH (see Figure S4A, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/).
All three are highly expressed genes involved in glycolysis, one
of the processes present indiscriminately in all types of cells,
but even these appeared in less than two thirds of the queries.
Whether or not a given gene appears frequently in user queries
appears to be nonrandom: on a global network visualization of
the entire human genome, frequently queried genes often cluster
together (Figure 3A), that is, have a clear tendency to interact
or to appear in related functional areas. Other genes are rarely
queried by users: most notably the olfactory receptors, many
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Figure 3. Differences in human genome coverage. For illustration, the entire human genome is laid out in a nonsupervised manner using the t-SNE
algorithm [25]. The similarity between the points (genes) corresponds to the combined STRING interaction score. Clusters on the projection are manually
labeled according to broadly shared functions. (A) Frequency of gene occurrence among the 1188 human user-submitted enrichment queries. (B–D)
Coverage of the human genome by the KEGG pathways, GO Biological Process and STRING clusters annotation systems. Shown is the number of terms
per gene, for terms up to a size of 250 genes. Genes not covered by the respective database are shown in gray. For further annotation systems, and a
version including all term sizes, refer to Figures S9 and S10 (see Supplementary Data available online at http://bib.oxfordjournals.org/).

of the G-protein-coupled receptors (GPCRs), keratin/skin genes,
immunoglobulins and genes associated with the nervous system.
The most frequently studied genes are involved in transcrip-
tion/RNA, ribosome, proteasome and metabolism. These trends
seem to broadly follow the cell type promiscuity of the pro-
cesses that the genes are involved in. In general, genes that
often appear in user queries tend to be more widely expressed
across tissues, more abundantly expressed in a cell, more often
mentioned in the literature and tend to code for larger proteins

(see Figure S4B–D, see Supplementary Data available online at
http://bib.oxfordjournals.org/).

Annotated pathway coverage depth reflects
study bias/research interests
Visually, pathway annotations systems also differ in their relative
coverage of the human protein-coding genome (Figure 3B–D, and
Figure S9, see Supplementary Data available online at http://bib.
oxfordjournals.org/). As is the case for the user interests, the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac355#supplementary-data
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annotation coverage is distributed nonrandomly on the genome
– with closely connected, functionally associated genes sharing
similar annotation coverages, as perhaps expected.

As shown in Figure S5 (see Supplementary Data available
online at http://bib.oxfordjournals.org/), the GO Biological Process
and the automatically parsed biomedical publications in PubMed
show the strongest correlation with user interest (occurrence
frequency in the user input datasets, Spearman’s rho = 0.36 and
0.37, respectively). On the other end of the spectrum, the domain-
centered databases and the STRING network clusters correlate
markedly less. This is perhaps to be expected, since the protein
families in the domain annotation systems and the hierarchical
clustering of the entire protein-coding genome are less subject to
annotation based on research trends.

Several large areas of the genome are poorly covered by almost
all the annotation systems. These areas include (i) the olfactory
receptors, (ii) the C2H2 zinc finger transcription factors and (iii) a
large group of ‘uncharacterized’ or ‘poorly characterized’ genes.
The STRING network clusters (Figure 3D) have a unique position
here, covering almost a complete protein-coding genome while
maintaining a relatively small variation in the depth of annotation
between the covered proteins. This combination of breadth and
balanced depth is a unique feature among all the annotation
systems, and avoids any potential study bias giving equal repre-
sentation of both well- and poorly studied genes in the annotated
sets, while still providing functionally associated gene sets on
various levels of specificity (Figure 3B–D).

The gene sets from automatically parsed biomedical literature
(tagged PubMed publications) stand out by having a raw cover-
age that is several orders of magnitude higher and at the same
time more varied than any of the other annotation databases
(Figure S9, see Supplementary Data available online at http://bib.
oxfordjournals.org/). Around half of all human protein coding
genes are discussed in more than 100 articles, with around 300
genes mentioned in more than 10′000 publications. While this
creates a lot of redundancy, it also has an advantage: Each gene
is mentioned together with several potential pathway partners,
in varying combinations. This increases the chance that a ‘near
optimal’ gene set granularity for a given gene set enrichment task
is among these articles. On the other hand, the high redundancy
means that the resulting P-values have to be heavily corrected for
multiple testing. The published literature also exhibits a shared
bias with the average user interests, but there are noted differ-
ences: for example, while the GPCRs are underrepresented in the
user queries, they are fairly well represented among the publica-
tions. This discrepancy may be caused by the low physiological
expression levels of GPCRs on the one hand and their importance
in various biological processes and as drug targets on the other
hand [26].

