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ABSTRACT: Studying the effect of coupling and forcing of oscillators is a significant area
of interest within nonlinear dynamics and has provided evidence of many interesting
phenomena, such as synchronization, beating, oscillatory death, and phase resetting. Many
studies have also reported along this line in reaction−diffusion systems, which are
preferably explored experimentally by using open reactors. These reactors consist of one or
two homogeneous (well-stirred) tanks, which provide the boundary conditions for a
spatially distributed part. The spatiotemporal dynamics of this configuration in the
presence of temporal oscillations in the homogeneous part has not been systematically
investigated. This paper aims to explore numerically the effect of time-periodic boundary
conditions on the dynamics of open reactors provided by autonomous and forced
oscillations in the well-stirred part. A simple model of pH oscillators can produce various phenomena under these conditions, for
example, superposition and modulation of spatiotemporal oscillations and forced bursting. The autonomous oscillatory boundary
conditions can be generated by the same kinetic instabilities that result in spatiotemporal oscillations in the spatially distributed part.
The forced oscillations are induced by sinusoidal modulation on the inflow concentration of the activator in the tank. The
simulations confirmed that this type of forcing is more effective when the modulation period is longer than the residence time of the
well-stirred part. The use of time-periodic boundary conditions may open a new perspective in the control and design of
spatiotemporal phenomena in open one-side-fed and two-side-fed reactors.

1. INTRODUCTION
The concepts of forcing and coupling are central to the theory
of nonlinear oscillators, and they have many practical
applications. The appearance of these dynamical phenomena
in nonlinear chemical systems has been studied widely since
the 1980s.1,2 Forcing, which is the limiting case of asymmetric
coupling, can result in many interesting phenomena, for
example, phase resetting, frequency locking, quasiperiodicity,
and chaos control.1,3−5 Coupled oscillators can be synchron-
ized,6 but they can produce many other behaviors such as
beating and oscillator death, cluster and chimera states, and
quorum sensing. These collective dynamics have been
experimentally explored in an array of coupled chaotic
electrochemical oscillators,7 in diffusively coupled, nanoliter
volume, aqueous drops containing the reactants of the
oscillatory Belousov−Zhabotinsky (BZ) reaction,8 and in
coupled discrete chemical oscillators.9−11

One of the most remarkable features of nonlinear chemical
systems is their capability to produce spatiotemporal
patterns.12 Since the observation of chemical waves in the
BZ reaction,13 a wide variety of spatiotemporal phenomena
have been observed experimentally and described theoret-
ically.14 One way to create new types of patterns is to
investigate novel, often biologically relevant experimental
configurations. In these, numerical simulations often promote
understanding the effects of the applied initial and boundary
conditions.15,16 However, periodic forcing and coupling of

reaction−diffusion systems are still at the forefront of research.
Frequency-locking, standing-wave patterns, and tongue-shaped
regions of resonance have been reported in a light-sensitive
form of the BZ reaction−diffusion system.17,18 Localized
clusters may form by using global photochemical feedback on
the same reaction.19 Periodic illumination has been success-
fully applied to control the formation of stationary Turing
patterns20 in the chlorine dioxide−iodine−malonic acid
(CDIMA) reaction−diffusion system.21 Interestingly, a re-
cently published theoretical paper suggests the use of time-
dependent boundary temperature to control the development
of Turing patterns.22 In coupled spatially extended systems, the
development of superposition and superlattice patterns were
reported in the CDIMA reaction.23

Remarkably, the experimental observations of forcing and
coupling in chemical reaction−diffusion systems have been
often made in open one-side-fed reactors (OSFRs, also called
continuously fed unstirred reactors)19,21,23 or in open two-side-
fed reactors (TSFRs).17,18 The central part of these reactors is
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a piece of porous material, often a hydrogel, which acts as a
convection-less medium for the development of reaction−
diffusion phenomena (Figure 1).

