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Abstract

Decoding transcription factor (TF) binding signals in genomic DNA is a fundamental problem. 

Here we present a prediction model called BindSpace that learns to embed DNA sequences and TF 

class/family labels into the same space. By training on binding data for hundreds of TFs and 

embedding over 1M DNA sequences, BindSpace achieves state-of-the-art multiclass binding 

prediction performance, in vitro and in vivo, and can distinguish signals of closely related TFs.

Direct measurement of genome-wide transcription factor (TF) occupancy for all expressed 

factors in a cell type of interest is generally infeasible. Therefore, computational prediction 

of TF binding to cognate sites at relevant loci – e.g. regions of accessible chromatin or active 

histone marks – is critically important. Large-scale in vitro TF binding experiments1,2,3,4,5 

provide copious data for training binding models. However, each experiment is typically 

summarized as a position-specific weight matrix (PWM), yielding near-identical PWMs for 

closely related TFs. Previous supervised methods can accurately discriminate between 

bound and unbound sequences of individual TFs6–9 but do not address the multiclass 

problem of distinguishing between TFs with similar binding signals.

Here we present BindSpace, a novel multiclass method to jointly learn binding models for 

hundreds of TFs assayed by HT-SELEX by embedding their bound/unbound DNA 

sequences and TF labels into a common high-dimensional space. We adapted an embedding 

framework called StarSpace10 from natural language processing. StarSpace learns to embed 

words into a semantic space, inducing an embedding of documents, where words with 

similar meanings embed close to each other (Methods). For multiclass problems, class labels 
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(e.g. ‘sports’, ‘politics’) are embedded in the same space, and StarSpace optimizes both 

word and label embeddings by training on labeled documents, pushing documents towards 

their true labels and away from incorrect labels. In BindSpace, k-mers are analogous to 

words and DNA sequences to documents, while TFs and TF families serve as class labels 

(Fig. 1a). BindSpace learns k-mer and label embeddings so that probes embed close to the 

labels of TFs that bind them and away from other labels (>Fig. 1b, Methods). For in vitro or 

in vivo TF binding prediction, a test DNA sequence is embedded in BindSpace and assigned 

the closest TF label. In computational biology, semantic embedding of sequences was 

previously used for remote protein homology detection11 and recently proposed for TF 

binding12.

To train BindSpace, we combined HT-SELEX binding experiments for 461 mouse and 

human TFs from previous large-scale studies5,8. We applied rigorous quality control 

(Methods) to obtain 270 experiments for 243 transcription factors for our training set, 

enabling improved performance (Supplementary Note). The top 2000 enriched probes from 

each experiment were used as positive examples, yielding over 500K positive training 

sequences. We randomly sampled universal negatives from HT-SELEX probe libraries and 

non-accessible genomic regions to obtain ~500K negative training sequences (Methods). 

Each sequence is represented as a bag of 8-mers containing up to two consecutive wild 

cards, and each bag is associated with both a TF label (e.g. HOXA2) and TF family label 

(e.g. Homeodomain) or with a universal negative label. We used two thirds of the HT-

SELEX data for training and one third for testing and performed 5-fold cross validation on 

the training data for hyperparameter tuning (Methods).

BindSpace learns a model where TFs with similar binding specificity are close to each other 

and their training examples in the embedding space, while more distinct TFs are farther 

away. Visualizing the embedding space in 2D using t-SNE (Methods) shows the clustering 

of probes with their TF labels and family labels (Fig. 2a, Supplementary Fig. 1a). The model 

also learns family substructure such as in the bZIP family (Supplementary Fig. 1b), where 

human and mouse orthologs embed close to each other (Jdp2 and JDP2, Hlf and HLF, Dbp 

and DBP), as do C/EBP TFs. To visualize the binding information encoded by TF labels, we 

embedded 10-mers in BindSpace and aligned the 10-mers nearest to each label (Methods), 

often yielding informative sequence logos (Supplementary Fig. 2). We also identified the 

200 most closely embedded 8-mers for all TF labels (Supplementary Table 1).

We first evaluated our model on held-out HT-SELEX test data and compared against FIMO 

PWM scoring using published HT-SELEX PWMs curated using a semi-automated 

algorithm5,13; no probe data was held out for estimating these PWMs, presumably giving the 

PWM-based method an advantage. Nonetheless, BindSpace significantly outperforms 

PWM-based prediction as evaluated by F1 (P < 2.94e-37, one-sided Wilcoxon signed rank 

test, Fig. 2b). BindSpace also outperforms one-versus-all LASSO classifiers, trained using 

the same 8-mer features, and DeepBind, a deep learning method trained on HT-SELEX 

data14 (P < 4.80e-27, P < 1.26e-34, respectively, Fig. 2b). To optimize performance for 

binary one-vs-all evaluation metrics like auPR and auROC that rely on accurate rankings, we 

developed BindSpace+, where we train regularized logistic classifiers on top of the 

BindSpace representation of probe data (Methods). BindSpace+ outperforms all competing 
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methods on held-out HT-SELEX data for one-vs-all prediction as evaluated by auPR (Fig. 

