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Simple Summary: Metabolic flexibility is one of the key hallmarks of cancer and metabolites are the
final products of this adaptation, reflecting the aberrant changes of tumors. However, the metabolic
plasticity of each cancer type is still unknown, and specifically to date, there are no data on metabolic
profile in neuroendocrine tumors. The aim of our retrospective study was to assess the metabolomic
profile of NET patients to understand metabolic deregulation in these tumors and identify novel
biomarkers with clinical potential. We provided, for the first time, a comprehensive metabolic profile
of NET patients and identifies a distinctive metabolic signature in plasma of potential clinical use,
selecting a reduced set of metabolites of high diagnostic accuracy. We have identified 32 novel
enriched metabolic pathways in NETs related with the TCA cycle, and with arginine, pyruvate or
glutathione metabolism, which have distinct implications in oncogenesis and may open innovative
avenues of clinical research.

Abstract: Purpose: High-throughput “-omic” technologies have enabled the detailed analysis of
metabolic networks in several cancers, but NETs have not been explored to date. We aim to assess
the metabolomic profile of NET patients to understand metabolic deregulation in these tumors
and identify novel biomarkers with clinical potential. Methods: Plasma samples from 77 NETs
and 68 controls were profiled by GC−MS, CE−MS and LC−MS untargeted metabolomics. OPLS-
DA was performed to evaluate metabolomic differences. Related pathways were explored using
Metaboanalyst 4.0. Finally, ROC and OPLS-DA analyses were performed to select metabolites with
biomarker potential. Results: We identified 155 differential compounds between NETs and controls.
We have detected an increase of bile acids, sugars, oxidized lipids and oxidized products from
arachidonic acid and a decrease of carnitine levels in NETs. MPA/MSEA identified 32 enriched
metabolic pathways in NETs related with the TCA cycle and amino acid metabolism. Finally, OPLS-
DA and ROC analysis revealed 48 metabolites with diagnostic potential. Conclusions: This study
provides, for the first time, a comprehensive metabolic profile of NET patients and identifies a
distinctive metabolic signature in plasma of potential clinical use. A reduced set of metabolites
of high diagnostic accuracy has been identified. Additionally, new enriched metabolic pathways
annotated may open innovative avenues of clinical research.
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1. Introduction

Reprogrammed metabolism encompasses the capacity of cells to respond or adapt
their metabolic signaling to support and enable cell survival in unfavorable or hostile
conditions. This ability is enhanced in cancer cells in order to improve their adaptive
phenotype and maintain both viability and uncontrolled proliferation. Metabolic flexibility
is therefore one of the key hallmarks of cancer [1], although the pathways involved in the
metabolic plasticity of each cancer type remain to be elucidated. Metabolites are the final
products of this adaptation, reflecting the aberrant changes in the genomic, transcriptomic
and proteomic variability of tumors, and provide therefore useful biological and clinical
information on cancer initiation and progression [2–4]. This, together with the fact that
metabolomics can be easily performed in readily accessible biological samples (plasma,
urine), makes metabolic profiling of cancer patients a promising tool to characterize the
tumor phenotype and identify novel biomarkers of potential clinical use. Systems medicine
approaches integrating high-throughput “-omic” technologies into diagnostic platforms
have indeed enabled the detailed analysis of metabolic networks (known as metabolomics)
in several cancers of high incidence, prevalence and mortality [5–8], but these do not
include neuroendocrine neoplasms (NENs).

NENs comprise a heterogeneous family of rare tumors of increasing incidence and
challenging clinical management [9]. Although they can arise in virtually any organ, the
most common primary tumor sites are the lungs (25%) and the digestive tract (~65%).
Well-differentiated neuroendocrine tumors (NETs) account for ~80% of all NENs, have
a rather indolent clinical behavior, as compared to their exocrine counterparts, and are
associated with a good to moderate prognosis depending on primary tumor site, prolif-
erative index (ki67 or mitotic index) and tumor stage. About 20% of NETs have also the
unique ability to produce and secrete amines or peptide hormones to the blood stream, the
so-called “functioning tumors”, that produce specific endocrine syndromes (i.e., carcinoid
syndrome) that may seriously impair patients quality of life and prognosis [10]. Survival
has improved over time for all NETs, likely reflecting earlier diagnosis and improvements
in therapy [11,12]. However, a significant proportion of patients are still diagnosed with
advanced stages of disease, highlighting the need to identify novel specific biomarkers that
may contribute to an earlier detection and an increased likelihood of cure.

The study of hereditary genetic syndromes associated with an increased predisposi-
tion to develop NETs (~5%) has contributed to partially elucidate some of the mechanisms
involved in their tumorigenesis [13–18]. Germline mutations in MEN1, RET, CDKN1B,
VHL, NF1 and TSC1/2 are the molecular alterations most frequently detected in hereditary
NENs. Although some of these mutations have a relevant representation in sporadic
NETs (i.e., MEN1, TSC1/2), other molecular alterations involved in epigenetic regulation,
DNA repair, telomeres regulation and chromosomal rearrangements have been also impli-
cated [19–21]. Despite these recent advances, however, the molecular mechanisms of NET
genesis and progression remain largely unraveled. In addition, few authors have explored
NETs from a metabolomic perspective. A pilot prospective study analyzed urine sam-
ples from 28 gastroenteropancreatic NET patients by nuclear magnetic resonance (NMR)
spectroscopy, and showed distinct metabolomic phenotypes by primary tumor site (small
bowel versus pancreatic NEN) and function [22]. A second recent work described the
metabolomic fingerprint of 46 small intestine NET tissues analyzed by NMR spectroscopy,
suggesting the existence of complex metabolic pathways in NETs, possibly influencing
tumor development and evolution, and thereby clinical outcome [23]. With the exception
of these two small studies, the metabolomic profile of patients with NETs has not been
studied to date.
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In this context, the aim of our study was to perform a comprehensive metabolic
profiling of NETs to better understand metabolic dysregulation in these tumors and iden-
tify novel biomarkers of potential clinical use. To this aim, multiplatform untargeted
metabolomic analyses were performed in plasma samples of 77 patients with advanced
gastrointestinal and lung NETs, and 68 non-cancer individuals (controls). The diagnos-
tic potential and biological relevance of differential metabolites identified was assessed,
and dysregulated pathways were explored to provide further insight into the molecular
mechanisms involved in NET development and progression.

2. Results
2.1. Metabolomic Profiling in Plasma of Patients with Neuroendocrine Tumors

The metabolite fingerprint was assessed using a multiplatform LC-MS, GC-MS and
CE-MS approach in plasma of 77 patients diagnosed with NETs and of 68 non-cancer
individuals (controls). Main characteristics of the study population are summarized in
Table S1. All patients had well-differentiated G1-2 NETs (33.8% G1 and 66.2% G2), the most
common primary tumor site was the small intestine (58.4%) and one-third had functioning
tumors (carcinoid syndrome).

Data obtained after peak alignment and filtering were used for multivariate analysis of
unsupervised principal components (PCAs) to verify the distribution of QCs in each tech-
nique. System stability, performance and reproducibility of sample treatment procedures
were reflected with the spontaneous grouping of these QC samples (Figure S1).

For each platform in multivariate analysis, unsupervised (Figure S2), and supervised
PLS-DA and OPLS-DA models were also conducted. OPLS-DA supervised models were
used to model differences between groups and were validated using permutation tests
(Figure 1A–D).

All analytical techniques clearly discriminated NET patients from non-cancer individuals
in the applied models. A total of 1006 metabolites were detected and univariate analysis
revealed the following individually significant differential metabolites between cases and
controls: 75 compounds in CE–MS, 150 in LC–MS ESI(+), 296 in LC–MS ESI(−) and 19 in
GC–MS. These variables were annotated and/or identified as described in “Annotation and
compound identification” in the Material and Methods section and are summarized in Table 1.

The integration of metabolic data acquired by different analytical platforms resulted
in 155 identified metabolites with a differential availability in NET patients (p < 0.05),
when compared to non-cancer individuals. Metabolite identification of some specific
metabolites (arginine, glutamine, phenylalanine, among others) across more than one ana-
lytical platform significantly increases the confidence of metabolite identification (Table 1).
No significant differences were found by gender, age, grade, primary tumor site and
hormonal syndrome.