Hereafter, we will call it as the gel part of the reactor. In an
OSFR configuration (Figure 1a), the porous medium is in
contact with the content of a continuous stirred-tank reactor
(CSTR). The CSTR content feeds the porous material with
fresh reagents, which allows maintaining sustained, far-from-
equilibrium conditions. In a TSFR configuration, the gel is
sandwiched between two separated open tanks of reagents
(Figure 1b). Both configurations can be effectively used to
explore chemical pattern formation.24 In these reactors, the
CSTR or the separated tanks provide the boundary conditions
for the reaction−diffusion systems. In general, it is pretty
apparent to apply time-independent, fixed boundary con-
ditions. However, in the context of forcing of spatially
distributed systems, it would be interesting to explore the
effect of time-periodic boundary conditions too. There is a
notable lack of studies investigating this direction either
experimentally or theoretically.

The primary aim of this paper is to explore numerically the
effect of time-periodic boundary conditions in an OSFR and in
a TSFR. We selected a simple but chemically relevant model of
pH oscillators,25 one of the most widely studied nonlinear
chemical systems,26 especially in the context of pattern
formation.27,28 The pH oscillators are relatively simple redox
reactions, which produce large-amplitude pH oscillations in a
CSTR, and hydrogen or hydroxide ions play a crucial role in
the positive feedback of their mechanism. Their robust pattern
forming capacity has been experimentally demonstrated in
OSFR and TSFR configurations and recently in a gel reactor
with flow through channels.27,29,30 We explore an autonomous
and a nonautonomous way to generate time-periodic boundary
conditions in an OSFR. The autonomous way is due to the
capability of the reaction to produce oscillations in a CSTR.
The oscillatory state of the CSTR content can be used to set
time-periodic boundary conditions for the gel. The other
method, the nonautonomous method, is to apply a sinusoidal
perturbation on the input feed concentration of hydrogen ions,
when the unperturbed CSTR content is on a stationary, low-
extent-of-reaction state. In a TSFR, we apply the similar
perturbation in one of the tanks.

2. RESULTS AND DISCUSSION

At first, we recall the basic features of OSFR dynamics of the
system at time-independent boundary conditions, which have
been discussed in detail previously.28,31 To discuss the
dynamics of an OSFR, we must assign the actual state of the
CSTR part and that of the gel content. To avoid any additional
sources of instabilities, here, we set the diffusion coefficients of
all species equal. When the input feed concentration of the
activator (hi) is below 0.031, the CSTR content is on a state, at
which the overall extent of the reaction is low (therefore, it is
referred to as the “flow” state). The reaction−diffusion system
in the gel has two stationary states, which differs in their spatial
concentration profiles (Figure 2a,b, see Supporting Informa-
tion for the construction details of these graphs). The F state
of the gel content is characterized with a flat profile (Figure
2b), while the important feature of the M (“mixed”) state is the
outbreak of hydrogen ion concentration in the depth of the gel.
The stability domains of these states overlap, that is, spatial
bistability (Figure 2a). The dynamics of the reaction−diffusion
system in an OSFR is strongly determined by the thickness of

Figure 1. Sketch of an open OSFR (a) and an open TSFR (b). Here,
ci, c(x), c0, cA, and cB denote the concentrations in the input flow, in
the gel, in the CSTR, and in tanks A and B, respectively.

Figure 2. Dynamics of the OSFR without forcing: a nonequilibrium phase diagram (a), the spatial profiles of the stationary states at hi = 0.028 in
the gel when the CSTR is on the flow state (b), and space-time plot of the spatiotemporal oscillations in the gel when the CSTR is on the flow state
and the local time evolution of h in the CSTR (h0) and at the impermeable wall (h0.60) at hi = 0.026 (c). F, M, and O denote the stationary states
and the oscillatory state of the gel content, respectively. The parameters used in the simulations are ci = 0.12, bi = 1.5.
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the gel (lx). The domain of spatial bistability decreases, and
spatiotemporal oscillations appear with the increase of lx. It is
important to notice that oscillations in the gel form at the
stationary state of the CSTR content (Figure 2c). The typical
frequency of these autonomous spatiotemporal oscillations in
the gel is 2.5 at the conditions used here, meaning that the
period is shorter than the residence time of the CSTR, that is,
1 in the nondimensional model. The domain of spatiotemporal
oscillations overlaps with the domain of the M state. Therefore,
the periodic behavior in the gel can be reached from the F state
by increasing hi.
A natural way to create time-periodic boundary conditions is