Overlap and complementarity between
annotation systems
For a more quantitative comparison of the functional space cov-
ered by the various annotation systems, we calculated their direc-
tional overlap matrix (Figure S8A, see Supplementary Data avail-
able online at http://bib.oxfordjournals.org/). As expected, the
domain-annotation databases (InterPro, SMART, Pfam) cluster
closely together. Terms from SMART mostly find an equivalent
in InterPro and Pfam, but not necessarily vice versa. Nearly all
systems find relatively good equivalents in the tagged PubMed
publications, likely due to the sheer number of these literature-
derived terms. In the reverse, most of the PubMed terms fail to
have an equivalent in the more established annotation systems,

highlighting its complementary aspect. KEGG pathways stand out
in that no other annotation database finds a large number of
equivalent terms in KEGG – likely due to KEGG’s pathway size
distribution being shifted toward larger terms compared to the
other resources.

Reactome pathways, GO-BP, UniProt keywords
and STRING clusters have the highest discovery
power for most datasets
When inspecting the number of detected terms and pathways per
user query, the STRING clusters generate the highest number of
terms detected as enriched. This holds true across all organisms
that we received data for, except Saccharomyces cerevisiae, where
GO Biological Process detects more terms (Figure S11A, see
Supplementary Data available online at http://bib.oxfordjournals.
org/). However, deeply hierarchical annotation systems are
favored by such a comparison, which is why we re-analyzed
the data with terms removed which are perfect subsets of
other enriched terms (Figure 4A). Now, the picture becomes
more variable across organisms: The human-centric Reactome
database provides the most nonredundant terms in the human
datasets, with GO Biological Process close behind. In other
organisms, UniProt keywords and STRING clusters provide an
equal or higher number of enriched terms. While Reactome
performs well on human data, many organisms have not as yet
been annotated by it.

The tagged PubMed publications stand out with the highest
variability of enrichment results. While more than half of all user
queries don’t result in any literature enrichment (Figure S11B, see
Supplementary Data available online at http://bib.oxfordjournals.
org/), the remaining half receive up to 100′000 unique publications
significantly associated with their query dataset, even after mul-
tiple testing correction.

Given the frequently observed annotation overlaps between
pathways/terms within given annotation systems (e.g.in hierar-
chical annotation systems, or within the parsed publications),
a simple count of enriched pathways is not ideal for a com-
parison. Several other measures are arguably of more practical
relevance. For example, the performance on ‘difficult’ queries
might be revealing, that is, on those queries for which some
or all of the annotation systems fail to report any enrichment.
Figure S11B (see Supplementary Data available online at http://
bib.oxfordjournals.org/) shows a comparison where each anno-
tation system is scored only once per user query—it is either
successful in reporting one or more enrichments or it is not.
Differences in this score arise almost exclusively due to the
‘difficult’ queries. Remarkably, by that metric the STRING net-
work clusters proved to be the most successful—they most often
reported significant pathway enrichments even when other anno-
tation systems came up empty. This is observed in H. sapiens, as
well as in many of the less well-studied organisms. In general,
STRING clusters, KEGG pathways and UniProt keywords most
consistently provided at least one significant term for a given
experimental input.

STRING clusters and tagged PubMed publications
define functional terms where no other
annotation terminology can provide information
In cases where a query input has a clear enrichment signal, that
signal is typically detected by multiple pathway systems. This is
reassuring, but arguably those parts of the signal that are detected
by only one classification system warrant special attention. Defin-
ing a detected pathway as unique to one classification system

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac355#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac355#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac355#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac355#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac355#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac355#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
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Figure 4. Enrichment performance. Comparison of functional annotation databases based on the enrichment results of all user data query submissions.
Only nonredundant terms are counted here, that is those gene sets that are not subsets of other gene sets from the same annotation system. (For full
results, see Figure S11, see Supplementary Data available online at http://bib.oxfordjournals.org/). User queries for which no enrichment in any category
was detected are omitted. For brevity, results from Rattus norvegicus and Danio rerio are omitted. (A) Number of annotation terms reported as significantly
enriched, per user input (symlog scale). (B) Added novelty provided by a given annotation system: number of user inputs for which only one annotation
system detects any term as significantly enriched. The blue line represents the total number of user inputs for each species.

if less than half of its constituent genes have been detected
elsewhere, about 68% of user inputs querying H. sapiens lead to
at least one such unique detection.