2.2. NETs Show a Particular Signature of Metabolites with Diagnostic Potential

The unsupervised heatmap cluster plot of the 155 metabolites identified with a dif-
ferential availability in NET patients as compared to non-cancer individuals is shown
in Figure S3. Given the relevant capacity to discriminate NET patients from non-cancer
individuals, we applied ROC analysis and calculated the AUC of each identified metabo-
lite to determine their individual performance as NET diagnostic biomarkers. We also
calculated the variable importance in projection (VIP) score from the OPLS-DA model.
VIP score estimates the importance of each metabolite in the model and therefore, their
ability to discriminate NETs from non-cancer patients. Table S2 summarizes the ROC and
OPLS-DA analyses of the 155 differential plasmatic metabolites identified between NETs
and controls. Those with an AUC > 0.85, a VIP > 1.0 and a |p(corr)| > 0.5 or both were
considered as metabolites with biomarker potential. Twenty-seven metabolites had both an
AUC > 0.85 and a VIP > 1.0 and a |p(corr)| > 0.5; 17 metabolites had only a VIP > 1.0 and
a |p(corr)| > 0.5 and 5 metabolites had only an AUC > 0.85. Overall, thus, we identified
49 metabolites with significant diagnostic potential.
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Figure 1. Supervised models show a clear separation between NET patients and non-cancer individu-
als. (A–D) OPLS-DA score plots and permutation tests of OPLS-DA models for each platform through
999 permutations. Panel (A) for CE-MS data (R2 = 0.872, Q2 = 0.843); panel (B), LC-MS/ESI(+) data
(R2 = 0.954, Q2 = 0.871); panel (C), LC-MS/ESI(−) data (R2 = 0.885, Q2 = 0.788) and panel (D), GC-MS
data (R2 = 0.781, Q2 = 0.744). Red dots, NETs (n = 77); blue dots, non-cancer individuals (n = 68).
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Table 1. List of the statistically significant annotated metabolites discriminating between the plasma profiles of control (n = 68) and NET patients (n = 77) with their statistical characteristics
after UVDA and MVDA (percentage of change, p-value, p(corr) and VIP) and analytical descriptors (measured mass and its deviation from the theoretical one, experimental retention
time, analytical platform on which it has been detected, identification source where DB corresponds to database result, confidence level for identification according to the metabolomics
standards initiative and its corresponding Human Metabolome Database (HMDB) code (http://www.hmdb.ca/, accessed on 16 December 2020)). (* = Multiple identification options).

Compound Formula Mass (Da) RT (Min) % Change p-Value p(corr) VIP Mass Error
(ppm)

Analytical
Platform

Identification
Source

Confidence
Level HMDB Code

Amines

Triethylamine C6H15N 101.1204 10.28 −53 0.0009 0 CE-MS DB 3 HMDB0032539

Amino acids, peptides and analogues

Arginine C6H14N4O2 174.1131 9.98 243 4.58 × 10−35 −0.80 2.33 15 CE-MS
LC-MS(+) DB 2 HMDB0000517

Arg-Val C11H23N5O3 273.1822 9.95 66 0.0004 8 CE-MS DB 3 HMDB0028722
Aspartate C4H7NO4 133.0375 13.80 −32 4.98 × 10−13 2 CE-MS DB 2 HMDB0000191
Cys-Gly C5H10N2O3S 178.0412 12.19 −29 8.00 × 10−9 0 CE-MS DB 3 HMDB0000078

Cys-Gly disulfide C8H15N3O5S2 297.0455 12.19 −41 1.39 × 10−8 0.49 1.63 1 CE-MS DB 3 HMDB0000709
Cysteineglutathione

disulfide C13H22N4O8S2 426.0912 13.95 −37 7.40 × 10−6 8 CE-MS DB 3 HMDB0000656

Dimethyl-Arginine
(symmetric) C8H18N4O2 202.1428 10.67 25 0.0006 1 CE-MS DB 2 HMDB0003334

GalactosylhydroxyLys C12H24N2O8 324.1558 11.49 42 0.0014 8 CE-MS DB 3 HMDB0000600
gamma-Glu-orn * C10H19N3O5 261.1335 11.30 34 0.0103 4 CE-MS DB 3 HMDB0002248

Glu-Ala * C8H14N2O5 218.0904 14.40 135 4.38 × 10−14 1 CE-MS DB 3 HMDB0006248
Glu-Arg C11H21N5O5 303.1554 11.49 87 6.28 × 10−14 −0.52 1.55 4 CE-MS DB 3 HMDB0028813
Glu-Asp C9H14N2O7 262.0801 3.78 54 0.0036 7 LC-MS(−) MSMS 2 HMDB0030419
Glu-hyp C10H16N2O6 260.0993 12.98 37 5.12 × 10−7 6 CE-MS DB 3 HMDB0011161

Glu-Lys/
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-Glu-Lys C11H21N3O5 275.1481 11.37 58 1.55 × 10−7 2 CE-MS DB 3 HMDB0029155

Glutamine C5H10N2O3 146.0691 1.34 69 0.0006 1 LC-MS(+)
LC-MS(−) MSMS 2 HMDB0000641

Glu-Val C10H18N2O5 246.1217 14.68 48 0.0009 1 CE-MS
LC-MS(+) DB 3 HMDB0028832

Glycine C2H5NO2 75.0320 9.75 32 0.0202 - GC-MS Fiehn 2 HMDB0000123
Gly-Pro C7H12N2O3 172.0831 15.89 −20 0.0275 10 CE-MS DB 3 HMDB0000721

Homocitrulline C7H15N3O3 189.1118 13.52 44 0.0027 3 CE-MS DB 3 HMDB0000679

Iminodiacetic acid C4H7NO4 133.0375 12.87 −37 0.0158 - GC-MS
CE-MS Fiehn 2 HMDB0011753

Indoleacetyl glutamine C15H17N3O4 303.1219 1.70 203 1.43 × 10−6 −0.58 2.05 2 LC-MS(−)
LC-MS(+) DB 3 HMDB0013240

Leu-hyp C11H20N2O4 244.1423 2.00 87 0.0018 2 LC-MS(−) DB 3 HMDB0028867

Leu-Phe C15H22N2O3 278.1630 2.14 Presented in
cancer group 3.54 × 10−5 −0.60 2.45 0 LC-MS(−) DB 3 HMDB0013243

http://www.hmdb.ca/
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Table 1. Cont.

Compound Formula Mass (Da) RT (Min) % Change p-Value p(corr) VIP Mass Error
(ppm)

Analytical
Platform

Identification
Source

Confidence
Level HMDB Code

Lys-Asp * C10H19N3O5 261.1335 11.30 34 0.0103 4 CE-MS DB 3 HMDB0028947
Methionine S-oxide C5H11NO3S 165.0478 14.06 110 3.30 × 10−9 11 CE-MS DB 2 HMDB0002005
N2-Methyl-lysine C7H16N2O2 160.1208 10.67 −77 6.97 × 10−9 2 CE-MS DB 2 HMDB0002038
N2-Methylproline C6H11NO2 129.0791 14.59 −43 0.0031 1 CE-MS DB 2 HMDB0059649
N6-Acetyl-hydroxy-

lysine * C8H16N2O4 204.1103 12.78 −55 0.0002 3 CE-MS DB 3 HMDB0033891

N-acetyl-lysine C8H16N2O3 188.1155 13.70 20 0.0002 3 CE-MS DB 2 HMDB0000206
Ornithine C5H12N2O2 132.0906 9.66 −39 5.58 × 10−19 0.65 1.65 6 CE-MS DB 2 HMDB0000214

Phenylalanine C9H11NO2 165.0770 13.88 −58 0.0050 12 CE-MS
GC-MS DB 2 HMDB0000159

Pipecolic acid C6H11NO2 129.0790 10.14 49 0.0307 - GC-MS Fiehn 2 HMDB0000716
Pyroglutamine C5H8N2O2 128.0583 11.48 68 1.41 × 10−5 2 CE-MS DB 3 HMDB0062558

Ser-Ala * C6H12N2O4 176.0789 13.07 −38 1.37 × 10−8 4 CE-MS DB 3 HMDB0029032
Ser-hyp * C8H14N2O5 218.0904 14.40 135 4.38 × 10−14 1 CE-MS DB 3 HMDB0029040
Ser-Val * C8H16N2O4 204.1103 12.78 −55 0.0002 3 CE-MS DB 3 HMDB0029052

Stearoyl-tyrosine * C27H45NO4 447.3349 5.15 −66 9.67 × 10−17 0.75 3.74 1 LC-MS(+) DB 3 HMDB0062343

