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Manual classification of functional resting state networks (RSNs) derived from
Independent Component Analysis (ICA) decomposition can be labor intensive and
requires expertise, particularly in large multi-subject analyses. Hence, a fully automatic
algorithm that can reliably classify these RSNs is desirable. In this paper, we present
a deep learning approach based on a Siamese Network to learn a discriminative
feature representation for single-subject ICA component classification. Advantages of
this supervised framework are that it requires relatively few training data examples
and it does not require the number of ICA components to be specified. In addition,
our approach permits one-shot learning, which allows generalization to new classes
not seen in the training set with only one example of each new class. The proposed
method is shown to out-perform traditional convolutional neural network (CNN) and
template matching methods in identifying eleven subject-specific RSNs, achieving 100%
accuracy on a holdout data set and over 99% accuracy on an outside data set. We
also demonstrate that the method is robust to scan-rescan variation. Finally, we show
that the functional connectivity of default mode and salience networks identified by the
proposed technique is altered in a group analysis of mild traumatic brain injury (TBI),
severe TBI, and healthy subjects.

Keywords: resting-state functional MRI, independent component analysis, deep learning, siamese network,
classification, magnetic resonance imaging (MRI), one-shot learning

INTRODUCTION

Examining the human brain as an integrative network of functionally interacting brain regions
can provide new insights about large-scale neuronal communication in the human brain. It
also provides a platform to examine how functional connectivity and information integration
relates to human behavior and how this organization may be altered in neurodegenerative
diseases. Independent component analysis (ICA) is a powerful mathematical tool for
simultaneously extracting a variety of coherent functional networks (Beckmann and Smith, 2004;
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Calhoun and Adali, 2006), while separating them from different
sources of noise induced by head motion or physiological
confounds (Salimi-Khorshidi et al., 2014). It decomposes resting-
state functional magnetic resonance imaging (rsfMRI) data into
distinct networks that are temporally correlated but maximally
independent in the spatial domain. ICA has been successfully
used to study a wide variety of neurological conditions such
as Alzheimer’s disease (Dennis and Thompson, 2014), multiple
sclerosis (Castellazzi et al., 2018), and traumatic brain injury (Iraji
et al., 2015; Li et al., 2020).

There are two significant challenges in the application of ICA
for functional connectivity analysis. First, the output of ICA
decomposition depends on a fundamental parameter: the total
number of independent components. The optimal choice of this
parameter, related to determining the effective data dimension,
remains an open question. Choosing too small a value for
the effective data dimension might under-decompose the signal
and generate “fused components.” At the same time, choosing
too high a value might over-decompose the data and lead to
splitting of meaningful components (Li et al., 2007; Hui et al.,
2013). The other major challenge is that ICA does not provide
any labeling or ordering of its components, and the user must
therefore determine how the functional network corresponds
to each component. When dealing with large data sets, this
manual process can be labor intensive and requires expertise.
One possible way to deal with these challenges is by running ICA
with different numbers of components and selecting the one that
extracts the best-fitted result for each desired functional network
(Kairov et al., 2017). Therefore, a fully automatic algorithm
that can reliably classify ICA components into various types
of functional brain networks while also generating a goodness-
of-fit or confidence metric would provide a unified solution to
these two challenges.

One approach to mitigate the burden of identifying resting
state networks (RSNs) in large data sets is to focus on group
analyses. However, there is an increasing need for subject-
specific analyses, such as for surgical planning (Catalino et al.,
2020), brain stimulation (Jung et al., 2020), and in studies
where group bias may be a concern (Michael et al., 2014).
For these situations (or analyses), one can apply an automated
approach for identifying particular networks from subject-
specific ICA decompositions. Template matching has been the
most commonly used method for automatic ICA identification
in the last two decades. In (Demertzi et al., 2014), a Pearson
correlation was computed between the template and each ICA
component, and the network corresponding to the template
yielding the highest correlation was selected as the identified
network. In (Greicius et al., 2004, 2007), a linear template-
matching procedure was applied, which involves taking the
average z-score of voxels falling within the template minus the
average z-score of voxels outside the template and selecting
the component in which this difference (the goodness-of-fit)
was the greatest.