2b).

Additional comparisons provide insight into BindSpace’s performance advantage 

(Supplementary Fig. 3): binary trained LASSO models outperform PWMs, suggesting an 

advantage from the k-mer representation, consistent with previous studies7; one-versus-all 

LASSO classifiers outperform binary LASSO classifiers, showing an advantage from 

multiclass training; and BindSpace outperforms one-versus-all LASSO, implying that 

multiclass training by embedding is superior to standard one-versus-all. Comparing 

confusion matrices within each TF family across the prediction methods highlights the 

multiclass performance advantage of BindSpace, although some paralogs, such as the 

C/EBP subfamily, remain difficult to distinguish (Fig. 2c, Supplementary Fig. 4, 

Supplementary Note).

We next evaluated BindSpace on independent PBM data sets to confirm that we could 

distinguish TFs within the same family across in vitro platforms. We first downloaded raw 

PBM intensity data for the BAR15A data set15, identified 14 homeodomains that overlap 

with BindSpace, and predicted the binding affinity of these TFs to the top intensity probes 

from these PBM experiments using BindSpace (Methods). For 8 of the 14 TFs, the PBM 

intensity correlated best with the BindSpace model for the same TF (compared to 7/14 TFs 

for LASSO and PWMs, 6/14 TFs for DeepBind), even for paralogs such as POU3F4, 

POU4F3 and POU6F2 where DeepBind has difficulty (Supplementary Fig. 5). Additional 

analyses on homeodomains in BAR15A, ETS factors from EMBO16, POU and PRRX 

paralogs from Cell0817, and recent gcPBM data from Shen et al.9 for Ets1 and Elk1 confirm 

BindSpace’s advantage for distinguishing between PBM probe data for TFs in the same 

family compared to other methods (Supplementary Note).

BindSpace also accurately identified TF binding sites and distinguished between sites of 

related TFs in vivo. For the standard task of distinguishing TF binding sites from flanking 

sequences or dinucleotide shuffled positive sequences, we used ENCODE ChIP-seq for 39 

TFs represented in our model. BindSpace significantly outperformed PWM scoring, LASSO 

classifiers, and DeepBind for distinguishing the top 5,000 peaks from flanking regions or 

dinucleotide shuffled sequences by F1 score (Methods, Supplementary Fig. 6). BindSpace+ 

had good performance but came only in second place in ChIP-seq versus background 

sequence tasks evaluated with auROC: PWM was the winner for peaks-vs-flanks, DeepBind 

for peaks-vs-shuffled-sequences (Supplementary Fig. 6). For the more practical task of 

predicting TF binding versus non-binding at chromatin accessible regions in a given cell 

type, we processed publicly available ATAC-seq data and used ENCODE ChIP-seq data for 

17 TFs in K562 and 11 TFs in GM12878 that had sufficient overlap with ATAC-seq peaks 

(Methods). BindSpace significantly outperformed all competing methods in discriminating 

bound vs unbound ATAC-seq peaks on K562 by F1 score, and significantly outperformed 

LASSO on GM12878, while its performance advantage over PWM and DeepBind was not 

significant on this smaller number of TFs (Supplementary Fig. 6). There was no significant 

difference between methods in ranking TF-occupied ATAC-seq peaks from unoccupied 

peaks as evaluated by auPR (Supplementary Fig. 7).
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BindSpace is most noteworthy for its ability to distinguish between the binding of TFs in the 

same family in vivo. We found 115 ENCODE ChIP-seq experiments for TFs represented in 

BindSpace, including 20 pairs of high quality experiments for paralogous TFs assayed in the 

same cell type (Methods). For each pair of paralogs TF1 and TF2, we took only peaks 

unique to TF1 or TF2 and required each method to predict whether the peak was bound by 

TF1, TF2, or neither. BindSpace outperformed all other methods by F1 score, and 

BindSpace+ outperformed PWM and DeepBind while tying LASSO when evaluated by 

auROC (Fig. 3a). To assess multilabel prediction, we next combined all peaks for CEBPB 

and CEBPG HepG2 ChIP-seq data and annotated each peak as bound only by CEBPB, 

bound only by CEBPG, or bound by both. For each method, we compared CEBPB and 

CEBPG prediction scores across groups and indicated predicted labels by Venn diagram 

(Fig. 3b, Supplementary Fig. 8). Both BindSpace and PWMs could distinguish between the 

binding of CEBPB and CEBPG on peaks specific to one TF, but BindSpace has much less 

bias on commonly bound peaks. LASSO and DeepBind had weaker performance at this 

task, with DeepBind systematically overpredicting CEBPG binding sites. For the paralogs 

NR2F6 and NR2F1 in HepG2, BindSpace was the only method that could distinguish 

between NR2F6 and NR2F1 specific peaks (Supplementary Fig. 9).