Suberylglycine C10H17NO5 231.1106 1.19 Presented in
cancer group 0.0001 −0.73 3.82 1 LC-MS(−) DB 3 HMDB0000953

Thr-Ala C7H14N2O4 190.0954 13.83 90 5.09 × 10−11 0 CE-MS DB 3 HMDB0029054
Thr-Gly * C6H12N2O4 176.0789 13.07 −38 1.37 × 10−8 4 CE-MS DB 3 HMDB0029061
Trp-Phe C20H21N3O3 351.1582 2.32 74 3.73 × 10−11 −0.63 1.56 1 LC-MS(−) DB 3 HMDB0029090
Val-Leu C11H22N2O3 230.1616 12.83 51 0.0012 6 CE-MS DB 3 HMDB0029131

Benzene and substituted derivatives

Mandelic acid C8H8O3 152.0473 2.28 335 0.0037 3 LC-MS(−) DB 3 HMDB0000703
3-phenylprop-2-en-1-

yloxysulfonic acid C9H10O4S 214.0299 2.77 118 0.0005 2 LC-MS(−) DB 3 HMDB0135284

Carbohydrates and carbohydrate conjugates

Allose C6H12O6 180.0633 17.10 139 1.32 × 10−14 0.62 1.44 - GC-MS Fiehn 2 HMDB0001151
Glucose C6H12O6 180.0633 17.45 174 1.98 × 10−15 0.62 1.64 - GC-MS Fiehn 2 HMDB0000122
Glycerol C3H8O3 92.0473 9.28 45 0.0000 - GC-MS Fiehn 2 HMDB0000131
Mannitol C6H14O6 182.0790 17.59 196 0.0017 - GC-MS Fiehn 2 HMDB0000765

Phenylglucuronide C12H14O7 270.0739 0.93 308 0.0052 −0.52 2.37 2 LC-MS(−) DB 3 HMDB0060014
PYRANOSE

(glucose/altrose/
galactose/talose)

C6H12O6 180.0633 17.24 194 1.61 × 10−16 0.63 1.71 - GC-MS Fiehn 2
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Table 1. Cont.

Compound Formula Mass (Da) RT (Min) % Change p-Value p(corr) VIP Mass Error
(ppm)

Analytical
Platform

Identification
Source

Confidence
Level HMDB Code

Carboximidic acids and derivatives

Acetylspermidine C9H21N3O 187.1671 9.15 38 6.27 × 10−6 7 CE-MS DB 3 HMDB0001276

Carboxylic acids and derivatives

1-
Aminocyclohexanecarboxylic

acid
C7H13NO2 143.0944 13.89 −32 0.0366 1 CE-MS DB 3 HMDB0038249

di-Hydroxymelatonin * C13H16N2O4 264.1110 1.34 46 0.0268 2 LC-MS(−) DB 3 HMDB0061136
Edetic Acid C10H16N2O8 292.0906 0.24 35 0.0001 1 LC-MS(+) DB 3 HMDB0015109
Isocitric acid

Citric acid C6H8O7 192.0270 0.23 64 5.83 × 10−5 0 LC-MS(−) MSMS 2 HMDB0000193
HMDB0000094

Diazines/Pyrimidines and pyrimidine derivatives

5,6-Dihydrothymine C5H8N2O2 128.0570 12.22 56 0.0169 12 CE-MS DB 3 HMDB0000079

Fatty acyls

3-carboxy-4-methyl-5-
propyl-2-furanpropanoic

acid (CMPF)
C12H16O5 240.0998 3.78 69 0.004 2 LC-MS(+) MSMS 2 HMDB0061112

8-amino-7-oxo-nonanoic
acid * C9H17NO3 187.1208 2.06 418 0.0220 2 LC-MS(−) DB 3

Arachidonic acid C20H32O2 304.2402 7.13 62 1.59 × 10−5 1 LC-MS(−) MSMS 2 HMDB0001043
beta-Phenylalanoyl-

CoA * C30H45N8O17P3S 914.1836 2.83 73 7.07 × 10−3 1 LC-MS(−) DB 3

beta-Phenylalanoyl-
CoA * C30H45N8O17P3S 914.1836 3.62 65 8.78 × 10−3 0 LC-MS(−) DB 3

DG(31:0) C34H66O5 554.4910 8.18 −37 0.0008 0 LC-MS(+) DB 3 HMDB0093505
Docosapentaenoic acid C22H34O2 330.2558 7.25 75 6.87 × 10−9 −0.55 1.51 1 LC-MS(−) DB 3 HMDB0006528

Dodecenedioic acid C12H20O4 228.1362 3.50 191 9.87× 10−8 −0.60 2.24 2 LC-MS(−) DB 3 HMDB0000933
Eicosapentaenoic acid C20H30O2 302.2246 6.77 65 3.88 × 10−4 2 LC-MS(−) DB 3 HMDB0001999

Eicosatrienoic acid C20H34O2 306.2558 7.39 82 1.85 × 10−10 1 LC-MS(−) DB 3 HMDB0010378
Eicosenoic acid C20H38O2 310.2871 8.34 79 2.75 × 10−10 −0.51 1.50 1 LC-MS(−) DB 3 HMDB0002231

Glucosylgalactosylhydroxylysine C18H34N2O13 486.2093 12.38 46 1.73 × 10−5 7 CE-MS DB 3 HMDB0000585

HETE C20H32O3 320.2351 5.92 Presented in
cancer group 1.24 × 10−5 −0.63 2.64 0 LC-MS(−) MSMS 2 HMDB0060101

MG(18:2) C21H38O4 354.2770 6.81 116 0.0007 2 LC-MS(+) MSMS 2 HMDB0011538
MG(20:0) C23H46O4 386.3396 7.79 −86 1.30 × 10−12 5 LC-MS(+) DB 3 HMDB0072859

N-palmitoyl glutamic acid * C21H39NO5 385.2828 4.13 62 0.004 0 LC-MS(+) DB 3

Oleic acid C18H34O2 282.2559 20.47 67 0.0013 - GC-MS
LC-MS(+) Fiehn 2 HMDB0000207
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Table 1. Cont.

Compound Formula Mass (Da) RT (Min) % Change p-Value p(corr) VIP Mass Error
(ppm)

Analytical
Platform

Identification
Source

Confidence
Level HMDB Code

Vaccenic acid C18H34O2 282.2559 20.56 23 0.0158 - GC-MS Fiehn 2 HMDB0041480
3-hydroxy-5-

octenoylcarnitine C15H27NO5 301.1889 4.23 Presented in
cancer group 3.57 × 10−2 −0.72 3.96 3 LC-MS(−) DB 3

3-Hydroxy-5-
tetradecenoylcarnitine * C21H39NO5 385.2828 4.13 62 0.004 0 LC-MS(+) DB 3 HMDB0013330

9-Decenoylcarnitine C17H31NO4 313.2232 12.99 −15 0.0325 7 CE-MS DB 3 HMDB0013205
Arachidonoylcarnitine * C27H45NO4 447.3349 5.15 −66 9.67 × 10−17 0.75 3.74 1 LC-MS(+) DB 3 HMDB0062343
α-Linolenyl carnitine C25H43NO4 421.3192 4.91 −41 1.79 × 10−8 0.53 2.26 0 LC-MS(+) DB 3 HMDB0006319

Linoleyl carnitine C25H45NO4 423.3349 5.14 −59 4.03 × 10−16 0.73 3.40 0 LC-MS(+) DB 3 HMDB0006469
Oleoylcarnitine
Elaidic carnitine C25H47NO4 425.3504 5.43 −41 1.41 × 10−8 0.51 2.40 1 LC-MS(+) MSMS 2 HMDB0006351

HMDB0006464

Flavonoids

Anthraniloyl-CoA C28H41N8O17P3S 886.1523 0.23 186 3.47 × 10−21 −0.69 2.39 3 LC-MS(−) DB 3

Glycerolipids

11-Oxo-androsterone
glucuronide C25H36O9 480.2359 3.43 −45 8.06 × 10−6 0.53 2.06 1 LC-MS(−) DB 3 HMDB0010338

