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Abstract: Groundwater resources are abundant and widely used in Taiwan’s Lanyang Plain. How-
ever, in some places the groundwater arsenic (As) concentrations far exceed the World Health
Organization’s standards for drinking water quality. Measurements of the As concentrations in
groundwater show considerable spatial variability, which means that the associated risk to human
health would also vary from region to region. This study aims to adapt a back-propagation neural
network (BPNN) method to carry out more reliable spatial mapping of the As concentrations in the
groundwater for comparison with the geostatistical ordinary kriging (OK) method results. Cross
validation is performed to evaluate the prediction performance by dividing the As monitoring data
into three sets. The cross-validation results show that the average determination coefficients (R2)
for the As concentrations obtained with BPNN and OK are 0.55 and 0.49, whereas the average root
mean square errors (RMSE) are 0.49 and 0.54, respectively. Given the better prediction performance
of the BPNN, it is recommended as a more reliable tool for the spatial mapping of the groundwater
As concentration. Subsequently, the As concentrations estimated obtained using the BPNN are
applied to develop a spatial map illustrating the risk to human health associated with the ingestion
of As-containing groundwater based on the noncarcinogenic hazard quotient (HQ) and carcinogenic
target risk (TR) standards established by the U.S. Environmental Protection Agency. Such maps can
be used to demarcate the areas where residents are at higher risk due to the ingestion of As-containing
groundwater, and prioritize the areas where more intensive monitoring of groundwater quality is
required. The spatial mapping of As concentrations from the BPNN was also used to demarcate the
regions where the groundwater is suitable for farmland and fishponds based on the water quality
standards for As for irrigation and aquaculture.

Keywords: back-propagation neural network; ordinary kriging; groundwater arsenic contamination;
hazard quotient; target risk

1. Introduction

Groundwater accounts for a substantial portion of the freshwater supply in the
Lanyang Plain, Taiwan. To resolve the problem of a lack of reservoirs for the storage
of seasonal rainfall and the poor quality of the surface water, area residents are heavily
reliant upon the groundwater for agricultural irrigation, aquaculture, domestic and drink-
ing purposes. Groundwater quality monitoring for the Lanyang Plain conducted by the
Environmental Protection Bureau (EPB) of Yilan County [1–3] has clearly identified that
the arsenic (As) content in some monitoring wells exceeds the World Health Organization’s
(WHO) permissible drinking water threshold of 10 µg/L [4]. Arsenic has been classified as
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a Group 1 carcinogen by the International Agency for Research on Cancer (IARC) [5]. The
primary exposure pathway of groundwater As is through the ingestion of groundwater.
The ingestion of groundwater high in As has adverse effects on human health, leading to
many diseases such as cancers, skin lesions, peripheral microvascular disease and Blackfoot
disease [6–10]. However, geographical visualization of groundwater As concentrations in
the Lanyang Plain shows considerable spatial variability, which means that the associated
risk to human health would also be an issue of geographical dependence. Clearly, there is
an urgent need to accurately map the substantial geographical variability in groundwater
As concentration.

Conventional spatial mapping methods, such as kriging, which is based on geostatis-
tical theory, have been widely used for modeling the spatial variability of groundwater
quality variables with limited field data. Lee et al. [11] and Liang et al. [12,13], respectively,
applied indicator kriging (IK) and ordinary kriging (OK) techniques to assess the spatial
distribution of the carcinogenic and non-carcinogenic health risks related to drinking As-
containing groundwater. Jang et al. [14] applied the multivariate indicator kriging (MVIK)
to spatially characterize the regions where the groundwater quality is safe for multipurpose
utilization in the Pingtung Plain. Liang et al. [15] applied the OK technique for spatial
characterization of the regions where groundwater quality is safe for multipurpose utiliza-
tion in the Pingtung Plain and Lanyang Plain. Despite the geostatistical kriging approach
being widely applied to spatially assess the groundwater quality variable, the results of
spatial health risks associated with As produced with the kriging technique may not be
sufficiently accurate because of the heterogeneity of the hydraulic properties of the aquifer
and the nonlinearity of the contaminant transport processes [16].