to set the value of hi > 0.031, where the CSTR content starts to
oscillate, at the conditions used here. The frequency of these
CSTR oscillations is about 1/3 (Figure 3). During these
relaxation oscillations, a slow increase is followed by a sharp
jump in the h0. The actual dynamics of the gel content at three
representative values of lx is presented in Figure 3. In a thin gel,
lx = 0.1, the CSTR oscillations are followed by the oscillations
of gel content without any significant time delay (Figure 3a).
At lx = 0.2 (Figure 3b), the peaks of h0.2 in the depth of the gel
appear slightly before the peaks of h0 in the CSTR. The width
of the peaks is also more expansive in the gel than that of the
CSTR content. When the value of lx reaches the level at which
oscillations may develop in the gel even at the stationary
CSTR, the dynamics becomes more complex (Figure 3c).
During the slow increase of h0, e.g., between t = 2 and 4 in

Figure 3c, the gel content paths through a complex sequence
starting from an F state-like composition, followed by
spatiotemporal oscillations in the depth of the gel, and then
reaches an M state-like composition. This sequence is ended at
the sharp peak of h0 caused by the CSTR oscillations. The
period of the resulting complex oscillations in the gel is
determined by that of the CSTR oscillations.
Time-periodic boundary conditions can be made by

applying a sinusoidal perturbation on the input feed
concentrations. In the absence of any reactions, a perturbed
CSTR is described by the following equation:

τ
π= + −

c
t

c A ft c
d
d

1
( sin(2 ) )i

0
0 (1)

where τ, c0 and ci, A, and f are the residence time, the
concentrations in the CSTR and in the input flow, the
amplitude, and the frequency of the perturbation, respectively.
The solution of this equation is

ω τ ω
τ ω
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ei
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where ω = 2πf and C is a constant. The amplitude of the forced
concentration oscillations in the CSTR is smaller than A and
decreases with the increase of ω, which means that the CSTR
damps the forcing.

Figure 3. Dynamics of the OSFR when the CSTR content oscillates: spatiotemporal oscillations driven by the CSTR oscillations at lx = 0.1 (a), at lx
= 0.2 (b), and at lx = 0.6 (c). The parameters used in the simulations are ci = 0.12, bi = 1.5, and hi = 0.035.

Figure 4. Dynamics of the OSFR when the CSTR is under sinusoidal perturbation (hi = 0.026 + A sin(2πf t)): modulation at A = 0.002, f = 0.2 (a),
forced bursting at A = 0.003, f = 0.2 (b), and transition from the oscillatory state to the modulated M state at A = 0.004, f = 0.2 (c). The parameters
used in the simulations are ci = 0.12, bi = 1.5, and lx = 0.6.
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We have selected the concentration of the activator to
perform the forcing as the constant value of hi is replaced with
the time-periodic one: hi = hi* + A sin(2πf t). We kept hi* below
0.031, that is, the limit of the development of autonomous
oscillations in the CSTR at the applied conditions. At these
conditions, the CSTR content is on a periodically perturbed F
state. The amplitude of the forced oscillations in the CSTR
decreases with the forcing frequency, in agreement with the
above general result (Supporting Information, Figure S1).
The periodically forced CSTR sets time-periodic boundary

conditions for the gel, where the reaction−diffusion system
operates. In Figure 4, the observed complex spatiotemporal
oscillations are presented at three representative values of the
forcing amplitude. At low forcing, amplitude and frequency
modulation of the spatiotemporal oscillations can be observed
(Figure 4a). At the maximum of the CSTR oscillations, the
frequency and the spatial amplitude of the oscillations in the
gel increase, but the local concentration amplitude decreases.
The opposite changes happen at the minimum of the CSTR
oscillations. The increase of the forcing amplitude, presented in
Figure 4b, results in forced bursting phenomena, where
quiescent periods and active phases alternate. This dynamic
behavior is well known in neuroscience.32 A burst of spikes