We also performed multiclass classification on the top 10,000 ChIP-seq peaks across 

ENCODE experiments to test if we could distinguish binding of the ChIP-ed TF from TFs in 

the same family. Examining BindSpace predictions for bZIP ChIP-seq in HepG2, BindSpace 

successfully ranked the ChIP-ed TF above other family members in 5 out of 7 cases (Fig. 3c, 

Supplementary Fig. 10), compared to 3 out of 7 cases for PWM scoring and LASSO and 2 

out of 7 cases for DeepBind. We also restricted to peaks uniquely bound by a single ChIP-ed 

bZIP TF to compare BindSpace (by F1) and BindSpace+ (by one-vs-all auPR) against other 

methods for a straightforward multiclass prediction assessment. These results were 

inconclusive, giving a statistical tie with competing methods due to the small number of 

TFs, but analysis of confusion matrices again confirmed that BindSpace and BindSpace+ 

had better calibrated scores (Supplementary Fig. 11). Therefore, while other methods can 

perform well in binary prediction tasks, their predictions are not well calibrated across TFs, 

leading to confusion between TFs in the same family. While we focus here on multiclass 

evaluation, note that BindSpace can detect multiple TF binding sites within an ATAC-seq 

peak for multi-label prediction (Supplementary Fig. 12, Supplementary Note).

BindSpace is a powerful and scalable machine learning approach to leverage massive in 
vitro binding data sets to decode TF binding signals in DNA sequences. By solving the 

underlying “many-class” classification problem through a joint embedding space for 

sequences and TF class labels, BindSpace is often able to distinguish between the binding 

preferences of closely related TFs, both in vitro and in vivo. A systematic evaluation across 

diverse binding prediction tasks (Supplementary Table 2) supports BindSpace’s state-of-the-

art performance. Extensions to improve accuracy and completeness include incorporating 

longer k-mers into the vocabulary and other in vitro binding platforms in training; 

preliminary experiments point to the utility of these ideas (Supplementary Note). Finally, we 

expect that the BindSpace embedding will provide a useful feature representation on which 

to build more sophisticated models, such as deep learning models, for regulatory genomics.
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Online Methods

HT-SELEX quality control

We used public HT-SELEX data sets to train BindSpace and one-vs-all LASSO TF binding 

specificity models. We combined the HT-SELEX data sequenced in 2013 (ENA accession: 

ERP001824) and the 2017 re-sequenced libraries (ENA accession: ERP016411), which 

together include 547 experiments for 461 human or mouse TFs5,8.

To perform quality control, we computed an enrichment score for every 8mer in probes 

selected at each cycle of an experiment relative to the initial library (cycle 0), as in a 

previous study8. We first estimated the frequency of every 8-mer in cycle 0 using a fifth-

order Markov model18. Then, for cycle i, we computed the enrichment score for each 8-mer 

as the i-th root of (frequency in cycle i)/(estimated frequency in cycle 0).

For each experiment, we then performed quality control filtering based on the following 

procedure:

1. For experiments with 14bp or 20bp probes, cycle 4 was used to derive enriched 

probes.

2. For experiments with 30bp and 40bp probes, one of cycle 4, 5 or 6 was used to 

derive enriched probes, because more cycles of selection are required to enrich 

for longer probes.

3. Experiments were excluded if the Spearman correlation of 8-mer enrichment 

scores between cycle 3 and cycle 4 was below 0.8. (The correlation distribution 

between cycle 3 and cycle 4 for all experiments and examples of poorer 

correlation are shown in Supplementary Note).

4. Experiments were excluded if the selected cycle did not have good probe 

enrichment or diversity (fewer than 500 probes with frequency > 10).

5. For the remaining experiments, we removed low complexity probes with a 

DUST score < 2, where DUST is the BLAST low-complexity masking 

algorithm19. This is based on our observation that some HT-SELEX experiments 

have non-specific enrichment for low complexity sequences.

6. For remaining experiments with 14bp or 20bp probes, we selected the top 2000 

enriched probes (frequency > 10) based on enrichment score. We chose 2000 

enriched probes per TF for training based on the observation that further 

increasing the size of the training data does not improve overall multiclass 

classification performance while reducing performance for TFs with fewer 

enriched probes.

7. For remaining experiments with 30bp or 40bp probes, we counted the frequency 

of unique 20bp sequences, and selected the top 2000 enriched 20bp probes based 

on enrichment score.

8. Finally, experiments where the most frequent 8-mer in the top 2000 probes 

occurred less than 100 times were removed. This final filter is applied to remove 
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any experiments where the top probes do not enrich for any consensus binding 

sites (Supplementary Note).

After quality control, we ended up with 270 high quality experiments covering 243 TFs. 143 

of these experiments overlapped with those selected by quality control in a previous study8. 

To show that our filtering steps improved overall data quality, we measured consistency 

between replicate experiments or experiments of orthologous TFs. Consistency between 

experiment A and B was defined as the percentage overlap between the top 100 enriched 8-

mers in the respective experiments. We found that after removing low quality experiments 

and probes, we significantly improved overall data quality (P < 0.009, rank sum test, 

Supplementary Note).