Glycerophospholipids

LPC(16:0)-OH C24H50NO8P 511.3274 4.12 25 0.008 0 LC-MS(+)
LC-MS(−) MSMS 2

LPC(16:0)-OH C24H50NO8P 511.3274 4.21 37 0.0005 0 LC-MS(+)
LC-MS(−) MSMS 2

LPC(18:0)-OH C26H54NO8P 539.3587 4.71 27 0.0100 0 LC-MS(+)
LC-MS(−) MSMS 2

LPC(18:2)-OH C26H50NO8P 535.3274 4.41 Presented in
cancer group 2.19 × 10−6 0 LC-MS(+)

LC-MS(−) MSMS 2

LPA(13:0) C16H33O7P 368.1963 5.23 −57 4.95 × 10−3 0.56 2.29 7 LC-MS(−) DB 3 HMDB0114760
LPC(22:1) C30H60NO7P 577.4107 6.99 66 2.14 × 10−5 2 LC-MS(−) MSMS 2 HMDB0010399
LPE(16:0) C21H44NO7P 453.2855 5.65 25 0.008 0 LC-MS(+) MSMS 2 HMDB0011473
LPE(20:5) C25H42NO7P 499.2699 5.08 179 2.80 × 10−6 0 LC-MS(+) MSMS 2 HMDB0011489

LPE(20:5) C25H42NO7P 499.2699 5.16 55 0.001 0 LC-MS(+)
LC-MS(−) MSMS 2 HMDB0011489

LPE(22:6) C27H44NO7P 525.2855 5.37 28 0.001 0 LC-MS(+) MSMS 2 HMDB0011526
LPE(22:6) C27H44NO7P 525.2855 5.45 39 0.0005 0 LC-MS(+) MSMS 2 HMDB0011496

LPE(P-16:0) C21H44NO6P 437.2906 5.83 36 0.002 0 LC-MS(+) DB 3 HMDB0011152
LPI(16:1) C25H47O12P 570.2805 5.51 97 2.63 × 10−3 1 LC-MS(−) MSMS 2
LPS(18:0) C24H48NO9P 525.3066 6.71 104 9.62 × 10−6 2 LC-MS(−) MSMS 2
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Table 1. Cont.

Compound Formula Mass (Da) RT (Min) % Change p-Value p(corr) VIP Mass Error
(ppm)

Analytical
Platform

Identification
Source

Confidence
Level HMDB Code

PC(32:0) C40H80NO8P 733.5622 10.47 51 3.91 × 10−7 2 LC-MS(+) DB 3 HMDB0007871
PC(38:2) C46H88NO8P 813.6247 11.94 39 0.0004 0 LC-MS(+) MSMS 2 HMDB0007987
PC(38:5) C46H82NO8P 807.5778 9.82 −28 5.05 × 10−5 2 LC-MS(+) MSMS 2 HMDB0008156

PE(34:2) PE(O-34:3) C39H74NO7P 699.5203 10.25 −33 0.001 1 LC-MS(+) MSMS 2 HMDB0011343
PE(38:6) C43H74NO8P 763.5151 9.31 −31 0.0087 1 LC-MS(+) MSMS 2 HMDB0009294
PG(20:2) C26H49O9P 536.3114 7.41 −58 3.44 × 10−11 0.59 2.33 4 LC-MS(−) DB 3
PG(28:0) C34H67O10P 666.4471 7.64 115 8.69 × 10−15 −0.61 2.75 5 LC-MS(+) DB 3 HMDB0116681
PS(39:5) C45H78NO10P 823.5363 10.46 25 1.60 × 10−7 5 LC-MS(+) DB 3

Hydroxy acids and derivatives

3-Hydroxydodecanedioic
acid C12H22O5 246.1467 2.79 Presented in

cancer group 2.42 × 10−6 −0.68 2.97 0 LC-MS(−) MSMS 2 HMDB0000413

3-Hydroxydodecanoic acid C12H24O3 216.1725 4.62 Presented in
cancer group 2.32 × 10−11 −0.72 2.79 2 LC-MS(−) MSMS 2 HMDB0000387

Imidazoles

Methylimidazole C4H6N2 82.0538 11.48 64 6.41 × 10−6 9 CE-MS DB 3
Urocanate Nicotinamide

N-oxide C6H6N2O2 138.0435 11.02 24 0.001 4 CE-MS DB 3 HMDB0034174
HMDB0002730

Imidazopyrimidines/Purines and purine derivatives

Hypoxanthine C5H4N4O 136.0402 14.19 −34 8.20 × 10−6 13 CE-MS DB 2 HMDB0000157

Indoles and derivatives

3-Indoleacetic acid C10H9NO2 175.0633 17.94 131 2.62 × 10−7 - GC-MS Fiehn 2 HMDB0000197
5-Hydroxyindole C8H7NO 133.0527 0.76 37 3.82 × 10−2 1 LC-MS(−) DB 3 HMDB0059805

5-Hydroxyindoleacetaldehyde C10H9NO2 175.0633 2.51 150 2.63 × 10−5 −0.51 2.55 1 LC-MS(+) MSMS 2 HMDB0004073

5-Hydroxyindoleacetic acid C10H9NO3 191.0582 0.80 Presented in
cancer group 3.28 × 10−8 0 LC-MS(+) MSMS 2 HMDB0000763

Lactones

N-(4-Coumaroyl)-
homoserine

lactone
C13H13NO4 247.0845 1.34 55 0.0006 2 LC-MS(+) DB 3

Organic acids and derivatives

(Homo)2-aconitate* C8H10O6 202.0477 0.26 −75 7.87 × 10−59 0.84 2.98 11 LC-MS(−) DB 3
Lactic acid C3H6O3 90.0317 6.06 −77 4.72 × 10−36 −0.92 2.58 - GC-MS Fiehn 2 HMDB0001311

Pyruvic acid C3H4O3 88.0160 5.89 −58 1.06 × 10−14 −0.69 1.78 - GC-MS Fiehn 2 HMDB0000243
Succinylacetoacetate * C8H10O6 202.0477 0.26 −75 7.87 × 10−59 0.84 2.98 11 LC-MS(−) DB 3 HMDB0240258
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Table 1. Cont.

Compound Formula Mass (Da) RT (Min) % Change p-Value p(corr) VIP Mass Error
(ppm)

Analytical
Platform

Identification
Source

Confidence
Level HMDB Code

Organic sulfuric acids and derivatives

Indoxylsulfuric acid C8H7NO4S 213.0095 1.00 42 3.47 × 10−2 1 LC-MS(−) MSMS 2 HMDB0000682
p-Phenolsulfonic acid C6H6O4S 173.9986 0.65 174 3.45 × 10−3 1 LC-MS(−) MSMS 2 HMDB0060015

Organonitrogen compounds

Phosphocholine C5H14NO4P 183.0660 5.37 32 0.003 1 LC-MS(+) MSMS 2

Organooxygen compounds

4-
Hydroxycyclohexylcarboxylic

acid
C7H12O3 144.0786 0.76 789 5.08 × 10−10 −0.71 2.99 1 LC-MS(−) DB 3 HMDB0001988

Acetyl-N-formyl-5-
methoxykynurenamine

(AFMK) *
C13H16N2O4 264.1110 1.34 46 0.0268 2 LC-MS(−) DB 3 HMDB0004259

Phenols

4-Methylcatechol C7H8O2 124.0524 1.23 −43 1.68 × 10−2 2 LC-MS(−) DB 3 HMDB0000873

Prenol lipids

Retinol C20H30O 286.2296 7.04 34 0.0003 2 LC-MS(+) MSMS 2 HMDB0000305

Purine nucleosides

1-Methyladenosine C11H15N5O4 281.1132 12.49 41 3.68 × 10−16 −0.58 1.20 3 CE-MS DB 2 HMDB0003331

Pyridines and derivatives

Norcotinine C9H10N2O 162.0790 11.48 34 0.0039 2 CE-MS DB 3 HMDB0001297
Piperideine C5H9N 83.0739 13.77 28 0.0239 5 CE-MS DB 3
Serotonine C10H12N2O 176.0954 11.40 228 0.0007 3 CE-MS DB 2 HMDB0001046

Quinolines and derivatives

8-Hydroxycarteolol C16H24N2O4 308.1732 13.90 −31 0.0246 1 CE-MS DB 3 HMDB0060990
Quinoline C9H7N 129.0578 2.51 99 0.0008 1 LC-MS(+) DB 3 HMDB0033731

Sphingolipids

Cer(35:0) C35H69NO3 551.5277 11.39 58 4.24 × 10−8 3 LC-MS(−) DB 3
Cer(36:1) C36H71NO3 565.5434 11.74 42 0.0003 1 LC-MS(+) DB 3 HMDB0004950
SM(36:0) C41H85N2O6P 732.6145 10.14 41 0.0014 1 LC-MS(+) MSMS 2 HMDB0012087

Sphingosine-1-phosphate C18H38NO5P 379.2488 5.02 −30 2.17 × 10−8 0.50 2.06 0 LC-MS(+) MSMS 2 HMDB0000277
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Table 1. Cont.