characterize an active phase. Forced bursting appears when a
spiking (oscillatory) subsystem is slowly driven above and
below the spiking threshold. The forcing amplitude and
frequency can control the length of the quiescent periods and
the number of spikes. In the domain of bistability between
spatiotemporal oscillations and the M state of the gel, the
increase of the amplitude of the forcing may induce a transition
from the oscillations to a periodic M state, as is presented in
Figure 4c. The periodic forcing stabilizes the M state at the
expense of the autonomous spatiotemporal oscillations. The
critical forcing amplitude at which this transition occurs
increases with the forcing frequency (Supporting Information,
Figure S2), in agreement with the previously mentioned
damping effect of the CSTR on the forcing. The sinusoidal
perturbation results in the decrease of the domain of bistability
(compare Figure 2a and Figure S3 of Supporting Information).
When the forcing frequency is close to the inverse of the
residence time of the CSTR, the autonomous oscillatory state
in the gel can be stable even at A = hi*, which means that hi
oscillates between 0 and 2hi*.
In Figure 5, the observed spatiotemporal oscillations are

presented at three representative values of the forcing
frequency. At a forcing frequency, for example, f = 0.6 (Figure

Figure 5. Dynamics of the OSFR when the CSTR is under sinusoidal perturbation (hi = 0.026 + A sin(2πf t)): forced bursting at A = 0.008, f = 0.6
(a), complex oscillations at A = 0.008, f = 1.0 (b), and simple oscillations at A = 0.008, f = 3.0 (c). The parameters used in the simulations are ci =
0.12, bi = 1.5, and lx = 0.6.

Figure 6. Dynamics of the TSFR without forcing: a nonequilibrium phase diagram (a), the spatial profiles of the stationary states at hi = 0.85 (b),
and the space-time plot of the spatiotemporal oscillations and the local time evolution of h in tank A (hA) and in the middle of the gel (h0.5) at hi =
0.80 (c). F, M, and O denote the stationary states and the oscillatory state of the gel content, respectively. The parameters used in the simulations
are ci = 0.40, bi = 1.5, lx = 1.0.
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5a), which is significantly lower than that of the autonomous
oscillations, forced bursting can be observed. The increase of
the forcing frequency, presented in Figure 5b, results in
complex oscillations. In the presented case, a block of two
spikes is followed by a block of three spikes, and this pattern
repeats. The oscillations in the gel are not affected by the
forcing at a frequency that exceeds that of the autonomous
oscillations, for example, f = 3.0 (Figure 5c). We did not find
modulation or synchronization between the CSTR and the gel
dynamics in this case. The frequency of the oscillations in the
gel is 2.5, like in the autonomous case (Figure 2c), while that
of the forcing is 3.0. The appearance of these different types of
oscillatory behaviors in the frequency−amplitude plane is
shown in Supporting Information (Figure S2).
Similar sinusoidal forcing can be applied in a TSFR, for

example, by perturbing the input feed concentration in one of
the tanks. The autonomous TSFR dynamics of pH oscillators
has been explored previously both experimentally and
numerically.29 The most important features are summarized
in Figure 6. Appropriately separated mixtures of reactants are
continuously feed the two tanks. Tank A is fed by A−, H+, and
C, and the boundary conditions are set at x = 0. Tank B is fed
by A−, B, and C, and the boundary conditions are set at x = lx.
The nonequilibrium phase diagram of the gel content shows
the standard cross-shaped topology:33 the stability domain of
the two spatial states F and M (Figure 6b) overlaps at small
values of lx, and above a critical value of lx, spatiotemporal
oscillations develop (Figure 6c). The spatiotemporal oscil-
lations form in the middle region of the gel. The frequency of
the autonomous oscillations in the gel is 2.5 at the applied
conditions.
We have applied a sinusoidal perturbation on the input flow

of tank A as hi = hi* + A sin(2πf t). In tank A, only reactions R1
and R3 take place. Since H+ is bounded by A−, the extent of
reaction R3 is very small. Figure 7 presents the increase of
forcing frequency at a constant amplitude.
The damping of the tank on the forcing amplitude is also

important in this configuration. Low-frequency forcing ( f =
0.3), presented in Figure 7a, may result in a complete periodic
excursion through the different states of the gel content:
starting from the F state, the increase of hA induces a transition
to spatiotemporal oscillations and the M state. At a higher
forcing frequency (Figure 7b), forced bursting phenomena can
be induced, similarly as in the OSFR case (Figure 5a). In the
TSFR configuration, we found synchronization phenomena, as

presented in Figure 7c. When a high-frequency forcing ( f =
3.0) is applied, the frequency and the phase of the
spatiotemporal oscillations nicely adjust to that of the forcing.
The sinusoidal perturbation of the TSFR results in the
decrease of the domain of bistability (compare Figure 6a and
Figure S4 of Supporting Information).