In Figure 4B, we show how these unique detections are dis-
tributed between the annotation systems. We only count those
user queries where the enriched term is detected by only one
of the annotation systems for any given query dataset. Thus,
we gain insight into the added novelty or complementarity each
annotation system delivers to the interpretation. Strikingly, we
see that more users receive a complementary result from the
STRING clusters than from any other annotation system, across
all but S. cerevisiae. Typically, tagged PubMed publications are
enriched in less than half of the user queries, but if they are, they
deliver a large number of terms not detected by other annotation
systems. Effectively, both STRING clusters and tagged PubMed
publications assemble genes into ‘pathways’ in an unsupervised
fashion; hence they can capture functional relationships that are

still actively worked on and not yet consolidated into canonical
pathway knowledge.

As an example, Figure S14 (see Supplementary Data avail-
able online at http://bib.oxfordjournals.org/) highlights one of
the more speculative STRING network clusters. Its automatically
derived description is ‘mostly uncharacterized, incl. Retrotranspo-
son gag protein, and Magnesium transporter NIPA’, whereby the
latter two terms are derived from protein domains found in only 4
of the 32 cluster proteins. A separate overrepresentation analysis
of the cluster shows that there are no terms from GO Biological
Process or KEGG pathways enriched, and other databases merely
show an involvement in transmembrane transport. However, the
enrichment for publications listed in PubMed clearly hints at an
involvement in the epigenetic process of imprinting. While the
six most significantly enriched publications mention imprinting
in their title, the seventh publication mentions the Prader-Willi
syndrome region, which contains several imprinted genes. Over-

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac355#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac355#supplementary-data
http://bib.oxfordjournals.org/
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all, of the top 200 significantly enriched publications, 135 contain
‘imprint’ or ‘Prader-Willi’ in their title. In this way, STRING clusters
and tagged PubMed publications can be used in tandem to identify
as-of-yet unannotated functional clusters, complementing the
existing annotation systems.

Enrichment results from pathway annotation
systems cluster together, while literature gene
sets provide complementary annotations
One of the questions one might ask when choosing which
pathway annotation system(s) to use for functional enrichment
analysis would be how similar to each other, or, in other
words, how complementary the results generated by using
different annotation systems would be. To answer this question,
we generated an average directional overlap matrix for the
enrichment results of our 1188 H. sapiens datasets (Figure S8B, see
Supplementary Data available online at http://bib.oxfordjournals.
org/). We observed that, as expected, the domain-annotation
databases Pfam, InterPro and SMART formed the densest
cluster, while the other, function-annotating databases, formed
a separate cluster. Only the tagged PubMed publications did
not cluster with any of the other annotation systems, perhaps
pointing to a strong complementarity. Interestingly, these three
clusters of annotation systems were observed more clearly in
the heatmap based on enrichment results than in the one
based purely on the annotation system structures (Figure S8, see
Supplementary Data available online at http://bib.oxfordjournals.
org/).

Annotation terms of medium size achieve the
highest significance
Another complication in the performance assessment lies in the
varying pathway size distributions. As an example, the KEGG
pathways system contains relatively few pathways but neverthe-
less performs well in the above task of reporting at least one
enriched pathway per input (Figure 4B, Figure S11B, see Supple-
mentary Data available online at http://bib.oxfordjournals.org/).
However, the reported pathways are often quite large. This helps
statistically in the enrichment testing but may provide relatively
nonspecific insights to the user. Arguably, the smaller a pathway
(i.e. the fewer genes are annotated in it), the more informative a
reported enrichment becomes [27], providing a clearer guide to
follow-up experiments.