Deep learning using Convolutional Neural Networks (CNNs)
has become the state-of-the-art for image segmentation,
classification, detection and retrieval related tasks (Khan et al.,
2020). Recent work (Zhao et al., 2018) has demonstrated the

capability of CNNs for automatic recognition of spatial resting-
state network maps, although this and other machine learning
approaches for subject-specific identification of RSNs (Hacker
et al., 2013; Lv et al., 2015) were not designed to work with
ICA. In Vergun et al., 2016, several machine learning approaches,
including a one layer neural network, were used to label ICA
components in epilepsy, achieving up to 90% accuracy. In
Nozais et al., 2021, a multilayer perceptron deep neural network
approach for identifying 45 RSNs based on ICA was implemented
using two databases of over 250 subjects for training and
over 1,900 subjects for testing, achieving an accuracy of 92%.
In our previous study (Chou et al., 2018), we proposed a
fully automatic deep 3D 2-channel CNN method based on
stacks of inception modules (denoted as inception CNN) that
can reliably identify ICA components corresponding to eight
major functional networks with 98% accuracy rate over 108
testing samples.

Convolutional Neural Networks can be prone to erroneously
giving high-confidence predictions to out-of-distribution
examples– i.e., inputs that are markedly different from any
samples in the data used to train the CNN, and that do not
correspond to any particular class the CNN was trained to
predict (Wang et al., 2017). A seemingly straightforward
approach to handle this issue is to enlarge the training set
of both in- and out-of-distribution examples. However, the
number of out-of-distribution examples can be infinitely many,
making training computationally expensive and intractable,
since its underlying space is unbounded. Moreover, ensuring
accurate classification of in-distribution samples and correct
detection out-of-distribution samples may require exceedingly
large architectures, further complicating the training process
(Liang et al., 2018). To handle these issues, we (Chou et al., 2019)
explored a semi-supervised Generative Adversarial Network
(denoted as sGAN) (Augustus, 2016) for the classification on
ICA components by using a shared discriminator/multi-class
classifier that discriminates real data from synthetic while also
predicting the class label. The sGAN achieved a high accuracy
rate (98.7%) for eight functional networks without requiring
additional labeled images during training or access to out-of-
distribution examples. The trained generator could also be used
to synthesize realistic functional networks as a source of data
augmentation. However, obtaining a large enough training set for
the sGAN was challenging, requiring 501 ICA manually labeled
components. To extend the sGAN to classify RSNs beyond the
8 components would require a substantial number of additional
components to be labeled for training.

Poor performance on a limited labeled data set is a common
problem with CNNs (O’Mahony et al., 2019). In medical imaging
applications, collecting this much data may not always be
feasible. Furthermore, there are situations in which a user is
interested in an additional (new) classification label outside
the set of original labels. Standard approaches require that the
network be completely retrained in order to add a new label.
To circumvent these limitations, we propose to use a metric
learning approach based on a deep Siamese Network (called
SiameseICA) for the classification of ICA components with
a relatively small amount of training data. Siamese networks
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provide a framework to learn metric embeddings that provide
a discriminative distance function between classes. The yielded
distance metric is able to enlarge the separability of samples from
different classes and reduce the variations of samples from the
same class simultaneously. By learning distance functions rather
than explicitly learning classification, metric learning approaches
have successfully been used for classification yielding state-of-
the-art performance on problems with small numbers of labeled
samples without overfitting (Hoffer and Ailon, 2014; Cao et al.,
2020). Siamese Networks have been applied to various problems,
including image recognition and verification, visual tracking,
novelty and anomaly detection, one-shot and few-shot learning
(Bromley et al., 1994; Koch et al., 2015; Schroff et al., 2015;
Bertinetto et al., 2016; Snell et al., 2017; Rana and Kisku, 2020).
They are useful in cases where there are large numbers of
classes with small numbers of observations of each because they
avoid the problem of directly classifying an image. Rather, they
take two images as inputs and compute feature vectors in a
low-dimensional space to measure the similarity between the
images. We show how this can be used to address the issues
of labeling ICA components and determining the number of
components. Although SiameseICA can be applied for group ICA
analysis, we focus our evaluation primarily on single subject ICA
because this leads to noisier components that are typically more
difficult to identify.

This paper makes the following contributions: (1) we propose
a novel technique for ICA classification with low training
samples that outperformed CNN based deep learning methods
and traditional template matching methods; (2) we demonstrate
that the model can generalize to new categories, unseen in the
training process; (3) we show that the best-fit ICA components
representing the functional networks can be effectively identified
by the proposed technique, thereby removing the requirement
to know the number of ICA components a priori; (4)
we show that our technique is robust to the scan-rescan
variation, demonstrating high reproducibility on classifying ICA
components; (5) we perform an analysis on mild TBI, severe TBI
and healthy subjects using networks identified by the proposed
technique and show significant group differences. The source
code of SiameseICA, as well as a trained model, is available on
Github: http://github.com/chouyiyu/deepICAclassifier.