In contrast, data-driven machine learning techniques, such as artificial neural network
(ANN) or random forest (RF) methods, can facilitate the process by resolving a spectrum
of nonlinearity problems. Purkait et al. [17] developed a four-layer feed-forward back-
propagation neural network (BPNN) model (7-15-15-1), which could be used as an accept-
able prediction model for estimating the groundwater As concentrations in Eastern India.
Cho et al. [18] applied four different models, namely, multiple linear regression (MLR),
principal component regression (PCR), artificial neural network (ANN) and the combina-
tion of principal components and an artificial neural network (PC-ANN), for the prediction
of potential groundwater As contamination in Southeast Asian countries. The results show
that PC-ANN yielded a superior outcome with a significant performance improvement due
to the Nash–Sutcliffe model efficiency coefficient (NSE). Chowdhury et al. [16] compared
the ANN and ordinary kriging (OK) techniques for spatial estimation of the As concen-
trations in Bangladesh, and pointed out that a highly nonlinear pattern machine learning
technique in the form of an ANN model can yield more accurate results than OK under the
same set of constraints. Jeihouni et al. [19] used the OK and two AI methods, namely, ANN
and the adaptive neuro-fuzzy inference system (ANFIS), to spatially assess the electrical
conductivity of groundwater. Their results indicated that ANFIS provides the best pre-
diction accuracy with a root mean squared error (RMSE) value of 1.69 dS.m, whereas the
RMSEs are 1.79 dS.m and 2.14 dS.m for ANN and OK, respectively. Jia et al. [20] performed
a comparison study for the estimation of the spatial distribution of regional cadmium and
arsenic pollution using the OK and BPNN methods. Their results showed BPNN to have a
higher prediction accuracy, with mean square errors (MSEs) of 0.0661 and 0.1743 for As and
Cd, respectively, than did OK, with MSEs of 0.0804 and 0.2983 for As and Cd, respectively.

The aforementioned studies illustrate that the machine learning approach has the
potential to act as a spatial mapping tool with high prediction performance for several
groundwater quality issues. This study is thus designed to develop the ANN as a spatial
mapping tool for estimation of the geographical variability of As concentrations in the
Lanyang Plain. We also make a comparison between the prediction performance of ANN
and the conventional OK method. The predicted As geographical distribution is further
used to calculate the noncarcinogenic hazard quotient (HQ) and carcinogenic target risk
(TR) and demarcate the regions where people are at a higher health risk. The yielded health
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risk can be used for improving the decision-making process for health risk management
associated with ingestion of As-containing groundwater in the Lanyang Plain.

2. Materials and Methods
2.1. Study Area

The Lanyang Plain is an alluvial fan on the Lanyang River bound by the Snow
Mountains on the northwestern side, the Central Range to the southwest and the Pacific
Ocean on the east (Figure 1). The land in the Lanyang Plain is heavily utilized for agriculture
with aquaculture along the coast. Because of the lack of large water-storage facilities, the
main water supply comes from Luodong and Cukeng Weirs. However, surface water
quality is slightly and moderately affected by contamination from household and stock-
farming wastewater. Although the coverage of the tap water supply system is up to
90%, most residents still use groundwater from private wells for household purposes. In
addition, about 60% of the tap water also originates from groundwater sources.
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The Lanyang alluvial fan is composed of recent alluvial deposits, including gravel,
sand and silt, and clay comprised of detrital slates, quartz sandstone and crystallized
gneiss [21]. The bedrock, overlain by the alluvial deposits, is the Suao slate and argillite
of the Miocene age, occasionally with a thin layer of metamorphosed sandstone [21]. The
subsurface hydrogeology of the Lanyang Plain includes one shallow unconfined aquifer
(Aquifer 1) and two underlying confined aquifers (Aquifer 2 and Aquifer 3), as well as two
aquitards (Figure 2). The geology material between the proximal area and the center of
the fan are coarse sand and gravel; these regions are highly permeable and the primary
source of groundwater in the aquifers [22]. The eastern coastal regions which consist
mainly of fine sand and the clay is less permeable. Groundwater flow generally follows the
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surface topography from the western mountains to the eastern coasts. The climate of the
area is subtropical with northeasterly monsoon winds blowing when autumn changes to
winter. The northeasterly monsoon winds combined with the western mountains produce
heavy rainfall in the winter season. In the summer season, convectional rainfall occurs
due to the higher temperature. Table 1 summaries the average rainfall and temperature
in the Lanyang plain. The abundant rainfall gives the Lanyang Plain a rich supply of
groundwater [21].

Int. J. Environ. Res. Public Health 2021, 18, x  4 of 15 
 

 

of the fan are coarse sand and gravel; these regions are highly permeable and the primary 
source of groundwater in the aquifers [22]. The eastern coastal regions which consist 
mainly of fine sand and the clay is less permeable. Groundwater flow generally follows 
the surface topography from the western mountains to the eastern coasts. The climate of 
the area is subtropical with northeasterly monsoon winds blowing when autumn changes 
to winter. The northeasterly monsoon winds combined with the western mountains pro-
duce heavy rainfall in the winter season. In the summer season, convectional rainfall oc-
curs due to the higher temperature. Table 1 summaries the average rainfall and tempera-
ture in the Lanyang plain. The abundant rainfall gives the Lanyang Plain a rich supply of 
groundwater [21]. 

 
Figure 2. Hydrogeological profile of the Lanyang Plain. Reference Source: [21]. 

Table 1. Average temperature and rainfall in Lanyang Plain. 