The relationship between enrichment detection success and
pathway size is not trivial. Figure 5A shows a global summary
for all submitted queries for H. sapiens: If a pathway is too small,
it may not be detectable statistically unless the experimentally
detected signal is very specific to that gene set. Conversely, if a
pathway is too large, it may no longer comprise a single func-
tional unit in the cell, diluting the signal over functionally unre-
lated genes (Figure 5B). Overall, the strongest statistical signal is
achieved by terms encompassing around 100 genes. This effect is
visible in all pathway-centered databases: KEGG pathways, Reac-
tome pathways, Uniprot keywords as well as the three GO sys-
tems, and the STRING clusters (Figure S12A, see Supplementary
Data available online at http://bib.oxfordjournals.org/). Due to the
consistency of this finding, we speculate that this reflects the
average breadth of the experimental signal, rather than stemming
from the structure of the annotation systems. In the domain-
family databases as well as in the publications, there is no sin-
gle ideal term size. Across all databases, the terms that are
enriched are, on average, somewhat larger than the terms that are

not enriched (see Figure S12B, see Supplementary Data available
online at http://bib.oxfordjournals.org/).

STRING clusters achieve the highest detection
specificity
In Figure 5B, we noted how larger term sizes are more likely to be
detected as enriched, and, on the other hand, how these larger
terms show a relatively smaller effect size. In order to investi-
gate how these trends affect the specificity of the enrichment
results produced by the different pathway annotation systems,
we assessed the relationship between the number of unique
enriched genes and the term sizes, for all user queries (shown in
Figure 5C). We consider more enriched genes at a small term size
to signify more specific pathway annotations, and thus more fine-
grained and informative enrichment results. While specificity
curves can look vastly different between individual input datasets,
STRING clusters provide the most specific terms for the typical
input, while Reactome, UniProt, GO Biological Process and GO
Cellular component provide most results with term sizes larger
than 200.

Discussion
In this study, we assessed and compared 11 functional pathway
annotation systems (Table 1). We highlighted their differences
regarding the number of pathways (annotation terms) they con-
tain, annotation term sizes and gene coverage depth, focusing
on the human genome. We showed that fairly large parts of the
human genome are still lacking informative annotations, even in
well-maintained annotation systems such as the Gene Ontology.
We further used a compendium of nearly 2000 diverse, user-
provided quantitative datasets to assess the performance of the
different annotation systems for the task of functional enrich-
ment analysis. We observed that most databases provide at least
some enriched annotation terms for a given genome-scale query
of human genes, while the performance in other species is very
variable across databases. We also showed a strong correlation
between the annotation term size and the likelihood of a term
to be detected as significantly enriched in the benchmark data.
We illustrated how the two novel, STRING-specific annotation
systems – STRING clusters and tagged PubMed publications –
avoid some of the biases of the established gene annotation
resources and can be used to potentially discover as yet uncurated
pathways.

In our analysis of coverage depth, that is, the number of anno-
tation terms assigned to a given gene, we observed a strong
variability between genes in almost all annotation systems. Highly
studied, more abundant, longer and more universally expressed
genes are more likely to be annotated. The degree to which these
gene/transcript/protein properties affect the annotation depth
varies considerably among the databases. The problem of missing
gene annotations on the one hand and heavy annotation of a
few genes on the other hand has been described and identified
as problematic for functional gene set enrichment repeatedly in
recent years [7, 9–12]. While these previous studies have described
the issue in terms of number of publications and number of GO
terms per gene, we here also analyze the coverage distribution
of several other databases. Among the 11 annotation systems
assessed, we found that the tagged PubMed publications and GO
Biological Process terms have the largest variability in the number
of annotations a gene receives, confirming the previous studies.

On the other hand, we also found that KEGG pathways, Reac-
tome, GO Cellular Component and SMART all annotate less than

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac355#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac355#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac355#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac355#supplementary-data
http://bib.oxfordjournals.org/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac355#supplementary-data
http://bib.oxfordjournals.org/
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Figure 5. Specificity of enriched annotation terms in human. Relationship between annotation term size and enrichment results, based on our set
of 1188 enrichment queries for H. sapiens. (A, B) Density plots of enrichment tests. For better visualization, no limitations on term sizes tested were
imposed during enrichment testing, and tagged PubMed publication results were randomly downsampled. (A) Relationship between annotation term
size and raw P-value. Gray line represents P = 0.05. (B) Relationship between enrichment effect size and term size. Spearman’s rank correlation = −0.76.
Red trendline: binned means. Shown are only terms with raw P-value < 0.05. (C) Unique enriched proteins per user input query, cumulated over all
annotation term sizes. The lines in the combined plot represent the median of all user queries, while the shading represents the 5-percentile band
around the median (47.5 and 52.5%). Enrichment at small term sizes points toward more specific terms, while enrichment at large term sizes points
toward more general terms.