Data preprocessing

The top 2000 enriched probes from each of the 270 experiments that passed quality control 

were used as examples to train our model. All non-unique probes were removed, and each of 

the remaining (unique) probes was associated with a TF label and a TF family label. 

Because 20bp probes have very high diversity, we only had a very small number of non-

unique probes (Supplementary Table 3). TF family information was obtained from http://

cisbp.ccbr.utoronto.ca. Overall we had a total of 505,194 TF-associated probes.

We then randomly selected 252,597 sequences from probes that only present in initial cycles 

(random negative sequences), and 252,597 20bp sequences from inaccessible region of the 

genome in K562 cell lines (genomic negative sequences). We included genomic negatives 

during training in order to learn to distinguish between TF binding sites and genomic 

background. After filtering out duplicated sequences, we obtained a total of 505,086 unique 

negative probes, each of which was associated with a universal negative label.

Training BindSpace

Each HT-SELEX probe input sequence si is represented by a bag of 8-mers with up to 2 

consecutive wildcards (where the wildcard symbol ‘N’ matches any nucleotide). A particular 

8-mer is considered a token of si if it occurs in either si or reverse complement of si. The 

total vocabulary of 8-mers with up to 2 consecutive wildcards has a size of 112,800. For a 

pair of reverse complement 8-mers, only one of the two is included in the vocabulary, similar 

to the representation used in the SeqGL algorithm7.

BindSpace is an instantiation of StarSpace, a machine learning algorithm that can be used 

for a wide range of supervised learning problems. Training examples to StarSpace are 

structured as left hand side (LHS)-right hand side (RHS) pairs. In BindSpace, the LHS of the 

ith input is a DNA probe represented by its constituent k-mers wi, 1, …, wi, mi
 , and the RHS 

consists of the labels associated with this probe li, 1, …, li, ni
 Most probes have two labels, a 

TF label and family label. For training examples that come from universal negatives or from 

TFs with unknown family, no family label is assigned.
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Overview of StarSpace algorithm

We used the StarSpace default training mode (mode 0) to learn an embedding for a total of 

113,074 entities – namely, 112,800 k-mers, 243 TF labels, 1 universal negative label, and 30 

TF family labels – into a vector space ℝd, where d is the dimension of the embedding space. 

In BindSpace, we use d = 300

To explain the embedding of the ith training example and the associated loss used in training, 

let us denote the embedded vectors of k-mers W i, 1, …, W i, mi
 as wi, 1, …, wi, mi

 and the 

embedded vectors of labels Li, 1, …, Li, ni
 as li, 1, …, li, ni

, where all the vectors wi,j,j = 1,…, 

mi and li,k,k = 1,…,ni, are inℝd.

The embedding of the LHS of the ith example is induced by the embedding of all constituent 

k-mers as follows (this can also be considered to be the embedding for the corresponding 

training probe):

lhsi = 1
mi

p ∑
j = 1

mi
wi, j

Here p = 0.5 by default.

Similarly, the embedding of the RHS of the example is induced by the embedding of all its 

associated labels:

rhsPi = 1
ni

p ∑
j = 1

ni
li, j

To compute the loss associated with this example, we randomly sample K examples with 

labels different from example i and compute the RHS associated with each:

rhsNi, k = 1
nk

p ∑
j = 1

nk
lk, j

Here lkj is the embedding of the jth label of negative sample k.

To compute the loss, StarSpace allows for a choice of hinge or softmax and a choice of dot 

and cosine similarity. We found that hinge loss and dot similarity work best for our data. 

Thus, the loss function for a given positive example with one random negative would be:

Errik = max 0,  margin  − lhsi ⋅ rhsPi + lhsi ⋅ rhsNi, k
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We used a default value of 0.05 as the margin. Therefore, a loss is incurred unless the 

similarity of the LHS embedding for the ith example lhsi, to the embedding of its RHS rhsPi, 

exceeds the similarity of lhsi to the embedding of the ‘wrong’ RHS by a margin. The total 

loss associated with example i using K negative samples is:

Erri = 1
K ∑

k = 1

K
max 0,  margin  − lhsi ⋅ rhsPi + lhsi ⋅ rhsNi, k

Subsequently, k-mer embeddings wi, 1, …, wi, mi
, positive label embeddings li, 1, …, li, ni

, 

and negative label embeddings lk, 1, …, lk, nk
 are all updated based on the gradient of this 

loss using Adagrad algorithm.

We split the whole data set into 2/3 for training and 1/3 for testing with stratified sampling, 

i.e., each TF class was split into 2/3 for training and 1/3 for testing. We performed 5-fold 

cross-validation on training data for hyperparameter tuning, and cross-validation 

performance was measured by average F1 score for all TFs. We then evaluated the 

performance on test data and compared against other methods. We found that the cross-

validation performance no longer improved after 50 epochs, and therefore we stop training 

at that point.