Month 1 2 3 4 5 6 7 8 9 10 11 12 
Rainfall(mm) 230 202 137 126 230 233 140 211 516 702 523 339 

Temperature(°C) 16.6 17.1 19 21.9 24.7 27.3 28.9 28.6 26.8 23.8 21.1 17.9 

Most recently, Liu and Wu [22] performed a study on the geochemical, mineralogical 
and statistical characteristics of arsenic in groundwater of the Lanyang Plain. They con-
cluded that arsenic in sediments is released into groundwater primarily by the reductive 
dissolution of As-bearing Fe-oxyhydroxides in the reducing environment at Langyang. 
As concentrations at depths of 100–180 m can achieve the maximum concentration of 900 
µg/L [22]. 

2.2. Artificial Neural Network 
As a data-driven method, ANNs can learn the complex mapping between the input 

and the output given sufficient data, and their flexible structure can also provide a good 
estimation for various problems. ANNs are designed to simulate the process of the 
transport of electric potentials by neural cells in living creatures. The single neuron oper-
ates along the following functions: 𝑛𝑒𝑡௝ = ∑ 𝑋௜ ∙ 𝑊௝௜௡௜ୀଵ − 𝑏௝; (1) 

Figure 2. Hydrogeological profile of the Lanyang Plain. Reference Source: [21].

Table 1. Average temperature and rainfall in Lanyang Plain.

Month 1 2 3 4 5 6 7 8 9 10 11 12

Rainfall (mm) 230 202 137 126 230 233 140 211 516 702 523 339

Temperature
(◦C) 16.6 17.1 19 21.9 24.7 27.3 28.9 28.6 26.8 23.8 21.1 17.9

Most recently, Liu and Wu [22] performed a study on the geochemical, mineralogical
and statistical characteristics of arsenic in groundwater of the Lanyang Plain. They con-
cluded that arsenic in sediments is released into groundwater primarily by the reductive
dissolution of As-bearing Fe-oxyhydroxides in the reducing environment at Langyang.
As concentrations at depths of 100–180 m can achieve the maximum concentration of
900 µg/L [22].

2.2. Artificial Neural Network

As a data-driven method, ANNs can learn the complex mapping between the input
and the output given sufficient data, and their flexible structure can also provide a good
estimation for various problems. ANNs are designed to simulate the process of the
transport of electric potentials by neural cells in living creatures. The single neuron
operates along the following functions:

netj = ∑n
i=1 Xi·Wji − bj; (1)

Y = f
(
netj

)
, (2)
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where Xi represents the ith input variable; Wji represents the corresponding weighting
factors for the ith input variable; bj represents a bias; f () represents an activation function;
and n is the number of input data.

The structure of an ANN includes three main layers. First, there is an input layer,
which is responsible for receiving the input variables and transporting the signal to the
next layer without any artificial neurons being used in the computation. Second, there
is at least one hidden layer, which is composed of artificial neurons for the computation
operation and which is used to extract the patterns associated with the process or system
being analyzed. The role of this layer (or these layers) is to perform most of the internal
processing in the network. The last output layer is also composed of neurons and is
responsible for producing the final network outputs with the same format as the real
output value set in the training process [23].

A feed-forward back-propagation neural network (BPNN) was chosen for use in
this study. The feedforward BPNN training procedure is a supervised learning method
and is divided into two main parts. The Levenberg–Marquardt (LM) algorithm, used for
training in this study, is a blend of the gradient descent and Gauss–Newton iterations,
and is probably the most widely used optimization method, since its hyper-spherical trust
region has proven to provide a better solution in searching for the minima [16].

2.3. Ordinary Kriging (OK)

The actual spatial data were mostly messy and scattered, with adjacent data usually
having a higher degree of similarity and correlation than those far away. The core of
the geostatistical kriging technique is the regionalized variable theory, which states that
the variables in an area exhibit both random and spatially structured properties and a
second-order stationary process is assumed [24]. A geostatistical variogram was used
to characterize the spatial variability between the values of the regional variables at two
observation locations. A semi-variogram γ(h) can be mathematically calculated as follows:

γ(h) =
1

2N(h)

{
∑N(h)

i=1 [Z(xi + h)− Z(xi)]
2
}

, (3)

where h denotes the distance between two observation locations; Z(xi) is the value of the
regional variable at the observation location xi; Z(xi + h) is the value of the regional vari-
able at the observation location xi + h; and N(h) is the number of pairs for two observation
locations separated by a distance h.

The experimental semi-variograms were calculated pair-by-pair using Equation (3)
and subsequently fitted against a theoretical semi-variogram model of γ(h). The main
parameters affected are the range (a), nugget effect (c0) and sill (c + c0). If there is a consid-
erable change in the concentrations of two observations separated by a small distance, it
will produce a nugget effect (c0). The widely used theoretical models are written as follows:

Spherical semi-variogram model:

γ(h) =

 c0 + c
[

1.5
(

h
a

)
− 0.5

(
h
a

)3
]

h ≤ a

c0 + c h > a
; (4)

Exponential semi-variogram model:

γ(h) = c0 + c
{

1 − exp
[
−
(

3h
a

)]}
; (5)

Gaussian semi-variogram model:

γ(h) = c0 + c

{
1 − exp

[
−
(

3h
a

)2
]}

. (6)
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Ordinary kriging is a spatial interpolation estimator that is applied to find the best
linear unbiased estimate at a non-sampled location x0 and is determined according to the
linear combination of the known values of all the sampled locations as follows:

Z∗(x0) = ∑M
i=1 λi(xi)Z(xi), (7)

where Z∗(x0) is the unknown value of the regional variable that will be determined at a
non-sampled location x0; Z(xi) is the known value of the regional variable at a sampled
location xi; M is the total number of the sampled locations; and λi(xi) is a kriging weighting
factor for the known value of the random variable Z(xi) at a sampled location (xi), which
is used to determine Z∗(x0).