half of the human protein-coding genome with specific terms
(i.e. terms assigned to less than 250 genes). For KEGG path-
ways, Reactome and SMART, this holds true even when includ-
ing larger terms, while GO Cellular Component reaches a high
coverage of the genome, albeit in part due to very large terms.
For example, 83% of the protein-coding genome is annotated with
‘cell’. The low coverage of some annotation systems may reflect

intended restrictions in scope, as well as study biases in the
respective scientific disciplines. To some degree the low coverage
could be expected, since KEGG and Reactome focus mainly on
metabolic pathways, and many other, more specific functions are
not included. In general, any skews in annotation coverage may
potentially turn into a vicious cycle: If genes are not annotated,
they may be overlooked in functional interpretations, whereas
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Table 1. Result summary

Reactome KEGG UniProt GO
Biological
Process

GO Cellular
Component

GO
Molecular
Function

SMART Pfam InterPro STRING
clusters

tagged
PubMed
publica-
tions

% genome
coverage

All terms 53 36 96 85 90 76 50 83 87 98a 97
Terms ≤ 250 48 33 58 71 44 57 42 77 80 98a 97

Coverage
evenness

All terms 0.8 1.8 2.1 0.4 0.8 0.7 4.0a 3.4 2.1 4.0a 0.2
Terms ≤ 250 1.0 2.0 2.8 0.5 1.3 1.2 4.4a 3.2 2.0 4.0 0.2

Enrichment
performance

Human 8a 4 7 8a 4 2 1 1 1 6 2
Mouse 4 5 7a 4 4 2 1 1 1 6 1
All others 0 3 4 4 3 2 0 0 0.5 5a 0

Added novelty All terms 196 98 198 103 168 33 61 37 42 325a 147

Enrichment
specificity

All terms 306 111 512a 404 483 78 22 18 24 183 54
Terms ≤250 190a 96 119 155 133 37 17 16 18 183 54
Terms ≤50 40 0 18 21 25 0 0 0 0 70a 22

All values are for human data unless stated otherwise. Coverage evenness = 1/variance(log(term_count/gene)). Enrichment performance = median number of
enriched terms per user input, highly overlapping terms removed. Added novelty = number of enriched terms per user dataset that are not detected by another
annotation system. Enrichment specificity = median number of unique enriched genes per user dataset. aBest performance on a measured variable.

annotated genes may be specifically mentioned in publications,
and in turn more likely to be annotated for even more functions,
thus producing a rich-get-richer effect [11, 12].

In contrast, the STRING clusters are relatively agnostic to
the degree of studiedness, having been derived by a nonsuper-
vised clustering of a functional association network that is itself
nonsupervised (but scored and benchmarked). In these network
clusters, all protein-coding genes are annotated at a similar cov-
erage depth, which may help in combating the known problem
of annotation bias. The protein–protein interactions in associ-
ation networks use several information sources which are par-
tially orthogonal to curated pathways. The STRING clusters can
thereby provide annotations of potential human pathways which
are not included in any of the established pathway annotation
resources, and are especially valuable in as of yet underanno-
tated organisms. A potential drawback of these clusters is that
they rely on the consensus of existing functional gene anno-
tations to receive a meaningful description. Here, however, the
tagged PubMed publications, if available, can assist the user in
the functional interpretation of enriched STRING clusters. Since
all other annotation databases are mapped to the STRING iden-
tifier space, the fraction of the protein-coding genome covered
by the other annotation terms may be underestimated to some
degree.

All of the established domain family and pathway annotation
databases assessed here rely on manual curation to at least some
degree. Manual curation ensures good annotation quality, but it
also has its drawbacks: First, a vast number of new discoveries are
published every day. This means on the one hand that the rate at
which published discoveries are integrated into the annotations
is limited by the rate at which the literature can be reviewed
by curators [28]. Second, curation efforts are often directed at
specific, manually selected pathways guided by current interests
in the research community [1, 29], meaning that some areas of the
genome remain relatively unannotated, exacerbating study bias
[10–12].

To address annotation delays, community efforts such as
Wikipathways and others [28, 31] can play an important role.
Study biases in annotation potentially could be ameliorated
by adjusting curation strategies. Additionally, there are also

approaches to account for some of the biases in pathway
annotation databases during the data analysis step [9, 32, 33].