3. CONCLUSIONS

The current study aimed to investigate the impact of time-
periodic boundary conditions in open spatial reactors. In the
created experimentally realistic situations, we have varied and
forced the input feed concentrations of the chemicals. In the
case of an OSFR, time-periodic boundary conditions can be
realized by autonomous oscillations in the CSTR part or by the
periodic perturbation of the stationary state of the CSTR.
However, in a TSFR, only the periodic forcing can be applied
as the primary reagents are fed into separated tanks. Our
investigation shows that this is a more flexible way to study
forcing, but the damping effect of the tank on the forcing
amplitude is a significant limitation. Similar results have been
recently published in homogeneous systems (pH oscillators)
with periodic forcing of the inflow rates of the reagents.5 It was
demonstrated that if the modulation period of the forcing was
longer than the residence time of the chemical species in the
CSTR, the system emulated the time period/frequency of the
forcing. However, when the frequency of the forcing
approached the natural frequency (in the absence of forcing)
of the oscillations, the chemical oscillatory system exhibited
other phenomena such as resonance and beats. When the time
period of the forcing was too low compared to the natural time
period of the system and the residence time of the chemical
species, the forcing did not affect the characteristics of the
system. In addition to this, similar behavior was found in a
neutralization reaction when an acid solution was titrated
periodically in antiphase with an alkaline solution in a CSTR
by using various periodic inflow rate functions of the
reagents.34 Our simulations, made in spatially extended
systems, confirmed that periodic boundary conditions created
by low-frequency forcing on the CSTR part might result in the
modulation of spatiotemporal oscillations and forced spatio-
temporal bursting in the gel part. Synchronization can also be
observed at high-frequency forcing in a TSFR. This study
indicates that time-periodic boundary conditions in open
spatial reactors may result in new reaction−diffusion dynamics.
A limitation of our study is that we performed only 1D

Figure 7. Dynamics of the TSFR when tank A is under sinusoidal perturbation (hi = 0.80 + A sin(2πf t)): modulation at A = 0.1, f = 0.3 (a) and A =
0.1, f = 0.5 (b) and simple oscillations at A = 0.1, f = 3.0 (c). The parameters used in the simulations are ci = 0.40, bi = 1.5, and lx = 1.0.
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simulations to clarify the essential dynamics. Considerably
more work will need to be done to determine the 2D effects of
time-periodic boundary conditions, and experimental verifica-
tion would also be necessary.

4. MODEL AND NUMERICAL METHOD
The formal chemical equations of the Rab́ai model of pH
oscillators are the following:25

+− + FA H HA (R1)

+ ⎯ →⎯⎯ +
+

+B HA H H P (R2)

+ →+C H Q (R3)

Here, B stands for an oxidant (bromate, iodate, or hydrogen
peroxide), A− is the unprotonated form of a weak acid (most
often the sulfite ion), which is oxidized to an unprotonated
form of a strong acid (sulfate ion), C denotes a second
substrate, and P and Q are products. The corresponding rate
equations are written as

κ κ= [ ][ ] − [ ]− +
−v A H HA1 1 1 (v1)

κ κ= [ ] + ′ [ ][ ]+v ( H ) HA B2 2 2 (v2)

κ= [ ][ ]+v C H3 3 (v3)

Here, κ1, κ−1, κ2, κ2′, and κ3 are the corresponding rate
coefficients. Reaction R2 represents the (+) feedback, whereas
the (−) feedback is provided by reaction R3. The model is
ready to simulate the temporal dynamics in a CSTR and the
spatiotemporal dynamics in an OSFR or in a TSFR. We used
nondimensional concentrations, where a, ah, h, b, and c
correspond to A−, HA, H+, B, and C, respectively.
In an OSFR, the equations for the content of the CSTR part

are the following:

κ κ̇ = − + + −−a a h a a10 1 0 0 1 h,0 0 (3)

κ κ κ κ̇ = − − + ′ −−a a h a h a b a( )h,0 1 0 0 1 h,0 2 0 2 h,0 0 h,0 (4)