2.4. Health Risk Assessment

This study assesses the health risk, specifically the carcinogenic and non-carcinogenic
risks, associated with the drinking of As-contaminated (inorganic) groundwater using the
methods recommended by the USEPA [25,26].

The carcinogenic risk is evaluated based on the target risk (TR) index, which is used to
quantify the cancer risk caused by those substances classified as definite or probable human
carcinogens. Thus, an estimated TR value equal to 1 × 10−6 indicate that one additional
person out of one million people will suffer from cancer due to these substances in their
lifetime. The TR (life time risk index) is formulated as follows:

TR =
C·IR
BW

·EF·ED
AT

·CSF·10−3, (8)

where C is the As concentration (µg/L); IR is the daily water intake (L/day); ED is the
exposure duration (year); EF is the exposure frequency (day/year), which is how many
days an individual is exposed to As over the course of a year; BW is the body weight (kg);
AT is the average life time for carcinogenic exposure (days); CSF is the cancer slope factor
(mg/L) obtained from the Integrated Risk Information System (IRIS) database; and 10−3

is a conversion factor. The cancer slope factor (CSF), which is used for characterizing the
relationship between dose and response, is a key parameter in the TR model. The CSF is an
upper-bound estimate of the probability that a person will develop cancer when exposed
to a chemical over a lifetime of 70 years.

The non-carcinogenic risk is evaluated based on the hazard quotient (HQ) index which
is defined as the ratio of potential exposure to a reference magnitude for which there are
no expected adverse effects. If the HQ value is greater than 1, an adverse non-carcinogenic
effect is regarded as possible. The HQ is calculated by

DI =
C·IR
BW

; (9)

HQ =
DI

R f D
, (10)

where DI is the daily intake of As (µg/kg/day); C is the As concentration (µg/L); IR is the
daily water intake (L/day); and RfD is the oral reference dose derived by the USEPA [26].

3. Results and Discussion
3.1. Groundwater Monitoring Data and Preprocessing

The groundwater monitoring data used in this study were collected from 921 house-
hold wells located in Aquifer 1, as shown in Figure 2 (below 40 m in depth), during the
period from 1997 to 1999 by the Environmental Protection Bureau (EPB) of the Yilan County
Government (EPB, 1997; 1998; and 1999). The survey was carried out as part of a health-
related study of the residential wells used to supply drinking water in townships in the
Lanyang Plain. Groundwater was pumped out for at least 10 min before sampling in order
to obtain a representative sample. Seven water quality items were analyzed, including



Int. J. Environ. Res. Public Health 2021, 18, 11385 7 of 15

the As concentration, pH, ammonia, nitrite, nitrate, iron and manganese. Except for pH,
which was measured in situ, others were analyzed in the laboratory. The analysis proce-
dures of the As concentrations in the groundwater samples followed the APHA Method
3500-AsB [13]. The area residents have been using shallow wells (<40 m) to obtain drinking
water since the 1940s, which means they may have been consuming high-As artesian well
water for over 60 years. Figure 3 shows a geographical visualization of the As concentration
levels of the 921 samples. The results of a descriptive statistical analysis of the collected As
concentration data are summarized in Table 2. The As concentration ranges from below
the detection limit (0.9 µg/L) to a maximum value of 772 µg/L. The average concentration
is 11.9 µg/L, with a standard deviation of 45.21 µg/L. The water quality standard for the
As concentration in the drinking water recommended by the WHO is 10 µg/L in contrast
to the 82.75th percentile of the cumulative percentage for the measured As concentrations.
The 921 samples were uniformly divided into three sets (labelled A, B and C) in the order
of the magnitude of As concentration for the purpose of cross-validation and performance
evaluation. Two sets of data were used to construct the BPNN and OK models, while the
third was used to validate the constructed BPNN and OK models. In order to group the
data sets evenly, the three data sets were distributed based on the concentration levels.
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Table 2. Descriptive statistics of the monitored As concentrations in the Lanyang Plain.