Compound Formula Mass (Da) RT (Min) % Change p-Value p(corr) VIP Mass Error
(ppm)

Analytical
Platform

Identification
Source

Confidence
Level HMDB Code

Steroids and steroid derivatives

12a-Hydroxy-3-
oxocholadienic

acid
C24H34O4 386.2457 4.27 144 3.66 × 10−6 −0.54 2.12 0 LC-MS(−) MSMS 2 HMDB0000385

Biliverdin C33H34N4O6 582.2478 4.73 300 1.47 × 10−16 −0.72 2.62 0 LC-MS(−) DB 3 HMDB0001008
Hydroxy-3-oxo-4-

cholestenoate C27H42O4 430.3083 5.53 54 2.78 × 10−6 LC-MS(+)
LC-MS(−) MSMS 2

Calcitroic acid C23H34O4 374.2457 7.39 84 6.25 × 10−11 −0.54 1.76 6 LC-MS(−) DB 3 HMDB0006472
Chenodeoxycholic acid

3-glucuronide * C30H48O10 568.3248 4.33 94 2.10 × 10−3 1 LC-MS(−) DB 3

Cholestane-3,7,12,24,25-
pentol C27H48O5 452.3501 7.77 −56 3.81 × 10−10 0.56 2.03 2 LC-MS(−) DB 3 HMDB0000483

Cholestane-3,7,12,25-tetrol-
3-glucuronide C33H56O10 612.3873 4.71 97 4.89 × 10−5 0 LC-MS(−) DB 3 HMDB0010355

Cortisone acetate C23H30O6 402.2042 3.86 63 5.89 × 10−4 9 LC-MS(−) DB 3 HMDB0015459
Dehydroepiandrosterone

3-glucuronide
Dehydroisoandrosterone

3-glucuronide

C25H36O8 464.2410 3.91 −51 1.01 × 10−5 2 LC-MS(−) DB 3 HMDB0010348
HMDB0010327

Deoxycholic acid
3-glucuronide * C30H48O10 568.3248 4.33 94 2.10 × 10−3 1 LC-MS(−) DB 3 HMDB0002596

ecdysone
25-O-D-glucopyranoside C33H54O11 626.3666 4.41 88 1.02 × 10−4 1 LC-MS(−) DB 3

Pregnanediol C21H36O2 320.2715 6.35 −51 4.21 × 10−5 0 LC-MS(−) DB 3 HMDB0004025
Pregnanolone sulfate C21H34O5S 398.2127 3.64 55 5.27 × 10−3 0 LC-MS(−) DB 3 HMDB0240591
Ursodeoxycholic acid C24H40O4 392.2927 4.34 188 3.93 × 10−2 −0.51 2.35 1 LC-MS(−) MSMS 2 HMDB0000946
Ursodeoxycholic acid

3-sulfate C24H40O7S 472.2494 3.75 130 4.38 × 10−3 −0.54 2.36 1 LC-MS(−) DB 3 HMDB0002642

Sterol lipids

24-Hydroxygeminivitamin
D3 C32H54O5 518.3971 6.79 −37 2.82 × 10−7 1 LC-MS(+) DB 3

Tetrapyrroles and derivatives

Bilirubin C33H36N4O6 584.2635 3.85 674 3.79 × 10−8 −0.68 2.63 4 LC-MS(−)
LC-MS(+) MSMS 2 HMDB0000054
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Next, to determine which molecules were directly related to NETs independent of
other clinical factors, we performed a logistic regression model (LRM) for each selected
metabolite adjusted for gender, age, glycemia, creatinine levels and selected concomitant
drugs as potential confounding variables before the inclusion in the model (Table S3).
Only up to two significant drug associations (p < 0.05) were included in the LRM of each
metabolite in order to avoid overfitting due to excessive explicative features. Out of
the 49 metabolites assessed, only one metabolite, suberyl-glycine, was not significantly
contributing to explain the classification output in its model (Table S4), indicating a poorer
diagnostic ability. Thus, 48 metabolites were significantly contributing to explain the
classification model (NET vs. non-cancer patients), independent of other confounding
factors. The unsupervised heatmap cluster plot of these 48 metabolites clearly discriminated
two clusters, one gathered all NET patients and the other one all the non-cancer individuals
(Figure 2).

Figure 2. Metabolite biomarker candidates show high diagnostic potential of NET patients. Unsupervised hierarchical
heatmap of differential plasmatic metabolites (n = 48) between NET (n = 77) and non-cancer (n = 68) patients. All samples
are shown in columns and metabolites in rows. Hierarchical clustering was performed on rows and columns using One
minus Pearson correlation metric and average as linkage method. Individual values were coded as colors, ranging from
blue (row minimum) to red (row maximum). This analysis clearly discriminated two clusters, one encompassing all NET
patients and the other one all non-oncologic control patients.

Finally, to validate the identity, differential expression and biomarker potential of
these 48 metabolites, we performed a targeted metabolomic analysis (LC- QQQ-MS) of
13 selected metabolites based on their nature, stability and ability to be analyzed and
quantified (Table S5), as described in Material and Methods.

Arginine, 1-methyladenosine, biliverdin, 5-hidroxyindolacetic acid, linoleoylcarnitine,
oleoylcarnitine, sphingosine-1-phosphate, 15-hidroxyeicosatetraenoic acid, ursodeoxy-
cholic acid and ursodeoxycholic acid 3-sulfate identities were confirmed as potential
diagnostic biomarkers of NETs, while bilirubin, 3-hidroxydodecanodioic acid and 3-
hidroxydodecanoic were not (Table S6), probably due to their instability. Distribution
of plasma abundance and ROC curves of the validated metabolites with diagnostic poten-
tial in NETs and non-cancer patients were showed in Figure 3.
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Figure 3. (A) Plasma abundance of the 10 validated metabolites with diagnostic potential in NETs. Violin plots and non-
parametric Mann-Whitney U test were performed to assess the abundance and distribution of the 10 validated metabolites
in NET patients (n = 77) and non-cancer individuals (n = 68). Log plasma values in NET patients are shown in green whereas
non-cancer individuals are plotted in grey. Continuous lines correspond to the median values whereas dashed lines relate to
quartiles Overall, all the validated metabolites showed significant differences (****; p < 0.0001) between NET and non-cancer
individuals. (B) Receiver operating characteristic (ROC) curves of the 10 validated metabolites with biomarker potential
in NETs. The curves were built based on the area under the curve (AUC) analysis of patients (n = 77) and non-cancer
individuals (n = 68). The optimal cut-off points were selected according to the maximization of the Youden Index. Overall,
all the validated metabolites showed high biomarker potential with AUC > 0.75.
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2.3. Biochemical and Functional Nature of Identified Metabolites in NET Patients

To better understand the molecular nature of metabolites involved in NETs we clas-
sified the 155 differential metabolites according to their biochemical class. The main
predominant categories identified were amino acids, peptides and their derivatives (27.7%),
fatty acids (16.1%), glycerophopholipids (14.2%), steroids and derivatives (9.7%) and carbo-
hydrates and their conjugates (3.9%) (Figure 4A). Seventy-two percent of all differential
metabolites were upregulated in NET patients. The proportion of up- or downregulated
metabolites by biochemical class is summarized in Figure 4B.

Figure 4. Biochemical classification of differential plasma metabolites in NET patients. (A) Pie chart
showing the percentage distribution of biochemical classes of differential and annotated plasmatic
metabolites (n = 155) in NETs (n = 77) vs. non-cancer (n = 68) individuals. Metabolites were classified
into 28 classes according to their biochemical nature. This analysis revealed amino acids, peptides
and analogues (n = 43; 27.74%), fatty acyls (n = 26; 16.13%), glycerophospholipids (n = 22; 14.19%),
steroids and steroid derivatives (n = 16; 9.68%), and carbohydrates and carbohydrate conjugates (n = 6;
3.87%) as the most represented biochemical classes. (B) Bar chart summarizing the percentage of up-
and downregulated plasmatic metabolites in the main biochemical classes found to be biologically
relevant in NET (n = 77) vs. non-cancer (n = 68) individuals. Overall, upregulation (72%) prevailed
over downregulation (28%) in our metabolite set (n =155). This upregulated vs. downregulated
metabolite trend remained constant for all main biochemical classes: amino acids, peptides and
analogues (65% vs. 35%), fatty acyls (72% vs. 28%), glycerophospholipids (77% vs. 23%), steroids
and steroid derivatives (80% vs. 20%), and carbohydrates and carbohydrate conjugates (100%).