Finally, we learned a comprehensive BindSpace model with the same hyperparameter 

settings using all HT-SELEX data. The visualizations and in vitro and in vivo validation 

were performed using this model.

Hyperparameter tuning

The hyperparameters we considered in the StarSpace algorithm included: loss, similarity, 

learning rate, embedding dimension, maximum number of negatives in a batch update, and 

dropout rate. Preliminary analysis on a small number of examples (15 classes) showed that 

hinge loss and dot similarity gave the best performance on DNA sequence data.

We sampled 20 sets of hyperparameters from: learning rate = (0.01, 0.05, 0.1, 0.2), 

dimension = (50, 100, 150, 200), maxNegSamples = (3, 5, 10, 15), and dropout rate = (0, 

0.001, 0.01, 0.1). We compared the cross-validation performance of each of these 20 sets by 

F1 score for each TF class.

Taking the sampled hyperparameter set with best performance (mean F1 score), we then 

varied each hyperparameter individually while keeping the rest constant. We measured the 

performance change with respect to the change in each hyperparameter, again by cross-

validation performance on training data measured by F1 score for each TF. Based on this 

analysis, the final hyperparameters that gave the best cross-validation performance were: 

learning rate = 0.2, dimension = 300, maxNegSamples = 15, dropout rate = 0. We also found 

that the performance reaches convergence after 50 epochs.
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Making predictions with BindSpace

Binary thresholding.—BindSpace predicts similarity scores of a new test example to all 

class labels. Multiclass prediction can be made based on which label has the highest 

similarity to the test example. However, when we need to make multi-label predictions 

(allow a sequence to be positive for more than one TF), we need to determine a threshold for 

each label. Therefore, we computed the similarity of each label to all training examples not 

belonging to this class to generate an empirical null distribution of similarity score. For a 

new test example, if the similarity score significantly achieves P < 0.05 relative to this null 

distribution, we consider the test example to be positive; otherwise, we consider it to be 

negative.

In vivo evaluation.—When evaluating on ChIP-seq or ATAC-seq data, instead of having 

20bp probes, we have 150bp or 300bp genomic sequences, respectively. In order to predict 

on these large genomic regions, we bin into 20bp windows, embed each window into 

BindSpace, and determine similarity to TF class labels. Then the similarity score of a TF to 

a given peak is the maximum similarity score over all 20bp windows. However, when 

predictions on 20bp bins are considered, BindSpace and BindSpace+ retain the resolution to 

identify multiple binding sites within an ATAC-seq peak (Supplementary Fig. 12).

Training BindSpace+

Since BindSpace is trained as a multi-class classifier, with prediction based on proximity of 

embedded sequences to >200 model vectors in a high dimensional latent space, it is not 

optimized for binary classification tasks as evaluated by auPR or auROC, which rely on 

accurate one-vs-all or positive-vs-negative rankings rather than class assignments. To adapt 

BindSpace to this binary prediction setting, we trained the BindSpace+ model as follows. 

We used the previous BindSpace representation of k-mers and induced representation of 

20bp DNA sequences, but we did not use the model vectors for the labels. Instead, we 

embedded all training examples into BindSpace’s 300 dimensional latent space using the 

previously learned representation and then trained a one-versus-all logistic classifier with 

ridge regularization for each TF using the BindSpace representation. For prediction on held-

out HT-SELEX probes, we trained BindSpace+ logistic classifiers in one-vs-the-rest fashion. 

For in vivo binary prediction tasks, we trained BindSpace+ models for each TF on positive 

probes vs randomly sampled negative probes.

PWM-based predictions

The PWM models we use are from ‘Jolma2013.meme’, downloaded from http://meme-

suite.org/db/motifs. They were generated by Jolma et al. using a semi-automatic algorithm 

from the same HT-SELEX data set5. We used FIMO with default settings to predict PWM 

hits13. For binary prediction problems, rather than using the default P < 1e-4 threshold, we 

allowed the full range of P values in order to rank all examples. For multiclass prediction 

problems, if none of the PWMs satisfied P < 1e-4, we predicted the sequence to be a 

universal negative; otherwise we predicted the TF label based on the most significant PWM.
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LASSO one-versus-all multiclass predictions

We used the R package glmnet to train a LASSO logistic regression classifier for each TF in 

a one-versus-all setting in order to make multiclass predictions20. During training, for each 

TF, we considered the 2000 enriched probes as positives and sampled 20,000 sequences 

from the rest of the training data as negatives. We represented training sequences using 8-

mers features with up to 2 consecutive wildcards. We performed feature selection by 

computing a binomial Z-score for every 8-mer feature based on its enrichment in positive 

versus negative training examples and chose the top scoring 10,000 8-mers. For testing, we 

predicted the class of a given test example by assigning it to the TF model that gave highest 

posterior probability, or assigning it to be a universal negative if all of the models predicted a 

posterior < 0.5. We can also make multi-label prediction by allowing a given sequence to be 

positive for multiple TFs if the posterior > 0.5 for multiple classifiers.