Statistics
As Concentrations (µg/L)

Total Dataset A Dataset B Dataset C

Well number 921 307 307 307
Average 11.9 11.56 11.22 12.94
Median 0.89 0.45 1 1

Standard deviation 45.26 42.58 35.97 55.11
Relative standard

deviation 3.80 3.68 3.21 4.26

Skewness 9.07 7.30 6.00 10.06
Minimum 0.45 0.45 0.45 0.45
Maximum 776.25 489.78 338.84 776.25
Percentiles

50th 0.89 0.45 1 1
82.75th 10 10.72 10 10

Data processing is an important step in the procedure for optimizing the prediction
results obtained with the BPNN and OK methods. To reduce the complexity, the coordinate
data were arranged in relation to the approximate center of the total sample locations by
setting a new origin (327245, 2735281) (Figure 3). The As concentrations were processed by
the application of logarithmic transformation to ensure correspondence to a normal distri-
bution. The p-values of the log-transformed concentration and the original concentration
are 0.523 and 0, indicating that the logarithmic transformation can efficiently change the
data to approximate a normal distribution more closely. For both the BPNN and the OK
method, these preprocessing steps are useful for reducing noise in the prediction models.

3.2. Arsenic Concentration Prediction

An exponential semi-variogram model (Equation (3)) was applied to fit the experimen-
tal semi-variograms data for each individual training dataset of the OK method. Table 3
lists the fitting ranges, nugget effects and sills of each training dataset. A neural network
was set up and trained using the back-propagation algorithm. Two nodes in the input
layer correspond to the input data (x and y coordinates), and one neuron in the output
layer corresponds to the estimated As concentrations. The parameters used in building
the BPNN are shown in Table 4. In this study, MATLAB 2019 (MathWorks) was applied to
develop the computer code for constructing the BPNN. The convergence criteria used to
terminate the training process were set at 10−2 of the mean squared error. The structure of
the developed model is shown in Figure 4. Determining the number of hidden neurons is
usually a matter of trial and error.

Table 5 shows the average values of the coefficients of determination (R2) and RMSEs
for each different BPNN model tried in this study. Based on the highest average R2 value
and the lowest average RMSE value, model (2,10,10,1) was chosen to apply for spatial
mapping and for comparison of the mapping performance with that obtained from the
OK method. Table 6 summarizes the R2 and RSME values for BPNN and OK. The results
show that the average R2 values for cross validation of the As concentrations obtained
with BPNN and OK are 0.55 and 0.49, whereas the average RMSE values are 0.49 and
0.54, respectively. Based on the average R2 and RSMEs, we can conclude that the BPNN
provides better performance than the OK.
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Table 3. Fitted parameters for the exponential model.

Training Dataset c0 c a

BC 0.01 0.05 10,000
AC 0.015 0.05 15,000
AB 0.02 0.05 15,000

Table 4. Parameters for building the BPNN.

Input Node Number 2

1st hidden layer neuron number 2, 4, 6, 8 . . . 50
2nd hidden layer neuron number 0, 2, 4, 6 . . . 50

output layer neuron number 1
activation function of 1st hidden layer neuron hyperbolic tangent sigmoid
activation function of 2nd hidden layer neuron hyperbolic tangent sigmoid

activation function of output layer Pureline
initialization of weighting factors random value between −1 and 1

initialization of bias random value between −1 and 1
convergence criteria mse = 10−2
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3.3. Application of Spatial Mapping of the As Concentrations Using BPNN

The BPNN was then used to predict the geographical distribution of As concentrations
in the Lanyang Plain. First, the area of the Lanyang Plain was spatially discretized into a
grid system of 1 km × 1 km grids. The As concentrations were calculated at each grid center
from the output of the BPNN model. Figure 5 shows the geographical visualization of the
As concentrations obtained by the BPNN model. The As concentrations were classified into
four levels: >5, 5–10, 10–50 and <50 ppb. The measured data are also included in Figure 5,
with an identical four-level classification of the concentration.
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Table 5. Average coefficients of determination (R2) and root mean square error (RMSE) used in each BPNN model.

BPNN
Structure

R2 RMSE
BPNN

Structure

R2 RMSE
Training Validation Training Validation Training Validation Training Validation
(Average) (Average) (Average) (Average) (Average) (Average) (Average) (Average)