MATERIALS

Four sets of data were used to train and evaluate the proposed
method. The first dataset, denoted as CNRM, consisted of
179 scans including 41 healthy, 93 mild-TBI and 45 severe-
TBI subjects enrolled in a natural history study of TBI and
scanned on a Siemens Biograph mMR 3T scanner. The rsfMRI
images (TR = 2,000 ms, TE = 27 ms, flip angle = 90
degrees, voxel size = 3.43 mm × 3.43 mm × 3 mm,
dimensions = 64 × 64 × 36, Time points = 206) were
used for training, testing (sections “Classification Performance,”
“One-Shot Classification for the Caudate Network”) and TBI
group analysis (section “Group comparison between mild TBI,
severe TBI and healthy subjects”). T1-weighted MPRAGE

images (TR = 2,530 ms, TE = 3 ms, flip angle = 7 degrees,
TI = 1,100 ms, voxel size = 1 mm × 1 mm × 1mm,
dimensions = 256 × 256 × 176) were also used for registration
purposes. Participants in the study were enrolled under a
protocol approved by the institutional review board at the
National Institutes of Health and consented to research use
of their imaging data. Training data were used for optimizing
the SiameseICA network parameters, and the test data were
used to examine the accuracy of identifying a single ICA
component. For training and testing data, 30 ICA components
were extracted from each subject using MELODIC (Multivariate
Exploratory Linear Optimized Decomposition into Independent
Components) (Beckmann and Smith, 2004) and manually
identified via visual inspection as being one of eleven resting-state
networks (RSNs): default mode, medial visual, occipital visual,
lateral visual, motor, cerebellum, auditory, executive, salience,
left dorsal attention and right dorsal attention. RSNs were only
selected when they were identified with high confidence. Since
some components may represent split or merged networks, all 11
RSNs were not necessarily identified for each subject. In addition
to individual subject ICA components, group ICA processing was
performed by creating random subsets of n subjects to generate
additional training and testing image sets with more reproducible
and fully-formed network representations (Zuo et al., 2010). The
final sizes of the training set and testing set were 20 and 50,
respectively, for each of the eleven RSNs considered.

The second dataset consisted of rsfMRI from 10
healthy subjects acquired using a GE Signa 3T scanner
(TR = 2,000 ms, voxel size = 3.75 mm × 3.75 mm × 4 mm,
dimensions = 64 × 64 × 36, Time points = 175), denoted as
Milwaukee-b, obtained from the 1,000 Functional Connectomes
Project (FCP) at http://fcon_1000.projects.nitrc.org/fcpClassic/
FcpTable.html, Biswal et al. (2010). A T1-weighted MPRAGE
image (voxel size = 0.938 mm × 0.938 mm × 1 mm,
dimensions = 256 × 256 × 144; detailed information not
available) was also acquired for each subject. This dataset was
used for demonstrating the generalizability and separability
between classes of the proposed SiameseICA method (section
“Generalizability, separability and reproducibility”).

The third dataset (section “Classification Performance”),
denoted as BeijingFCP, was also obtained from FCP and
includes 198 healthy subjects with 621 independent components
manually labeled for the validation. MRI was acquired using a
Siemens Trio 3T scanner. Specifically, an echo-planar imaging
(TR = 2,000 ms, voxel size = 3.125 mm × 3.125 mm × 3.6 mm,
dimensions = 64 × 64 × 33, Time points = 225) sequence
was performed to obtain resting state fMRI images. A T1-
weighted MPRAGE (voxel size = 1.0 mm × 1.0 mm × 1.0 mm,
dimensions = 256 × 256 × 176; detailed information not
available) was carried out to acquire a high-resolution anatomical
image of the brain structure.