Cancers 2021, 13, 2634 15 of 24

Interestingly, the main predominant categories of lipids following the official classifi-
cation [24] were glycerophospholipids, fatty acids and sterols. Glycerophospholipids repre-
sent the largest class of lipids found to be altered. Lyso forms were increased in contrast to
glycerophosphocolines and glycerophosphoethanolamines which were downregulated.
Oxidized lysoglycerophospholipids (oxLPCs) were found with increased abundances in
the NET group, and there are very few studies to date where oxLPCs have been measured.
Fatty acids and their derivatives account for about 30% of the measured lipids, and it is
easily noticed that there was an overall decrease in carnitine levels. In addition to that,
we have been able to identify increased levels of oxidized derivatives of arachidonic acid
(HETE) [25]. Other predominant group, sterols, consisted mainly of bile acids and had a
high content in the NET group.

NET patients also presented higher levels of sugars and citric acid and lower lev-
els of lactic and pyruvic acid, which are key metabolites in glycolysis and the tricar-
boxylic acid cycle (TCA)). A remarkable increase in serotonin and its principal metabolite,
5-hydroxyindoleacetic acid, was also detected in the NET cohort, a hormone secreted in
excess in patients with carcinoid syndrome.

2.4. Differential Metabolites in NET Patients Are Related with Molecular Pathways Associated
with Cancer

Considering the functional relevance of the selected metabolites documented in the
literature, we found several enriched pathways related to oncogenesis, some specifi-
cally involved in NET development, such as angiogenesis, mTOR pathway, tryptophan
metabolism, Warburg effect, oxidative stress, and urea cycle, among others (Figure S5A).
The proportion of metabolites up- or downregulated by the pathway is summarized in
Figure S5B.

Pathway analysis of the 155 differential metabolites identified several molecular
dysregulated pathways in NETs. Metabolite Pathway Analysis (MPA) showed that arginine
biosynthesis, arginine and proline metabolism, animoacyl-tRNA biosynthesis, citrate cycle
and pyruvate, glutathione, glyoxylate, dicarboxylate, alanine, aspartate and glutamate
metabolisms were the most commonly dysregulated pathways in NET patients (Figure 5A
and Table S7). Moreover, Metabolite Set Enrichment Analysis (MSEA), where we used
different sets of metabolites from MPA, suggested that tryptophan metabolism and urea
cycle, among others, were also dysregulated in NETs (Figure 5B and Table S8).

MPA and MSEA performed with the 48 metabolites with greater diagnostic poten-
tial confirmed arginine biosynthesis, arginine and proline metabolism, amimoacyl-tRNA
biosynthesis, citrate cycle, pyruvate and glutathione metabolism, and urea cycle were the
most relevant dysregulated pathways in NET patients (Figure S4, Tables S9 and S10).



Cancers 2021, 13, 2634 16 of 24

Figure 5. Pathway analysis of differential plasma metabolites in NET patients. (A) Metabolite Pathway Analysis (MPA)
representing the significant enriched pathways (FDR < 0.05) by availability of selected metabolites (n = 155) in plasma of
NET patients. The x-axis indicates the impact of matched metabolites of our dataset on the pathway from the topology
analysis. The -log(pval) is plotted in the y axis and shows to which extent the pathway is enriched. Circle size represents the
impact factor of matched metabolites in the pathway, and circle color indicates the pathway enrichment significance. The
most enriched pathways among the 32 significant ones were: arginine biosynthesis (FDR: 1.0143 × 10−48); alanine, aspartate
and glutamate metabolism (FDR: 2.2363 × 10−47); arginine and proline metabolism (FDR: 6.3629 × 10−43); glyoxylate
and dicarboxylate metabolism (FDR: 1.8621 × 10−38); glutathione metabolism (FDR: 2.8086 × 10−38); aminoacyl-tRNA
biosynthesis (FDR: 1.1784 × 10−37); pyruvate metabolism (FDR: 5.0802 × 10−34) and citrate cycle (FDR: 1.0634 × 10−32).
(B) MSEA of differential plasma metabolites in NET patients. X-axis represents the fold enrichment of each metabolite set
and the colour of the bars indicates the raw p-value. Thirty-four metabolite sets were significantly enriched (FDR < 0.05).
Aspartate metabolism (Q = 28.809), arginine and proline metabolism (Q = 38.272), urea cycle (Q = 40.438), glycolysis
(Q = 31.619) and glucose and alanine cycle (Q = 31.619) were the most significantly enriched metabolite sets.

3. Discussion

Our study provides, for the first time, a comprehensive metabolomic profile of NETs,
assessed by multiplatform untargeted metabolomic profiling of plasma samples in a large
cohort of patients with advanced disease, and identifies a distinctive metabolic signature of
potential clinical use. The integration of metabolic data acquired by GC, CE and LC coupled
to MS identified 155 differential compounds between NETs and non-cancer patients. ROC
and OPLS-DA analysis revealed 49 specific metabolites of diagnostic potential, 48 of which
significantly contributed to the model after adjustment for other potential confounding
variables such as gender, age, glycemia, creatinine levels and concomitant drug therapy.
The unsupervised heatmap cluster plot of these 48 metabolites clearly identified two
distinct clusters, one encompassing all NET patients and the other one all non-cancer
individuals. Although biochemical assessment of several peptides is currently used in the
clinic for the diagnosis and follow-up of NET patients, the use of general tumor markers
such as chromogranin A (CgA) or neuron-specific enolase (NSE) is not recommended for
screening nor are they sufficiently reliable as sole diagnostic procedures as they may be
increased in several other oncological and non-oncological conditions [26]. In this context,
the high diagnostic accuracy of the identified metabolites in our study may provide very
valuable new tools to improve the specific detection of NETs.

Differential metabolites identified were related with classical cancer pathways (apop-
tosis, cell cycle) and NET signaling (tryptophan metabolism, angiogenesis or the mTOR
pathway). In addition, we identified 32 novel enriched metabolic pathways in NETs re-
lated with the TCA cycle, and with arginine, pyruvate or glutathione metabolism, which
have distinct implications in oncogenesis. To date, only two small studies have partially
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explored the metabolomic profile of NET patients, but none of them using plasma samples
as main source of metabolic analysis. Kinross et al. conducted a prospective pilot study
that analyzed urine samples of 28 gastroenteropancreatic NETs by 1H-NMR spectroscopic
profiling. Distinct metabolomic phenotypes were identified by primary tumor site (small
bowel versus pancreatic NEN) and function, and they also observed that variations in hip-
purate metabolism strongly contributed to the class description. This study had, however,
important limitations such as the limited sample size, the substantial age gap between
control and tumor populations, and the lack of control of other potential confounding
variables such as gender, renal function or concomitant drug therapy [22]. More recently,
Imperiale et al. assessed the metabolomic fingerprint of 46 small intestinal NET primary
tumors and 18 liver NET metastases by 1H-NMR spectroscopy, as compared to 30 normal
small intestine and liver samples, and results suggested alterations in crucial metabolic
pathways such as the tricarboxylic acid cycle (TCA cycle). Our study also shows an increase
in the TCA cycle activity, reflected by the high availability of isocitrate/citrate compounds
in the plasma of NET patients (+64%). Moreover, high levels of glucose (+174%), glutamine
(+69%) and fatty acids, which fuel the TCA cycle further support the hypothesis of TCA
upregulation in NETs. Studies conducted in other hormone-dependent tumors, such as
prostate cancer, emphasize the relevance of altered intermediary metabolism in malig-
nant transformation. More specifically, the metabolic transformation of citrate-producing
normal cells to citrate-oxidizing malignant cells has been implicated in oncogenesis. Cit-
rate oxidation in the TCA cycle to produce ATP has important implications on cellular
bioenergetics, cell growth, apoptosis, lipogenesis and angiogenesis [27]. The TCA cycle
is a convergence point in the cellular respiration machinery, strictly regulated to fulfill
cell bioenergetics, biosynthetic and redox balance requirements. Although several tumors
types are characterized by a marked deregulation of TCA enzymes [28], its involvement in
cancer metabolism remains incompletely understood.