(2,2,1)
A 0.37

0.39
0.45

0.38
0.58

0.57
0.54

0.57 (2,2,2,1)
A 0.21

0.29
0.24

0.28
0.65

0.62
0.64

0.62B 0.36 0.36 0.59 0.58 B 0.42 0.40 0.56 0.56
C 0.42 0.34 0.56 0.59 C 0.23 0.20 0.64 0.65

(2,4,1)
A 0.43

0.43
0.50

0.43
0.55

0.55
0.52

0.55 (2,4,4,1)
A 0.48

0.48
0.52

0.44
0.53

0.53
0.51

0.55B 0.45 0.45 0.54 0.54 B 0.50 0.45 0.51 0.54
C 0.41 0.33 0.56 0.60 C 0.44 0.35 0.55 0.59

(2,6,1)
A 0.49

0.49
0.54

0.46
0.52

0.52
0.50

0.54 (2,6,6,1)
A 0.60

0.58
0.60

0.53
0.46

0.47
0.47

0.50B 0.46 0.45 0.54 0.54 B 0.53 0.49 0.50 0.52
C 0.52 0.41 0.50 0.57 C 0.61 0.50 0.46 0.51

(2,8,1)
A 0.54

0.53
0.56

0.50
0.50

0.50
0.49

0.52 (2,8,8,1)
A 0.56

0.58
0.56

0.52
0.49

0.47
0.49

0.50B 0.53 0.51 0.50 0.51 B 0.64 0.58 0.44 0.47
C 0.54 0.42 0.50 0.56 C 0.54 0.43 0.49 0.55

(2,10,1)
A 0.48

0.52
0.53

0.51
0.53

0.50
0.50

0.51 (2,10,10,1)
A 0.63

0.62
0.60

0.55
0.44

0.45
0.46

0.49B 0.51 0.50 0.51 0.52 B 0.59 0.54 0.47 0.50
C 0.58 0.49 0.47 0.53 C 0.64 0.52 0.44 0.51

(2,12,1)
A 0.56

0.58
0.55

0.51
0.49

0.48
0.50

0.50 (2,12,12,1)
A 0.64

0.63
0.58

0.54
0.44

0.45
0.64

0.50B 0.59 0.50 0.47 0.48 B 0.57 0.51 0.48 0.56
C 0.58 0.49 0.48 0.53 C 0.68 0.53 0.42 0.65

Table 6. Averaged coefficients of determination and root mean square errors of the validation datasets
obtained with the two methods.

A B C Average

OK
R2 0.54 0.48 0.46 0.49

RMSE 0.52 0.54 0.56 0.54

BPNN
R2 0.60 0.54 0.52 0.55

RMSE 0.46 0.50 0.51 0.49

The As concentrations at each grid center obtained using BPNN were then used
to calculate the TRs and HQs (using Equations (8) and (10)) with which to demarcate
the regions of unacceptable carcinogenic and non-carcinogenic risk. The values of the
parameters required for assessment of the health risk calculated with Equations (8)–(10)
are shown in Table 7.

Table 7. Parameters used in calculating carcinogenic and noncarcinogenic health risk.

Parameters (Units) Parameter Characteristics

C (µg/L) -
ED (year) 30 a

EF (day/year) 365 a

IR (L/day) 1.4 b

BW (kg) 64.5 b

AT (day) 79.0×365 = 28,835 a

RfD
(

µg
kg·day

)
0.3 c

CSF
(

kg·day
mg

)
1.5 c

a Liang et al. [12]. b Compilation of Exposure Factors (2008). c USEPA (Retrieved from: https://cfpub.epa.gov/
ncea/iris_drafts/atoz.cfm, accessed on 28 October 2021).

The TRs are classified into three levels: Level 1, with a TR value of less than 1 × 10−6,
which means that there is negligible risk; Level 2, where the TR value is between 1 × 10−6

and 1 × 10−4, which means that there is an acceptable risk; and Level 3, with a TR value
of greater than 1 × 10−4, indicating unacceptable risk. The HQ values were classified into
two levels: Level 1, in which the HQ value is greater than 1, which is considered to cause
an adverse non-carcinogenic outcome; and Level 2, where the HQ values are lower than
1, which means an acceptable adverse non-carcinogenic outcome. Figure 6 shows the

https://cfpub.epa.gov/ncea/iris_drafts/atoz.cfm
https://cfpub.epa.gov/ncea/iris_drafts/atoz.cfm
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spatial mapping of the unacceptable TRs and HQs, which could result in carcinogenic and
non-carcinogenic risk. Together with the distribution of population density, the map can
define the areas of high-risk groundwater usage. According to Figure 6, it is advised that
groundwater is not suitable for drinking in the townships of Yilan and Luodong.
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in these regions. 

Figure 6. Spatial mapping of unacceptable HQs and TRs coupled with population density.

Agriculture and aquaculture are the most common types of land usage in the Lan-
yang Plain and they are heavily dependent upon groundwater to meet their demands.
According to the Council of Agriculture, Taiwan, the acceptable limit for As concentration
in irrigation and aquaculture is 50 µg/L. Figure 7 shows the zones that are unsuitable for
farmland and fishponds, where the estimated groundwater As concentrations exceed the
water quality standards safe for irrigation and aquaculture. These are zones where the
groundwater As concentrations are defined as unsafe for irrigation or aquaculture but
currently being used for farmlands and fishponds. Land-use practices need to be changed
in these regions.
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4. Conclusions

We performed spatial mapping of the As concentration in groundwater and made
a comparison between two distinct approaches: backward propagation neural network
(BPNN) and ordinary kriging (OK). The findings show that the BPNN has better prediction
performance than the OK method. Subsequently, the BPNN was used to develop spatial
maps showing the geographical distribution of As contaminations in the groundwater.
The As concentrations obtained using the BPNN approach were then used to develop a
spatial map for carcinogenic and noncarcinogenic health risk associated with exposure to
arsenic through the drinking of groundwater. For zones with unaccepted HQs and TRs,
the promising measures include supply of safe tap water and public education to raise
community awareness. The spatial mapping shows the regions unsuitable for farmland
and fishponds, as defined by the estimated groundwater As concentrations, exceed the
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water quality standards for irrigation and aquaculture. Groundwater as a water source
should be replaced with the supply of treated, safe surface water, or by using groundwater
collected from other areas in regions where the groundwater quality is unsafe for irrigation
or aquaculture but is currently being used for farmlands and fishponds. Alternatively,
improved land management practices offer promising possibilities to ensure the availability
and quality of water for farmlands and fishponds