The fourth dataset, denoted as MMRR-21 (section “Group
Comparison Between Mild TBI, Severe TBI and Healthy
Subjects”) consists of scan-rescan image sessions performed
on a Philips Achieva 3T (TR = 2,000 ms, TE = 30 ms, flip
angle = 75 degrees, voxel size = 3 mm × 3 mm × 3.973 mm,
dimensions = 80 × 80 × 37, Time points = 210) on 21 healthy
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FIGURE 1 | An example of a single subject ICA decomposition with 20 outputs showing rsfMRI signals and noise components. ICA does not provide any labeling of
the components.

volunteers1. This dataset was intended to be a resource for
statisticians and imaging scientists to be able to quantify the
reproducibility of their imaging methods. Each subject from this
dataset also had a T1-weighted MPRAGE image (TR = 6.7 ms,
TE = 3.1 ms, TI = 842 ms, flip angle = 8 degrees, voxel
size = 1 mm× 1 mm× 1.2 mm, dimensions = 256× 256× 170).

METHODS

This section provides details on the proposed method for
identifying RSNs from the output of an ICA algorithm. The
method comprises four major stages: (1) pre-processing; (2)
application of ICA; (3) training the SiameseICA with a triplet
loss function; and (4) finding the most likely class for a test image
using the trained model.

Image Preprocessing
Functional and structural T1-weighted MRI data were pre-
processed using AFNI (Cox, 1996). The first five volumes were

1http://www.nitrc.org/projects/multimodal

discarded, and the remaining images underwent de-spiking,
slice timing correction, and finally motion correction using
volume registration. The rsfMRI images were then rigidly co-
registered to the subject’s own T1-weighted MPRAGE image
and non-linearly warped into a standard (MNI) anatomical space.
Gaussian smoothing with an 8mm full-width-half-magnitude
(FWHM) kernel was then performed to spatially smooth the
rsfMRI data and the final resolution of all images was resampled
to 4 mm× 4 mm× 4 mm.

Independent Component Analysis
Extraction of Networks
The pre-processed rsfMRI data were decomposed into multiple
components using MELODIC from the FMRIB Software
Library (FSL) to extract spatial maps of functional brain
networks. MELODIC models the data as a linear mixture
of spatiotemporal processes corrupted by noise and estimates
maximally independent spatial sources that potentially represent
functional networks. For each subject, multiple components
were extracted and scaled to represent a spatial z-score map.
In each spatial map, the z-score value associated with a given
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FIGURE 2 | Network architecture of a single encoder.

FIGURE 3 | The architecture of the Siamese network with triplet loss function
during training. As input, a triplet of images (Anchor, Positive and Negative) is
given to three identical encoder networks. The embedded vectors of three
input images are used to calculate the triplet loss.

voxel reflects the weight of the independent component time
course with respect to the relative measured BOLD data,
thereby providing an indirect measure of functional connectivity.
An example of a single subject ICA decomposition with 20
outputs is shown in Figure 1. Resting state networks in this
output include the medial visual network (row 1, column 2);
the occipital visual network (1.4); the executive network (2.1);
the motor network (2.4); the default mode network (3.4); and the
salience network (3.5).

Siamese Network Architectures
Siamese Networks are a type of deep learning network composed
of at least two parallel, identical Neural Networks (encoders).
The parallel network architecture allows for the model to learn
similarity, which can be used instead of a direct classification.
This is the primary difference between the Siamese Network
and a more traditional CNN architecture. At inference time, it

takes two or more input images (or image sets) and computes
a distance between those images. The computation of distance
is learned from the training data by specifying which images
are from the same RSN (small distance), and which images
are from different RSNs (large distance). Each encoder that
forms a part of the Siamese Network is designed to produce
an embedding or a reduced dimensional representation of the
input. These embeddings can then be used to optimize a ranking
loss and, at inference time, used to compute distance. By
comparing an unknown image against samples of labeled images,
the classification is determined by the image with the smallest
distance. This provides Siamese networks with the ability to
learn classification tasks with low training samples, as well as
to generalize to new, unseen data. In the following, the network
structure of the encoder and triplet loss function are introduced
for training Siamese Networks.

Encoder Network
The encoder network learns how to interpret the input image
and compresses it into a vector as an embedded representation
in a reduced dimensional space. These vectors encode the
information and features that represent the input. In this study,
the network architecture (Figure 2) of the encoder was defined
with an input layer of the same shape as the input image
(40 × 48 × 38), two fully connected layers with ReLU activation
functions and dropout connections that randomly set input
elements to zero with a 10% probability during training help
prevent the network from overfitting (Srivastava et al., 2014). An
output layer of 64 nodes produced our embedded representation.
A learning rate of 0.0001 with the Adam optimizer was used
and the model was trained with different epoch numbers and
validated on a subset of the training set to determine that training
for 500 epochs was sufficient. Since the location of the RSN
activation is critical for classifying the ICA components, fully-
connected layers were implemented instead of convolutional
layers to avoid translation-invariance.