κ κ κ κ κ̇ = − + + + ′ − +

−
−h a h a h a b c h h

h

( ) i0 1 0 0 1 h,0 2 0 2 h,0 0 3 0 0

0 (5)

κ κ̇ = − + ′ + −b h a b b b( ) i0 2 0 2 h,0 0 0 (6)

κ̇ = − + −c c h c ci0 3 0 0 0 (7)

where a0, ah,0, h0, b0, c0, hi, bi, and ci are nondimensional
concentrations in the CSTR and in the input feed, respectively.
The reaction−diffusion equations for the content of the gel in
1D are written as

κ κ∂ = − + + ∂−a ah a axt 1 1 h
2

(8)

κ κ κ κ∂ = − − + ′ + ∂−a ah a h a b a( ) xt h 1 1 h 2 2 h
2

h (9)

κ κ κ κ κ∂ = − + + + ′ − + ∂−h ah a h a b ch h( ) xt 1 1 h 2 2 h 3
2

(10)

κ κ∂ = − + ′ + ∂b h a b b( ) xt 2 2 h
2

(11)

κ∂ = − + ∂c ch cxt 3
2

(12)

where a, ah, h, b, and c are nondimensional concentrations in
the gel. We applied Dirichlet boundary conditions or time-

periodic boundary conditions at the gel/CSTR surface, for
example, a(x=0) = a0, and no flux boundary conditions at the
gel/impermeable wall surfaces, for example, (∂xa)(x=lx) = 0. The
values of the nondimensional rate coefficients are κ1 = 5 ×
1010, κ−1 = 5 × 105, κ2 = 5 × 105, κ2′ = 50, and κ3 = 1 × 103. We
assume that the diffusion coefficients of A−, HA, B, and C are
the same. The derivation of the nondimensional equations and
parameters are detailed in Supporting Information. The H+

concentrations in the gel at a particular x are denoted in the
text as hx.
The TSFR dynamics can be described by the following

dimensionless equations:
Tank A

κ κ̇ = − + + −−a a h a a1A 1 A A 1 h,A A (13)

κ κ̇ = − −−a a h a ah,A 1 A A 1 h,A h,A (14)

κ κ κ̇ = − + − + −−h a h a c h h hiA 1 A A 1 h,A 3 A A A (15)

κ̇ = − + −c c h c ciA 3 A A A (16)

Tank B

κ κ̇ = − + + −−a a h a a1B 1 B B 1 h,B B (17)

κ κ κ κ̇ = − − + ′ −−a a h a h a b a( )h,B 1 B B 1 h,B 2 B 2 h,B B h,B (18)

κ κ κ κ κ̇ = − + + + ′ −

−
−h a h a h a b c h

h

( )B 1 B B 1 h,B 2 B 2 h,B B 3 B B

B (19)

κ κ̇ = − + ′ + −b h a b b b( ) iB 2 B 2 h,B B B (20)

κ̇ = − + −c c h c ciB 3 B B B (21)

where aA, ah,A, hA, cA, aB, ah,B, hB, bB, cB, hi, bi, and ci are
nondimensional concentrations in tanks A and B and in the
input feed of the tanks, respectively. The reaction−diffusion
system in the gel part of a TSFR is described by eqs 8−12 with
Dirichlet boundary conditions or time-periodic boundary
conditions at surface A, for example, a(x = 0) = aA, and
Dirichlet boundary conditions at surface B, for example, a(x =
lx) = aB. The H

+ concentrations in the gel at a particular x are
denoted in the text as hx.
The partial differential equations were discretized with a

standard second-order finite difference scheme on an equi-
distant grid having 200 gridpoints. The resulting set of the
ordinary differential equations was solved by the SUNDIALS
CVODE35 solver using the backward differentiation formula
method. The absolute and relative error tolerances were 10−10

and 10−5, respectively.
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(27) Szalai, I.; Cuiñas, D.; Takács, N.; Horváth, J.; De Kepper, P.
Chemical morphogenesis: recent experimental advances in reaction-
diffusion system design and control. Interface Focus 2012, 2, 417−432.
(28) Horváth, J.; Szalai, I.; De Kepper, P. Designing Stationary
Reaction-Diffusion Patterns in pH Self-Activated Systems. Acc. Chem.
Res. 2018, 51, 3183−3190.
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