Binary LASSO predictions

We used the R package glmnet to train a LASSO logistic regression classifier for each TF in 

a binary setting. During training, for each TF, we considered the 2000 enriched probes as 

positives, and randomly sampled 10,000 sequences from cycle 0 of the same experiment as 

negatives. Training sequences were represented using 8-mer features with up to 2 

consecutive wildcards. Feature selection was performed the same way as previously describe 

for LASSO one-versus-all.

DeepBind predictions

The DeepBind program and models were downloaded from http://tools.genes.toronto.edu/

deepbind/. We only used the DeepBind models trained on HT-SELEX data. For making 

binary decisions, we set the threshold at 0.9 after logistic transform of raw DeepBind scores.

Visualization

We visualized the top 50 probes of each HT-SELEX experiment, TF labels, and TF family 

labels in a 2D space using an efficient Barnes-Hut implementation of t-SNE21,22. To do so, 

we first computed a similarity matrix of these points (13,500 probes and 274 labels) by dot 

product. Then we converted this similarity matrix to a dissimilarity matrix and used the R 

package Rtsne with default settings to project these points to 2D, where the dissimilarity is 

approximated by Euclidean distance23.

Sequence logos for BindSpace TFs

We embed all 10-mer sequences into BindSpace. For each TF, we sort all 10-mers by their 

similarity to the TF label in BindSpace (by dot similarity) and used top 200 10-mers (where 

for reverse complement sequence pairs, only one of the two sequences is included) to 

generate a PWM. The directions (orientations) of these 200 10-mers are then corrected by 

“mafft --adjustdirectionaccurately”, and a sequence logo is generated by the “seqlogo” 

program.
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BindSpace correlation with PBM data

We downloaded the original PBM intensity data of ‘BAR15A’, ‘EMBO10’, and ‘Cell08’ 

from Uniprobe (http://the_brain.bwh.harvard.edu/uniprobe/downloads.php).

BAR15A contains PBM data for 41 TFs, 15 of which overlap with TFs in BindSpace (1 

C2H2 zinc finger, 14 homeodomains). For each TF, we took the top 5000 PBM probes with 

highest intensity and predicted the binding affinity of 14 homeodomain TFs to these 36bp 

probes using each of BindSpace, PWM, LASSO and DeepBind. Finally we computed 

Spearman correlations between true probe intensities with BindSpace predicted intensities 

for the 14 TFs.

For TFs in BAR15A POU family, TFs in BAR15A PAX family, TFs in EMBO10 ETS 

family, TFs in Cell08 POU family and Cell08 PRRX paralogous TFs, instead of considering 

only the top 5000 PBM probes with highest affinity, we plotted the Spearman correlation of 

predicted affinity versus true PBM intensity as a function of number of top probes and 

compared between all methods.

BindSpace analysis of gcPBM data

We downloaded gcPBM array for Ets1 and Elk1 from GEO (GSE97793). Negative control 

probes, ELK1 preferential and ETS1 preferential probes were as annotated by Shen et al.9 

We looked at all Elk1/Ets1 preferential probes and compared between BindSpace, PWM, 

LASSO and DeepBind for their ability to distinguish between Elk1/Ets1 preferential probes 

(Supplementary Note).

We performed an additional multilabel analysis considering the true label of each probe to 

be one of: Elk1 preferential, Ets1 preferential or common (non-specific). Using each of 

BindSpace, PWM, LASSO or DeepBind methods, we predicted each probe to be ELK1 

specific (ELK1 score > ETS1 score and ELK1 score > cutoff), ETS1 specific (ETS1 score > 

ELK1 score and ETS1 score > cutoff) or low affinity (ELK1 score < cutoff and ETS1 score 

< cutoff). See previous description for empirical thresholds for predicting low affinity probes 

for each method.

ENCODE ChIP-seq

Conservative and optimal IDR thresholded ‘narrowpeak’ files of ENCODE ChIP-seq data 

were downloaded from the ENCODE portal (https://www.encodeproject.org/) for five major 

cell lines: GM12878, K562, A549, H1-hESC and HepG2, covering a total of 329 different 

TFs.

ATAC-seq data processing

K562 ATAC-seq raw reads were obtained from GSE7622424. We combined records 

SRR3822969 and SRR3822972 to create replicate 1. We combined the other two records to 

create replicate 2. GM12878 ATAC-seq raw reads were obtained from GSE4775325. We 

used only the samples generated from 50k cells. Because replicate 1 is much more deeply 

sequenced then rest of the replicates, we combined replicates 2, 3, 4 to obtain replicate 2.
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We followed the ENCODE ATAC-seq processing pipeline (https://www.encodeproject.org/

atac-seq/) for processing K562 and GM12878 ATAC-seq data. For each of the ATAC-seq 

samples, we trimmed the raw fastq files of adapters with Trimmomatic with default settings. 