Triplet Loss Function
The triplet loss aims to learn relative distances between samples,
thereby defining an appropriate embedded representation for
each class, a task often called metric learning (Hoffer and Ailon,
2014). In the embedding space, images from the same class should
be close together and different classes should form well separated
clusters. As illustrated in Figure 3, in each iteration of training,
the input triplet (a, p, n) is sampled from the training set, where a
baseline (anchor) input image volume a is compared to a positive
input p (same class as the anchor) and a negative input n (a
different class from the anchor). Then the triplet (a, p, n) is fed
into the encoder network simultaneously to obtain the latent
embeddings f (a) , f

(
p
)

and f (n), where f defines a parametric
function denoting the neural network encoder that maps high
dimensional inputs (images a, p, and n) to a low-dimensional
space. The loss for a triplet (a, p, n) can be formulated as (Wang
et al., 2014):

L(a, p, n) = max{0, d
(
a, p

)
− d (a, n) + m},
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FIGURE 4 | Finding the most likely class for the test image (query). First, the encoder embeds the query using the embedding function learned during training. Next,
it compares this embedding with the support set to select the most likely class for the query (ICA components were overlaid with TT-N27 template for illustration
purposes in this figure; the template is not incorporated into the data submitted to the CNN during training or inference).

FIGURE 5 | Plots of classification accuracy with different number of training
examples for the inception CNN, sGAN and the proposed SiameseICA
models.

Where f (x, y) =
∣∣∣∣f (x)− f (y)

∣∣∣∣
2 is the Euclidean distance

between the latent vectors of image x and image y; m
is the hyperparameter that controls the separation between
similar and dissimilar vectors in the latent embedding. The
triplet loss function encourages large distances between anchor
and negative images while minimizing the distances between
anchor and positive images, thereby learning to differentiate
similar images from non-similar ones. With the triplet loss
function, not only are inter-class feature differences enlarged,
but also the intra-class features variations are reduced, allowing
the discriminative power of the deeply learned features
to be enhanced. In addition, these features are sufficiently
generalized so as to distinguish new unseen classes. Training
on triplets is beneficial since it produces more examples to
train the model on, improving robustness to overfitting and the
performance of the model.

Using Siamese Network at Inference
Time
As illustrated in Figure 4, at inference time, the input image
(or query) of an unknown class is processed by the encoder to
compute a vector in the latent space. This embedding is then
compared with other vectors in the latent space representing
different RSN clusters, known as the support set. This provides
us with similarity scores or relative distances (equivalent by
computing a multiplicative inverse) between the image with
an unknown RSN and all of the existing clusters. To obtain a
classification result, the RSN with the highest similarity (shortest
distance) can be selected. If the input image does not belong
to any of the clusters, the distances will be large between
all image pairs.

Automated identification of the RSN can be used to surmount
the challenge of determining the number of components when
performing ICA to avoid split or merged RSNs. To identify
the one ICA component that best represents each of the 11
desired RSNs, multiple runs of ICA with different numbers
of components (from 20 to 99) were applied. The resulting
components were then ordered based on the distances calculated
by the proposed Siamese Network with the support set. The final
neural network label was chosen as the one with the shortest
distance for a specific support set.

RESULTS

Classification Performance
SiameseICA was implemented on a Linux server using Keras
(Chollet, 2016) with sixteen 32GB NVIDIA Tesla V100 graphics
processing units and trained for 500 epochs with a batch size of
32. To stabilize the training process, the Adam optimizer was
used with a learning rate 0.0001. The total training time was
approximately 10 min with 20 training samples per ICA class
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FIGURE 6 | Plots of the embedding vectors projected down to 2-dimensions using PCA before and after the training with different numbers of training samples
(N = 2, 3, 4, 5, 10, and 20). With each color representing a distinct class of the RSNs as shown by the legend.

FIGURE 7 | Plots of classification accuracy on the CNRM dataset with
different number of examples trained for the proposed SiameseICA model and
majority voting over different number of reference samples for Pearson
correlation, goodness-of-fit and mean-squared error methods. Our method
obtains 100% classification with five training samples.

and run time was 0.1 s. To demonstrate the effectiveness of the
proposed model and parameter selection, different numbers of
training samples (N = 2, 3, 4, 5, 10 and 20 for each class) were
evaluated and compared with our previously proposed inception
CNN (Chou et al., 2018) and sGAN (Chou et al., 2019) methods.
Here the support set used at inference time to obtain the final
classification results was selected from the group ICA training
data of each RSN.