The presence of high levels of isocitrate/citrate in plasma of NET patients could
also derive from exported citrate from the mitochondrial pool to be used for lipogene-
sis [29]. Our data show a characteristic lipidome in NET patients, mainly represented
by the enrichment of glycerophospholipids, fatty acids and sterols. More specifically,
oxidized lysoglycerophospholipids (oxLPCs) were found with increased abundances in
NETs indicating a strong oxidative stress in these tumors, as well as high levels of oxidized
derivatives of arachidonic acid (HETE), and a major decrease in carnitine levels [25]. L-
carnitine is an essential metabolite, critical for the bidirectional transport of long-chain fatty
acyl and the acyl coenzyme A between the cytosol and the mitochondria, which has been
considered a bottleneck in the metabolism control of cancer cells [30,31]. Recent reports
suggest that the carnitine system is essential for the metabolic adaptation of cancer cells,
which obtain energy from beta-oxidation of lipids. Thus, low levels of carnitine in plasma
of NET patients may be related to the active carnitine system in tumor mitochondria and
the upregulation of beta-oxidation pathways.

Arachidonic acid (AA) is a polyunsaturated fatty acid, which is subsequently metabo-
lized through three different enzymatic pathways (cyclooxygenase (COX), lipoxygenase
(LOX) and cytochrome (CYP) P450) leading to a wide variety of lipid mediators (HETE)
involved in multiple physiological and pathophysiological processes [32]. In addition to
high levels of AA in plasma of NET patients, we have also found an important increase of
eicosanoids derivatives, intimately related to inflammatory responses [32].

Tumor progression is also dependent on cholesterol metabolism as proliferating cells
increase cholesterol uptake. Cancer cells adapt the high requirements of intracellular choles-
terol through different mechanisms including the endogenous production of cholesterol
and fatty acids, a reduction of their efflux through transporters or an increase in the uptake
of low-density lipid particles [33]. Plasma of NET patients show high content of sterols,
mainly bile acids, and cholesterol derivatives such as vitamin D, biliverdin and bilirubin,
suggesting the dependency of NETs on lipid and sterol metabolism.
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Vascularization and angiogenesis have a particular relevance in NET development and
progression [34], and several differential metabolites identified in our study may contribute
to the angiogenesis switch. For example, arginine was found to be upregulated in NETs
and is the main source of nitric oxide. NO exhibits both anti- and pro-tumoral effects, and
is deeply involved in the regulation of angiogenesis, apoptosis, cell cycle, invasion and
metastasis [35]. Similarly, lysophosphatidic acid, HETEs or biliverdin induce angiogenesis
by upregulation of VEGFA, VEGFC, IL-1β and IL-8 [36–38]. Overall, these findings further
support the relevant role that angiogenesis plays in the pathogenesis of NETs.

The mTOR pathway is also critical in NETs [39]. In fact, an mTOR inhibitor, everolimus,
has demonstrated antiproliferative activity in these neoplasms and is approved for the
treatment of advanced gastrointestinal, pancreatic and lung NETs [40,41]. In our study,
we detected very high plasma levels of arginine (+243%) and glutamine (+69%) in NET
patients, which are, together with leucine, stimulators of mTOR via the regulation complex.
Moreover, an increased abundance of phosphatidylcholine (+51% PC(32:0), +39% PC(38:2)
and −28% PC(38:5)) was also observed, the synthesis of which is promoted by mTORC1.
Interestingly, the mTOR pathway has been associated with cancer through its role in the
regulation of polyamine dynamics [42]. Polyamine levels are associated with a reduction of
apoptosis and an increase of cancer cell proliferation and expression of metastasis-related
genes, although the mechanisms underlying these effects have not been well defined [43].
Of note, we detected a 38% increase in the acetylspermidine polyamine, illustrating the
relevance of polyamines metabolism inNETs. Recently, Chalishazar et al. observed that
MYC-driven small-cell lung cancer (SCLC) preferentially depends on arginine-regulated
pathways, including polyamine biosynthesis and mTOR pathway activation [44]. ASS1,
which indirectly produces arginine in the urea cycle, is often decreased or even abolished
through epigenetic silencing in many cancers, including SCLC. Moreover, ASS1 knock-
down results in increased mTOR activity and in arginine auxotrophy. Thus, arginine
deprivation could be a promising therapeutic strategy for cancers that depend on arginine
for their survival [3]. Finally, we also found abundance differences in hypoxanthine. Low
levels of hypoxanthine both in urine and plasma samples are often observed in cancer
patients, especially in patients with advanced disease stages [45], as hyperproliferative
tissues require increased DNA synthesis. Accordingly, we observed a 34% decrease of
hypoxanthine abundance in the plasma of NET patients. The underlying mechanism of hy-
poxanthine downregulation in NET patients is unclear, but it is plausible that alterations in
purine metabolism may occur during tumor progression. Consistent with this hypothesis,
an inverse correlation was found in our study between hypoxanthine plasma levels and
the tumor proliferative rate or Ki-67 index (r2 = −0.243, p = 0.033).

One of the strengths of our study is that it was performed in plasma samples of a
large and homogeneous population, uniformly and prospectively collected and analyzed.
Moreover, a set of metabolites was validated in a target analysis with a different analytical
platform in the same cohort. Nevertheless, results shall be further investigated in an
independent NET patient cohort and metabolomic profiling of patients with exocrine
tumors of similar tissue origin (lung and gastrointestinal carcinomas) would be very helpful
to validate the specific metabolomic profile of NETs and to confirm the diagnostic potential
of the metabolic signature identified. Moreover, complementary -omic approaches, such as
exome, transcriptome or methylome of these patients, are needed to further understand
the underlying mechanisms in NET development and progression. In particular, the
metabolomic profile could be combined with complementary analytical approaches in
plasma such as cell-free nucleic acids profiling that might be particularly useful for early
diagnostics and patient stratification for personalized clinical management. Plasma -omic
profiling has the additional advantage of providing a dynamic characterization of disease
biology, which could be eventually utilized, beyond accompanying diagnostics, for targeted
prevention or screening, individualized treatment strategies, therapeutic monitoring and
prediction of patient’s outcome.
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4. Material and Methods
4.1. Study Population

The study population included patients with advanced, well-differentiated NETs
of lung or gastrointestinal origin. Main clinical and pathological features of the study
population are summarized in Table S1. Blood samples were obtained for metabolomic
analysis from 77 NET patients and 68 non-cancer individuals as the control group. The
distribution of gender, age and body mass index (BMI) was similar in the NET and non-
cancer cohorts (Table S11). Peripheral blood was collected in sodium EDTA tubes according
to standard procedures and fractionated at 3000 rpm for 5 min. Plasma layer was recovered
in sterile cryotubes, frozen and stored until use at −80 ◦C. The study protocol was approved
by the institutional ethics committee and all patients provided informed consent prior to
study entry.

4.2. Multiplatform Metabolic Fingerprinting

A multiplatform non-targeted metabolomics approach was performed to provide
a wide coverage of the metabolome under study. Samples were analyzed according to
standard protocols through different separation techniques coupled to mass spectrometry:
capillary electrophoresis 7100 coupled to a MS with time-of-flight analyzer, TOF-MS 6224
(Agilent Technologies, Santa Clara, CA, USA) (CE−MS), HPLC system 1290 Infinity II cou-
pled with 6545 QTOF MS detector (Agilent Technologies, Santa Clara, CA, USA) (LC−MS)
and GC system 7890A coupled to a mass spectrometer 5975C (Agilent Technologies, Santa
Clara, CA, USA) (GC−MS) [46–48] (see File S1).

4.2.1. Data Processing

The raw data obtained by CE−MS were processed with MassHunter Profinder soft-
ware version B.08.00, applying the Molecular Feature Extraction (MFE) and Find by Ion
(FbI) function by Recursive Feature Extraction (RFE). For LC−MS, the raw data were repro-
cessed by the MFE with MassHunter Qualitative (B.06.00, Agilent Software, Santa Clara,
USA) and DA Reprocessor Offline Utilities B.05.00 (Agilent) and Mass Profiler Professional
software (B.14.9 Agilent Software, Santa Clara, USA) to find coeluting adducts and aligned
and filtered the data. Raw data files from GC−MS analysis were converted to the appropri-
ate format for quantitative analysis through MassHunter Workstation GC−MS Translator
(B.04.01) and deconvolution was carried out through Agilent MassHunter Unknowns
Analysis Tool 7.0. For more specific details, see File S1.