Author Contributions: Conceptualization, C.-P.L. and J.-S.C.; methodology, C.-P.L. and J.-S.C.;
software, C.-C.S.; validation; C.-C.S.; formal analysis, C.-C.S. original draft preparation, C.-P.L.,
C.-C.S. and J.-S.C., writing—reviewing and editing, H.S. and S.-W.W.; funding acquisition, C.-P.L.,
supervision, J.-S.C. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the Ministry of Science and Technology, Republic of China, grant
number MOST 108-2410-H-242-004.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Environmental Protection Bureau of the
Yi-Lan County Government of the Republic of China and Hann-Chuan Chiang of National I-Lan
University for providing the data. We are grateful to the Ministry of Science and Technology, Republic
of China, for the financial support of this research under contract MOST 108-2410-H-242-004.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. EPB. Survey of Arsenic Contents of Drinking Water (Surface Water and Groundwater) in YiLan County; Environmental Protection

Bureau: YiLan County, Taiwan, 1997.
2. EPB. Survey of Arsenic Contents of Drinking Water (Surface Water and Groundwater) in YiLan County; Environmental Protection

Bureau: YiLan County, Taiwan, 1998.
3. EPB. Survey of Arsenic Contents of Drinking Water (Surface Water and Groundwater) in YiLan County; Environmental Protection

Bureau: YiLan County, Taiwan, 1999.
4. World Health Organization (WHO). Guidelines for Drinking Water Quality: Recommendations; World Health Organization: Geneva,

Switzerland, 1993.
5. International Agency for Research on Cancer (IARC). A Review of Human Carcinogens: Arsenic, Metals, Fibers, and Dusts; Interna-

tional Agency for Research on Cancer: Lyon, France, 2012.
6. Tseng, W.P. Effects and dose-response relationships of skin cancer and blackfoot disease with arsenic. Environ. Health Perspect.

1977, 19, 109–119. [CrossRef] [PubMed]
7. Chen, C.J.; Chuang, Y.C.; Lin, T.M.; Wu, H.Y. Malignant neoplasms among residents of a blackfoot disease-endemic area in

Taiwan: High-arsenic artesian well water and cancers. Cancer Res. 1985, 45, 5895–5899.
8. Hsueh, Y.M.; Wu, W.L.; Huang, Y.L.; Chiou, H.Y.; Tseng, C.H.; Chen, C.J. Low serum carotene level and increased risk of ischemic

heart disease related to long-term arsenic exposure. Atherosclerosis 1998, 141, 249–257. [CrossRef]
9. Tseng, C.H.; Tai, T.Y.; Chong, C.K.; Tseng, C.P.; Lai, M.S.; Lin, B.J.; Chiou, H.Y.; Hsueh, Y.M.; Hsu, K.H.; Chen, C.J. Long-term

arsenic exposure and incidence of non-insulin-dependent diabetes mellitus: A cohort study in arseniasis-hyperendemic villages
in Taiwan. Environ. Health Perspect. 2000, 108, 847–851. [CrossRef]

10. Liang, C.P.; Wang, S.W.; Kao, Y.H.; Chen, J.S. Health risk assessment of groundwater arsenic pollution in southern Taiwan.
Environ. Geochem. Health 2016, 38, 1271–1281. [CrossRef] [PubMed]

11. Lee, J.J.; Jang, C.S.; Wang, S.W.; Liu, C.W. Evaluation of potential health risk of arsenic-affected groundwater using indicator
kriging and dose response model. Sci. Total Environ. 2007, 384, 151–162. [CrossRef] [PubMed]

12. Liang, C.P.; Chien, Y.C.; Jang, C.S.; Chen, C.F.; Chen, J.S. Spatial analysis of human health risk due to arsenic exposure through
drinking groundwater in Taiwan’s Pingtung Plain. Int. J. Environ. Res. Public Health 2017, 14, 81. [CrossRef] [PubMed]

13. Liang, C.P.; Chen, J.S.; Chien, Y.C.; Chen, C.F. Spatial analysis of the risk to human health from exposure to arsenic contaminated
groundwater: A kriging approach. Sci. Total Environ. 2018, 627, 1048–1057. [CrossRef] [PubMed]

14. Jang, C.S.; Chen, C.F.; Liang, C.P.; Chen, J.S. Combining groundwater quality analysis and a numerical flow simulation for
spatially establishing utilization strategies for groundwater and surface water in the Pingtung Plain. J. Hydrol. 2016, 533, 541–556.
[CrossRef]