Using the CNRM dataset, we applied three deep learning
approaches to the test data after training with different amounts
of data. From Figure 5, it can be observed clearly that the

FIGURE 8 | Plots of classification accuracy on the BeijingFCP dataset with
different number of examples trained for the proposed SiameseICA model and
majority voting over different number of reference samples for Pearson
correlation, goodness-of-fit and mean-squared error methods.

proposed model achieved 100% classification accuracy on 50
testing samples for each RSN class when there are more than
5 training samples for each class. Even with two samples per
class, SiameseICA can still perform well in these tasks. On the
other hand, inception CNN and sGAN methods were not able to
achieve 100% classification accuracy even on 20 training samples.
SiameseICA helped alleviate training data collection as fewer
labeled examples were required to attain reasonable performance.

For data visualization, all the embedded vectors were
projected into a 2-dimentional space using PCA with each
color representing a distinct RSN class as shown by the legend
(Figure 6). We can see the embeddings of different RSN classes
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FIGURE 9 | Four examples from the CNRM and Milwaukee-b datasets showing the ICA component that best represents the desired RSN labeled by SiameseICA
(top row) but not correctly identified by Pearson correlation with five references per class (bottom row). Values above each image represent the metric derived by
SiameseICA (left, denoted D) and Pearson correlation (right, denoted r).

FIGURE 10 | The two distributions of ICA components representing default mode and non-default mode network are visually more fully separated by
(A) SiameseICA than (B) Pearson Correlation.

are mixing before training (top left plot) since the model has not
learned to separate the classes out. After training with different
numbers of training examples (N), we can see clear clustering of
the intra-class RSNs and better separation of the inter-class RSNs.
These plots indicate the model has learned to cluster the ICA
images for all eleven RSNs even after reducing the dimensionality
of the image features.

The proposed SiameseICA method was also compared against
three different template matching methods including Pearson
correlation, mean squared error and goodness-of-fit by using

majority voting with different numbers of reference samples
for each RSN class. The SiameseICA method still used a single
image as an exemplar for each class but used different numbers
of training samples. As observed in Figure 7, SiameseICA
outperforms the template matching methods with majority
voting when trained with at least five samples for each RSN class
on the CNRM dataset.

The same evaluation was performed on an outside dataset
(BeijingFCP) and the plots of classification accuracy are shown
in Figure 8. The training samples for SiameseICA and reference

Frontiers in Neuroscience | www.frontiersin.org 8 March 2022 | Volume 16 | Article 768634

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-768634 March 14, 2022 Time: 14:46 # 9

Chou et al. Classification Resting-State ICA Components

FIGURE 11 | Voxel-wise intraclass correlation (ICC) values (≥0.4) showing the scan-rescan reproducibility on classifying 11 RSNs using the proposed SiameseICA
model and template matching method.

TABLE 1 | Mean and standard deviation of the ICC values for 11 RSNs using the proposed SiameseICA model and Pearson Correlation (with five samples per class).

RSNs Default
mode

Medial
visual

Occipital
Visual

Lateral
Visual

Motor Auditory Cerebellum Executive Salience L dorsal
attention

R dorsal
attention

Overall
average

Mean/
std

SiameseICA 0.36/0.18 0.31/0.19 0.25/0.17 0.23/0.17 0.34/0.21 0.38/0.20 0.32/0.19 0.15/0.17 0.40/0.19 0.36/0.17 0.35/0.19 0.31/0.07

Pearson
correlation

0.36/0.19 0.32/0.21 0.29/0.15 0.34/0.19 0.29/0.19 0.36/0.19 0.27/0.19 0.17/0.14 0.36/0.19 0.47/0.17 0.33/0.19 0.32/0.07

FIGURE 12 | One-Shot classification of the caudate RSN using 12-way 1-shot classification. 12-way includes the 11 RSN classes of Figure 8 (DMN; MVN; OVN;
LVN; AN; EN; MN, CN, SN; LDAN; and RDAN) and the additional caudate network (last column). The values represent the distance metric (color black) and Pearson
correlation (color red) calculated between the support set and the queries. Distances resulting from querying the network using three examples of ICA components
matching the Caudate Network (left column) are small and provide the correct classification, as does Pearson Correlation.

samples for the template matching methods were from the
CNRM dataset. Our method was as good or better than the
template matching methods using majority voting when trained
with more than 5 training samples.