We then aligned to the hg19 genome using Bowtie2 with default settings. After that we 

removed duplicate reads and adjusted for Tn5 shifts. Peak calling was performed for each 

replicate using macs2 with --nomodel --shift −37 --extsize 73. Finally, IDR was performed 

with the idr package and reproducible peaks were called with an IDR cutoff of 0.05. There 

were a total of 17,271 reproducible peaks in K562 and a total of 76,218 reproducible peaks 

in GM12878. For both K562 and GM12878, we only evaluated on the top 10,000 peaks with 

highest accessibility.

ChIP-seq peaks versus flanks evaluation

For this task, we used all available ENCODE TF ChIP-seq data in cell lines, which included 

a total of 329 different TFs, including 39 represented in BindSpace. For each TF covered by 

BindSpace, we selected a single experiment that gave the most reproducible peaks, selected 

the top 5000 peaks with highest IDR score, and took the 150bp region around each peak 

summit as positive examples. Negative examples (flanks) were taken 300 bp upstream of 

positive examples. Overlapping regions and sequences containing Ns are removed. For each 

TF data set of ChIP-seq peaks and flanks, we made binary predictions based on their 

similarity to the corresponding TF label in BindSpace and measured performance by F1 

score. We then compared with predictions made by FIMO scoring using the ‘Jolma2013’ 

PWMs, LASSO and DeepBind.

ATAC-seq binding versus non-binding evaluation

All ATAC-seq peaks were trimmed to 300bp centered at the peak summit. All TF ChIP-seq 

peaks were resized to 150bp centered at the peak summit. If an ATAC-seq peak overlaps 

with a resized TF ChIP-seq peak, we consider that ATAC-seq peak to be bound by the 

corresponding TF; otherwise, it is unbound by the TF. For this evaluation, we removed any 

TFs that were bound to < 10% of the ATAC-seq peaks.

Paralogous TF ChIP-seq evaluation

1. There are 20 pairs of ENCODE ChIP-seq experiments for paralogous TFs in the 

same cell type with more than 5k peaks in each experiment using a conservative 

IDR threshold. We evaluated BindSpace, PWM, LASSO, and DeepBind for their 

ability to distinguish between these paralogous TF ChIP-seq peaks. For each pair 

of ChIP-seq experiments for paralogous TFs, we took top 100 peaks unique to 

TF1 or TF2 from each ChIP-seq experiment. Each method was required to 

predict TF1 (when TF1 score > TF2 score and TF1 score > cutoff), TF2 (when 

TF2 score > TF1 score and TF2 score > cutoff), or neither (when TF1 score < 

cutoff and TF2 score < cutoff). With various performance metrics (precision, 

recall, F1), we reported the average performance of TF1 and TF2. We also 

reported the average of TF1 auPR on ranking TF1 peaks above TF2 peaks and 

TF2 auPR for ranking TF2 peaks above TF1 peaks.
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2. For two example paralogous pairs (HepG2 CEBPB versus CEBPG, HepG2 

NR2F6 versus NR2F1), we evaluated the performance by showing the predicted 

score distributions for BindSpace, PWM, LASSO and DeepBind in a similar way 

that we evaluated gcPBM data. We split the union of ChIP-seq peaks of 

paralogous TFs into three groups: TF1 specific, TF2 specific, or common. Using 

each of BindSpace, PWM, LASSO or DeepBind methods, we predicted each 

peak to be TF1 specific (TF1 score > TF2 score and TF1 score > cutoff), TF2 

specific (TF2 score > TF1 score and TF2 score > cutoff) or low affinity (TF1 

score < cutoff and TF2 score < cutoff) and visualized the distribution of scores 

and class assignments in each of the three groups.

ChIP-seq multiclass evaluation

We resized all ChIP-seq to be 150bp around summit. For each experiment, we took the top 

10,000 peaks with most significant IDR and performed multiclass classification of each peak 

using BindSpace, FIMO PWM scoring, LASSO or DeepBind using TFs in the same family. 

We evaluated performance by determining the percentage of the top 10,000 peaks that were 

correctly classified.

Inclusion of 10-mer features

In order to understand whether the choice of 8-mers as our feature set limited our capability 

to capture long DNA binding signals like CTCF, we trained a new BindSpace model by 

adding some 10-mer features. Specifically, in addition to 8-mers with wildcards, we picked 

the top 200 enriched 10-mers from each HT-SELEX experiment, giving a total of 51,380 

unique exact match 10-mers. We added these 10-mer features into our vocabulary, which 

expanded our vocabulary by about 50%. We trained a BindSpace model with the same 

hyperparamters as previously determined and compared the performance with regular 

BindSpace on held-out HT-SELEX probes (Supplementary Note).

Comparison with k-mer modules

We downloaded k-mer modules from Mariani et al. 201726. We assigned each module to a 

TF family if a representative TF of that module has a (human/mouse) family assignment in 

CIS-BP. In this way, 92 out of the 108 modules could be identified with a total of 22 families 

represented in BindSpace. We embedded all 92 modules to BindSpace and measured their 

similarity to all TF family labels (Supplementary Note).