These issues of manually curated databases can be circum-
vented to some degree by relying on automatically generated
pathway annotation systems such as the STRING clusters and
tagged PubMed publications tested here. Almost the entire
protein-coding genome is included in the network clusters,
enabling the discovery of unannotated functional clusters and
their inclusion in the interpretation of experiments, as a step
toward reducing the influence of annotation bias and missing
annotations. Similarly, the tagged PubMed publications (updated
weekly on string-db.org) allow a direct enrichment for genes
mentioned in research publications without the intermediate
step of curation. It can take years or even decades until a proposed
new pathway in a publication is integrated into curated pathway
annotation systems [30]. With automated text mining, which
is updated weekly, resources such as STRING build on new
knowledge as soon as it is published.

In our assessment of the annotation databases in the context
of functional enrichment, we used all genome-scale user queries
submitted within a defined time span, instead of small numbers
of manually selected benchmark datasets or simulated data as
was done elsewhere [6, 8, 20, 21]. The major advantage of this
approach is that it provides thousands of real-world scenarios
of user requests, only filtered by whether they are too small or
too similar to other datasets. The collection was not restricted to
a certain method of data acquisition, or research area, or even
specific organisms. As a drawback, we did not have a way of
determining the quality and accuracy of the enrichment testing
results that each user received for their dataset since we did not
collect any metadata about the type and purpose of the submitted
data. Furthermore, we assume that each dataset corresponds to
a biological experiment or to an otherwise meaningful ranking
where a functional or structural difference would be expected,
and not, for example, a randomized control query or a comparison
among replicates, which could expose technical rather than bio-
logical signals. We showed that the user datasets tend to contain
universally expressed, large and well-studied genes more often
than others. These and other trends tend to be shared between
the annotation databases and the user queries. Enrichment tools

[28
string-db.org
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should aim to inform users about potential biases and how they
may influence the analysis. In this benchmark however, the query
data, including any technical or biological biases they may have,
serve as a realistic benchmark dataset for the functional annota-
tion databases.

In the human genome, which is the most queried and arguably
the most important research subject, the GO Biological Process
and Reactome classifications provided the overall best perfor-
mance among the manually curated annotation systems. Among
the non-curated, automated systems, the STRING clusters pro-
vided the best coverage and the most annotations for user inputs
that did not receive detected enrichments in any other annotation
systems, whereas the tagged PubMed publications offered the
most added novelty (both in terms of pathways not covered else-
where, and in terms of the number and diversity of descriptions
in the actual publications). These two latter systems, being non-
curated and sensitive to weak signals in the underlying data,
perform well in less annotated organisms and pathways, but the
discovered enriched terms may suffer from lack of immediate
interpretability in comparison to the manually curated systems.
For a complete picture in enrichment testing, it is probably best
to combine a broad array of both curated and noncurated classi-
fication systems, and to carefully browse the results while being
mindful of their complementary strengths.

Key Points

• Pathway annotation systems differ widely in the number
and sizes of their pathways/terms/gene sets and their
organism coverage.

• There are notable study biases in most annotation sys-
tems with respect to which genes are annotated and to
what depth. This has implications for the discoverability
of less well-known biological functions.

• The size of an annotation gene set influences its like-
lihood of being detected as enriched. In Homo sapiens,
pathways with a size of 100–200 genes tend to offer the
best tradeoff between detectability and specificity.

• Where available, established pathway annotation sys-
tems such as Reactome and Gene Ontology provide
excellent enrichment performance.

• Unsupervised annotation systems can help to include
not-yet curated gene sets and interpret datasets from
less well-studied functional areas and organisms.

Supplementary data
Supplementary data are available online at http://bib.oxford
journals.org/.

Data availability
The functional gene set annotation data and aggregated query
data statistics underlying this article are available in Zenodo,
at https://doi.org/10.5281/zenodo.6325375. Additionally, three
example user datasets can be found there. The individual user
datasets cannot be shared publicly due to privacy obligations.
However, specific additional summary statistics can be created
upon request, and readers may send us their code to run
on our user query datasets. Starting in 2023, new, individual
STRING enrichment query datasets with reuse permission will be

available inside the Github repository containing the benchmark
code. The Snakemake benchmark pipeline is available at https://
github.com/meringlab/annotation_system_assessment.
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