4.2.2. Statistical Analysis

After correction (see File S1), the data underwent a Quality Assurance procedure, data
normality for every platform was assessed by Kolmogorov−Smirnov and Shapiro−Wilk
tests and Levene’s test was used to test for variance ratio. To determine the statistical
significance of each metabolite separately, differences between non-cancer individuals and
NET cases were evaluated by applying Student’s t-test (p ≤ 0.05) using MATLAB (R2015a,
MathWorks, Natick, MA, USA). Benjamini−Hochberg multiple post-correction method
was applied to all p-values to control the false positive rate at level α = 0.05.

Multivariate analysis (MVA) was performed in SIMCA 15.0 (Sartorius Stedim Biotech)
OPLS-DA model built was used to assess the S-plot and, for variable selection, volcano
plots of variable importance in projection (VIP) score and p(corr) [49]. For more specific
details, see Supplementary Material and Methods.

4.2.3. Annotation and Compound Identification

An initial annotation of features from LC−MS and CE−MS based on the m/z of the
compounds showing significant differences in class separation was performed by CEU
Mass Mediator tool [50] (see File S1).

To confirm the annotation of the compounds, LC−MS/MS analysis was carried out by
data independent analysis (DIA) and the identification of each metabolite was achieved by



Cancers 2021, 13, 2634 20 of 24

manual MS/MS spectra interpretation. Some CE−MS annotations could also be confirmed
through in-source fragmentation obtained at high fragmentor voltage (200 V) [51] (see File S1).

4.2.4. Targeted Analysis

Standards used and the corresponding sources are included in Table S12. Two cali-
bration curves were prepared according to the solubility of the standards. An aqueous
mixture containing arginine, 1-methyladenosine, biliverdin and bilirubin was diluted to
6 different concentration levels (ca. 1 ng/mL to 1 µg/mL) and another mixture containing
5-hydroxyindoleacetic acid, 3-hydroxydodecanedioic acid, linoleoylcarnitine, oleoylcarni-
tine, sphingosine-1-phosphate, 3-hydroxydodecanoic acid, HETE, ursodeoxycholic acid
and ursodeoxycholic acid 3-sulfate was diluted inMeOH/EtOH (1:1). Plasma samples
were prepared using the same protocol used for untargeted HPLC/MS analysis [47]. Tar-
geted analysis was performed on an Agilent 1290 Infinity UHPLC (Agilent Technologies,
Waldbronn, Germany) system coupled with an Agilent 6460 Triple Quadrupole Mass
Spectrometer with an electrospray ionization (ESI) source (HPLC QqQ MS/MS). In the
final method, chromatographic separation of compounds was achieved with a Zorbax C8
Eclipse Plus column (Agilent Technologies, 2.1 × 150 mm, 1.8 µm) thermostated at 55 ◦C.
For individual analytes, MS-related parameters were tuned by the Agilent MassHunter
Optimizer (software version B.07.00, Agilent Software, Santa Clara, USA) using authentic
standards for reference. MassHunter Optimizer automatically optimized the data acquisi-
tion parameters for MRM (multiple-reaction monitoring) mode. System control and initial
chromatogram review were performed with Agilent MassHunter Qualitative software
(version B.08.00, Agilent Software, Santa Clara, USA). Data reprocessing were carried out
using Agilent MassHunter QQQ Quantitative software program (version B.09.00, Agilent
Software, Santa Clara, USA). Metabolites were quantified according to the response factor
of the respective calibration curve.

4.3. Metabolite Classification and Pathway Analysis

The discriminant metabolites summarized in Table 1 were classified by biochemical
classes and by their relationship with specific molecular pathways (apoptosis, cell cycle,
angiogenesis, mTOR pathway, Warburg effect, oxidative stress, tryptophan metabolism,
collagen metabolism, carnitine metabolism, methionine cycle, arachidonic acid metabolism,
urea cycle, polyamines, and heme metabolism). In order to refine the identification of
aberrant molecular pathways in NET patients we analysed our data by Metabolite Pathway
Analysis (MPA) and Metabolite Set Enrichment Analysis (MSEA) using MetaboAnalyst
4.0 platform (http://www.metaboanalyst.ca/, accessed on 8 December 2020) [52]. The
databases of reference employed were KEGG homo sapiens (Oct 2019) and SMPD [53,54].

4.4. Clinical and Molecular Data Analysis

In order to evaluate the diagnostic potential of metabolites, Receiver Operating Char-
acteristic (ROC) curves and Area Under the Curve (AUCs) were assessed, and sensitivity
and specificity values were calculated (according to Youden Index) [55]. Associations with
relevant clinical features (age, gender, BMI, glycemia and creatinine plasma levels) and
common concomitant medications selected by their putative influence in metabolomics
(Table S13) were assessed in metabolites with AUC > 0.85, using Fisher’s exact test, chi-
squared test or Pearson correlation, as appropriate (p < 0.05 were considered significant).
Next, logistic regression models were built for each metabolite adjusting for age, gen-
der, glycemia, creatinine plasma levels and significant patient medication selected from
association analysis. Metabolites with AUC > 0.85 were considered as potential biomark-
ers. Additionally, differential metabolites from OPLS-DA models with VIP >1.0 and
|p(corr)| > 0.5 were also considered as potential biomarkers.

http://www.metaboanalyst.ca/
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4.5. Heatmap and Hierarchical Clustering

Heatmaps were conducted with the log10 value of each metabolite levels in plasma
samples. Unsupervised hierarchical clustering was performed for metabolites and patients
using Pearson correlation and average as linkage method. Both were conducted using
the Morpheus Software (Broad Institute; https://software.broadinstitute.org/morpheus,
accessed on 18 December 2020).

5. Conclusions

In conclusion, untargeted plasma metabolomic profiling of NET patients, that inte-
grated metabolic data acquired by GC, CE and LC in both polarity modes coupled to MS,
has identified a distinct metabolic signature of potential clinical use. Indeed, our study has
identified and validated a reduced set of metabolites of high diagnostic accuracy that may
improve the specific detection of NETs. Differential metabolites were related with classical
cancer pathways (apoptosis, cell cycle) and NET signaling (tryptophan metabolism, an-
giogenesis, mTOR). In addition, MPA/MSEA analysis of these metabolites has revealed
new enriched metabolic pathways in NETs, related with the TCA cycle and with arginine,
pyruvate or glutathione metabolism, which have distinct implications in oncogenesis and
may open innovative avenues of clinical research, including the identification of potential
novel targets for therapy. This is to our knowledge the most comprehensive metabolic
profiling study performed to date in NETs and provides very valuable information to
develop useful biomarkers for the management of these patients in clinical practice.
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390/cancers13112634/s1, Figure S1: PCA-X score plots, Figure S2: PCA-X unsupervised models,
Figure S3: NETs show a specific metabolomic profile, Figure S4: Pathway analysis of 48 metabolites
with diagnostic potential, Figure S5: Pathway classification of differential plasma metabolites in
NET patients, Table S1: Clinical, biochemical and pathological features of NET population, Table S2:
Metabolites with biomarker potential in NET patients, Table S3: Drugs as potential confounding
variables, Table S4: Logistic regression analysis of metabolites with biomarker potential in the plasma
of NET patients, Table S5: Metabolites candidates for targeted validation, Table S6: Validation of
potential diagnostic biomarkers of NETs, Table S7: Relevant metabolic pathways related to the
identified differential plasma metabolites in NET patients by Metabolite Pathway Analysis (MPA),
Table S8: Relevant metabolic pathways related to the identified differential plasma metabolites in
NET patients by Metabolite Set Enrichment Analysis (MSEA), Table S9: Relevant metabolic pathways
related to the diagnostic biomarker metabolites in NET patients by Metabolite Pathway Analysis
(MPA), Table S10: Relevant metabolic pathways related to the diagnostic biomarker metabolites in
NET patients by Metabolite Set Enrichment Analysis (MSEA), Table S11: Distribution of age, gender
and body mass index in NET patients and non-cancer individuals, Table S12: Standards and the
corresponding sources used for the targeted analysis, Table S13: Drug intake of NET and non-cancer
patients, File S1: Supplementary Materials and Methods.
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