Statistics

We used Wilcoxon signed rank test for pairwise performance comparison between methods.

Data availability

We used only public datasets in this study. Each dataset can be accessed in the original 

publication referenced.
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Code availability

Open source code for BindSpace as well as the trained BindSpace model are freely available 

for download (https://bitbucket.org/hy395/selex_embed for source code for training 

BindSpace; https://bitbucket.org/hy395/bindspace for R package to make predictions with 

the trained model).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. A schematic overview of BindSpace.
BindSpace is an embedding approach that jointly learns binding models for hundreds of 

TFs.

(a) Enriched DNA probes for TF HT-SELEX experiments are represented as bags of k-mers, 

namely 8-mers with up to two consecutive wildcards (a wildcard represents any of the 4 

nucleotides).

(b) BindSpace learns an embedding of k-mers (grey dots), DNA probes (colored dots), TF 

labels (colored squares), and TF family labels (black triangles) in the same high-dimensional 

space. The embedding of a probe sequence is determined by the embedding of its constituent 

k-mers. Unbound HT-SELEX probes and inaccessible genomic sequences serve as universal 

negative examples.
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Figure 2. BindSpace accurately predicts TF binding and distinguishes between TF family 
members in vitro.
(a) t-SNE visualization of the embedding space. Colored points represent embedding of 

enriched probes from HT-SELEX experiments (n=50 probes from each experiment). Black 

points represent embedding of TF family labels for 13 major families (families with more 

than three members). A full t-SNE visualization of all TF labels as well as TF family labels 

is shown in Supplementary Fig. 1.

(b) Left: multiclass prediction performance of BindSpace, PWM, one-versus-all LASSO and 

DeepBind methods on held-out HT-SELEX probes evaluated by F1 score (n=243 HT-
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SELEX TFs, one-sided Wilcoxon signed rank test). Right: prediction performance of 

BindSpace+, PWM, one-versus-all LASSO and DeepBind on held-out HT-SELEX probes 

evaluated by one-versus-all auPR per TF (n=243 HT-SELEX TFs, one-sided Wilcoxon 

signed rank test). Boxplots show median, upper and lower quartiles, and highest and lowest 

values excluding outliers.

(c) Multiclass prediction performance of PWM scoring (left) and BindSpace (right) as 

shown by confusion matrices normalized by class support for the bZIP family. Rows are true 

labels, and columns are predicted labels. For comparison between BindSpace, PWM, 

LASSO and DeepBind on 13 major TF families, also see Supplementary Fig. 4 and 

Supplementary Note SN1–2.
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Figure 3. BindSpace predicts binding of TFs and distinguishes between paralogous TF binding 
sites in vivo.
(a) Left: performance of BindSpace, PWM, LASSO and DeepBind on distinguishing ChIP-

seq peaks of ENCODE paralogous TF pairs as measured by F1 score averaged over TF1 and 

TF2 of each pair (n=20, one-sided Wilcoxon signed rank test). Right: performance of 

BindSpace+, PWM, LASSO, and DeepBind on distinguishing ChIP-seq peaks of ENCODE 

paralogous TF pairs as evaluated by auROC averaged over TF1 and TF2 of each pair (n=20, 

one-sided Wilcoxon signed rank test). Boxplots show median, upper and lower quartiles, and 

highest and lowest values excluding outliers.
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(b) BindSpace performance on distinguishing CEBPB specific peaks versus CEBPG specific 

peaks in HepG2. From left to right, we show the predicted affinities on CEBPB specific 

peaks (predicted CEBPB score significantly higher than predicted CEBPG score, P = 

2.1e-56, n = 3045), CEBPG specific peaks (predicted CEBPG score significantly higher than 

predicted CEBPB score, P = 2.14e-40, n = 2583), and common peaks in the scatter plots (no 

significant different, P = 0.317 when alternative is CEBPB>CEBPG, P = 0.683 when 

alternative is CEBPB<CEBPG, n = 5248), one-sided Wilcoxon signed-rank test. Each probe 

is assigned to be CEBPB specific (red), CEBPG specific (blue) or low affinity (gray). Pie 

charts show the proportion of peaks predicted to be CEBPB specific versus CEBPG specific 

in each group. (For performance of PWM, LASSO and DeepBind, see Supplementary Fig. 

8)

(c) Multiclass classification performance of BindSpace, PWM, LASSO and DeepBind for 

three bZIP TFs in the HepG2 cell line. For each plot, we performed multiclass classification 

using BindSpace on the top 10,000 peaks for bZIP TF ChIP-seq and show the proportion of 

predicted labels for each model. Experiments where the ChIP-ed TF is predicted more 

frequent than other members in the same family are indicated by *. See Supplementary Fig. 

10 for a comparison of all bZIP family members in HepG2 cell line.
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