Generalizability, Separability, and
Reproducibility
For the second phase of the evaluation, we characterized
the properties of SiamaseICA aside from classification

accuracy. We first examined 10 subjects from another
external dataset (Milwaukee-b) acquired with a scanner
and acquisition protocol different from the training data,
and applied our method to extract the optimal RSNs across
multiple ICA runs with varying numbers of components
(20 to 99). The results for the eleven RSNs are shown in
the Supplementary Material, demonstrating the feasibility
of the proposed SiameseICA method for ICA classification
using an input data set that is completely independent of
the training data.
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A limitation of the testing set is that the selected ICA
components were manually labeled with high confidence,
providing a very clean data set for evaluation. However, unlike
the proposed approached, template matching uses a metric that
is not optimized to differentiate different networks. For example,
results with noisy, split or merged ICA components can still
show high Pearson Correlation. Figure 9 shows ICA components
from the CNRM and Milwaukee-b datasets correctly labeled by
SiameseICA but not correctly identified by Pearson Correlation.

SiameseICA learns a representation space equipped with a
metric that encourages intra-class compactness and inter-class
separability. Hence, similar ICA components are assigned small
distances and dissimilar components yield large distances. To
examine the separability properties of the RSN classification, 10
ICA components representing the default mode network and 100
ICA components representing other, non-default mode networks
from the Milwaukee-b dataset were identified by SiameseICA
(trained with five samples per class) and Pearson correlation
methods (with five references per class) independently. The
distribution of distances for default mode components and other
components using the default mode template in SiameseICA
is shown in Figure 10A. Similarly, the distribution for PC is
shown in Figure 10B. To expand the range of the Pearson
Correlation, a logit operation was applied. As expected, the two
distributions are better separated using SiameseICA than using
Pearson Correlation.

Deep learning techniques are complex and can have a high
range of variability, calling the reproducibility of the results
into question (Renard et al., 2020). In particular, they have
been shown in the literature to potentially be unstable to small
variations in the input (Heaven, 2019). To quantify scan-rescan
relibility of the measurements within subjects for the proposed
SiameseICA model, the default mode networks of 21 subjects
(each subject was scanned on two visits) from the MMRR-21
dataset were identified. A voxel-wise intraclass correlation (ICC)
analysis was performed (Shrout and Fleiss, 1979) using 3dICC
(Chen et al., 2018). The interpretation of ICC values typically
follows the guidelines presented in Fleiss (1986), where ICCs less
than 0.4 are considered poor, ICCs between 0.4 and 0.59 are
considered fair, ICCs between 0.60 and 0.74 are considered good,
and ICCs greater than or equal to 0.75 are considered excellent.
Results of the voxel-wise ICC analysis exceeding the pre-
determined reliability threshold ICC ≥ 0.40 (McDermott et al.,
2018) are shown and compared with the Pearson correlation
template matching method (with five reference samples per class)
(Demertzi et al., 2014) over the 11 RSNs in Figure 11. Most
RSNs exhibited similar reproducibility across the two approaches.
Despite being a simpler approach, Pearson correlation showed
lower ICCs in some regions, such as the medial prefrontal
cortex (mPFC) of the default mode network, and the frontal
cortex of the executive network. Mean and standard deviation
of the ICC values for 11 RSNs using the proposed SiameseICA
model and Pearson correlation method were reported in Table 1.
Overall, these results demonstrate that SiameseICA, despite being
a deep learning approach, provides reproducibility that is at least
comparable to the Pearson Correlation template-based approach
(p = 0.57).

FIGURE 13 | Visualization of the embedding vectors projected down to
2-dimensions using PCA for One-Shot classification.

One-Shot Classification for the Caudate
Network
Once SiameseICA has been trained for the classification task,
the model can learn to discern a new class given only a single
example without re-training the model. Experiments on one-shot
classification are usually referred to as N-way 1-shot learning,
where N is the number of classes (Fei-Fei et al., 2006; Vinyals
et al., 2016). Given a set of support images with one image
per class and a query image, the goal of one-shot classification
is to be able to identify which support image the query image
is most similar to. To demonstrate the discriminative potential
of the learned feature mappings at one-shot classification, 21
caudate networks were manually identified from the group ICA
components. One served as the reference image in the support
set and the rest of the 20 images were used for the evaluation. The
Siamese model was trained with 11 RSNs (without the caudate
network) with five training samples. Figure 12 shows the distance
metric (similarity scores) in color black and Pearson Correlation
in color red calculated between the support set and the three
queries for the caudate networks. Figure 13 shows the well-
clustered embedding vectors of the caudate network (orange
triangles) projected down to 2-dimensions using PCA in the
embedding space.