15. Liang, C.P.; Hsu, W.S.; Chien, Y.C.; Wang, S.W.; Chen, J.S. The combined use of groundwater quality, drawdown index and land
use to establish a multi-purpose groundwater utilization plan. Water Resour. Manag. 2019, 33, 4231–4247. [CrossRef]

http://doi.org/10.1289/ehp.7719109
http://www.ncbi.nlm.nih.gov/pubmed/908285
http://doi.org/10.1016/S0021-9150(98)00178-6
http://doi.org/10.1289/ehp.00108847
http://doi.org/10.1007/s10653-016-9794-4
http://www.ncbi.nlm.nih.gov/pubmed/26817926
http://doi.org/10.1016/j.scitotenv.2007.06.021
http://www.ncbi.nlm.nih.gov/pubmed/17628636
http://doi.org/10.3390/ijerph14010081
http://www.ncbi.nlm.nih.gov/pubmed/28098817
http://doi.org/10.1016/j.scitotenv.2018.01.294
http://www.ncbi.nlm.nih.gov/pubmed/29426124
http://doi.org/10.1016/j.jhydrol.2015.12.023
http://doi.org/10.1007/s11269-019-02360-2


Int. J. Environ. Res. Public Health 2021, 18, 11385 15 of 15

16. Chowdhury, M.; Alouani, A.; Hossain, F. Comparison of ordinary kriging and artificial neural network for spatial mapping of
arsenic contamination of groundwater. Stoch. Environ. Res. Risk Assess. 2010, 24, 1–7. [CrossRef]

17. Purkait, B.; Kadam, S.; Das, S. Application of Artificial Neural Network Model to Study Arsenic Contamination in Groundwater
of Malda District, Eastern India. J. Environ. Inform. 2008, 12, 140–149. [CrossRef]

18. Cho, K.H.; Sthiannopkao, S.; Pachepsky, Y.A.; Kim, K.W.; Kim, J.H. Prediction of contamination potential of groundwater arsenic
in Cambodia, Laos, and Thailand using artificial neural network. Water Res. 2011, 45, 5535–5544. [CrossRef] [PubMed]

19. Jeihouni, M.; Delirhasannia, R.; Alavipanah, S.K.; Shahabi, M.; Samadianfard, S. Spatial analysis of groundwater electrical
conductivity using ordinary kriging and artificial intelligence methods (Case study: Tabriz plain, Iran). Geofizika 2015, 32, 192–208.
[CrossRef]

20. Jia, Z.; Zhou, S.; Su, Q.; Yi, H.; Wang, J. Comparison study on the estimation of the spatial distribution of regional soil metal
(loid)s pollution based on kriging interpolation and BP neural network. Int. J. Environ. Res. Public Health 2017, 15, 34. [CrossRef]
[PubMed]

21. Jean, J.S.; Bundschuh, J.; Chen, C.J.; Lin, T.F.; Chen, Y.H. The Taiwan Crisis: A Showcase of the Global Arsenic Problem; CRC Press:
New York, NY, USA, 2010.

22. Liu, C.W.; Wu, M.Z. Geochemical, mineralogical and statistical characteristics of arsenic in groundwater of the Lanyang Plain,
Taiwan. J. Hydrol. 2019, 577, 123975. [CrossRef]

23. Nunes Silva, I.; Hernane Spatti, D.; Andrade Flauzino, R.; Liboni, L.H.B.; dos Reis Alves, S.F. Artificial Neural Networks a Practical
Course; Springer International Publishing: Berlin/Heidelberg, Germany, 2017.

24. Journel, A.G.; Huijbregts, C.J. Mining Geostatistics; Academic Press: San Diego, CA, USA, 1978.
25. United States Environmental Protection Agency (USEPA). Guidelines for Carcinogen Risk Assessment; United States Environmental

Protection Agency (USEPA): Washington, DC, USA, 2005.
26. United States Environmental Protection Agency (USEPA). Integrated Risk Information System (IRIS) Assessment. Available

online: https://cfpub.epa.gov/ncea/iris_drafts/atoz.cfm (accessed on 28 October 2021).

http://doi.org/10.1007/s00477-008-0296-5
http://doi.org/10.3808/jei.200800132
http://doi.org/10.1016/j.watres.2011.08.010
http://www.ncbi.nlm.nih.gov/pubmed/21917287
http://doi.org/10.15233/gfz.2015.32.9
http://doi.org/10.3390/ijerph15010034
http://www.ncbi.nlm.nih.gov/pubmed/29278363
http://doi.org/10.1016/j.jhydrol.2019.123975
https://cfpub.epa.gov/ncea/iris_drafts/atoz.cfm

	Introduction 
	Materials and Methods 
	Study Area 
	Artificial Neural Network 
	Ordinary Kriging (OK) 
	Health Risk Assessment 

	Results and Discussion 
	Groundwater Monitoring Data and Preprocessing 
	Arsenic Concentration Prediction 
	Application of Spatial Mapping of the As Concentrations Using BPNN 

	Conclusions 
	References