Group Comparison Between Mild TBI,
Severe TBI and Healthy Subjects
As a demonstration of how this approach can be used for
investigating changes in functional connectivity due to disease,
we performed a small, preliminary study in data acquired from

Frontiers in Neuroscience | www.frontiersin.org 10 March 2022 | Volume 16 | Article 768634

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-768634 March 14, 2022 Time: 14:46 # 11

Chou et al. Classification Resting-State ICA Components

FIGURE 14 | Group comparison between mild TBI, severe TBI and healthy subjects. Both mild and severe TBI groups showed significantly decreased connectivity in
the ventromedial prefrontal cortex (p < 0.05) of the default mode network and decreased connectivity in the insular cortex (p < 0.05) of the salience network.

subjects with TBI. TBI can result in abnormalities of functional
connectivity within key cognitive networks (Millis et al., 2001;
Dikmen et al., 2009; Medaglia, 2017). We studied patients with
mild TBI (49 males, 33 females, mean age: 45.3± 15.1 years) and
severe TBI (nine males, nine females, mean age: 35.1± 18.0 years)
compared with 35 healthy control subjects (24 males, 11 females,
mean age: 41.6± 11.5 years) using the default mode and salience
networks that were identified by the SiameseICA method with
different numbers of components (n = 20 to 99).

Two-sample t tests were implemented with age and gender
as covariates to the images of the default mode and salience
networks made up of ICA components from the three participant
groups to generate statistical maps (Figure 14). An integrated
threshold was used at a significance level of p < 0.05 and a
cluster size of at least 15 voxels to remove false-positive error and
maintain true-positive sensitivity.

When compared with the control subjects, there was
significantly reduced connectivity around the ventromedial
prefrontal cortex of the default mode network in patients with
mild and severe TBI (p < 0.05; cluster size > 15) and decreased
connectivity in the insular cortex of the salience network
(p < 0.05; cluster size > 15). The results showed abnormal
default mode and salience network connectivity patterns in
patients with mild and severe TBI, which may provide insight
into how neuronal communication and information integration
are disrupted among certain key structures after brain injury.
Similar findings of decreased functional connectivity within the
default mode and salience network in patients with mild TBI have
previously been observed (Vanhaudenhuyse et al., 2009; Mayer
et al., 2011; Jackson et al., 2019; Lu et al., 2020).

DISCUSSION AND CONCLUSION

In this study, we present a deep learning approach to ICA
component classification based on a Siamese Network that is
trained from a small dataset and still demonstrates superior
performance. The architecture creates a low-dimensional
embedding space for RSNs by mapping images with the same
class to nearby points in a low-dimensional space using a triplet
loss function. The reduced-feature representation is then used
to identify images from the dataset that are most similar to
a test image. We found that five examples of each RSN were
sufficient to achieve accurate performance. An advantage of our
approach is that it obviates the need for estimating the number
of components required when applying ICA.

SiameseICA can be generalized to classify new categories
without the need for additional retraining. We showed that given
sufficient initial training data to define an embedding space for
the support set, only one sample was required as a reference
for a completely new RSN class. This approach is referred to as
one-shot classification, drastically reducing the need for labeled
datasets. In addition, we expect the model is more robust to class
imbalance as it can be used on a dataset where very few examples
exist for some classes.

The identification of the best ICA components for each
RSN on different datasets showed good qualitative performance
and reproducibility on independent test data, confirming the
feasibility of the proposed method in research studies that may
involve heterogeneous data. We also demonstrated the value of
the approach in an example research study of traumatic brain
injury. Using SiameseICA, we found that the default mode and
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salience networks were altered in mild and severe traumatic brain
injury patients compared to healthy controls.

Several avenues will be explored in future work. Currently,
the network outputs relative distances between the input and
all of the reference images. Converting these distances into
probabilities will be more intuitive as similarity scores. In
addition, further optimization of the model, such as choices of
hyperparameter tuning, the number of layers, number of nodes
for each layer, and the learning rate of the network may yield
higher performance.
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