
Data and text mining

Distinguishing prognostic and predictive

biomarkers: an information theoretic approach

Konstantinos Sechidis1,*, Konstantinos Papangelou1, Paul D. Metcalfe2,

David Svensson2, James Weatherall2 and Gavin Brown1

1School of Computer Science, University of Manchester, Manchester M13 9PL, UK and 2Advanced Analytics

Centre, Global Medicines Development, AstraZeneca, Cambridge SG8 6EE, UK

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on February 2, 2018; revised on April 12, 2018; editorial decision on April 25, 2018; accepted on April 30, 2018

Abstract

Motivation: The identification of biomarkers to support decision-making is central to personalized

medicine, in both clinical and research scenarios. The challenge can be seen in two halves: identify-

ing predictive markers, which guide the development/use of tailored therapies; and identifying

prognostic markers, which guide other aspects of care and clinical trial planning, i.e. prognostic

markers can be considered as covariates for stratification. Mistakenly assuming a biomarker to be

predictive, when it is in fact largely prognostic (and vice-versa) is highly undesirable, and can result

in financial, ethical and personal consequences. We present a framework for data-driven ranking of

biomarkers on their prognostic/predictive strength, using a novel information theoretic method.

This approach provides a natural algebra to discuss and quantify the individual predictive and

prognostic strength, in a self-consistent mathematical framework.

Results: Our contribution is a novel procedure, INFOþ, which naturally distinguishes the prognos-

tic versus predictive role of each biomarker and handles higher order interactions. In a comprehen-

sive empirical evaluation INFOþoutperforms more complex methods, most notably when noise

factors dominate, and biomarkers are likely to be falsely identified as predictive, when in fact they

are just strongly prognostic. Furthermore, we show that our methods can be 1–3 orders of magni-

tude faster than competitors, making it useful for biomarker discovery in ‘big data’ scenarios.

Finally, we apply our methods to identify predictive biomarkers on two real clinical trials, and intro-

duce a new graphical representation that provides greater insight into the prognostic and predict-

ive strength of each biomarker.

Availability and implementation: R implementations of the suggested methods are available at

https://github.com/sechidis.

Contact: konstantinos.sechidis@manchester.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A prognostic biomarker is a clinical or biological characteristic that pro-

vides information on the likely patient health outcome (e.g. disease re-

currence) irrespective of the treatment. On the other hand, a predictive

biomarker indicates the likely benefit to the patient from the treatment,

compared to their condition at baseline (Ruberg and Shen, 2015).

The difference between these two types of marker is clearly im-

portant, yet, surprisingly it is often not recognized. Ballman (2015)

states that there ‘is considerable confusion about the distinction

between a predictive biomarker and a prognostic biomarker.’

A specific example is highlighted by Clark (2008) when examining

clinical biomarkers used routinely to make treatment decisions for
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non-small cell lung cancer, such as gender and histology—the key

finding is that:

‘. . . gender and histology are actually prognostic, rather than pre-

dictive factors. Before biomarkers or clinical characteristics are

included in guidelines for selecting patients for specific treat-

ments, it is imperative that the prognostic effects of these factors

are distinguished from their ability to predict a differential clinic-

al benefit from the specific treatment.’

In reality, biomarkers will almost always have some degree of

prognostic value, and some degree of predictive value—but will also

likely be dominated by one or the other. Using a biomarker for treat-

ment assignments (i.e. in a predictive context), when in fact it pro-

vides mostly a prognostic signal, can have personal, financial and

ethical consequences—the inverse holds with different, though

equally valid, consequences. A prognostic biomarker that is incor-

rectly labelled as predictive may result in overestimating the benefits

of the treatment for a subset of the population and prescribing it

to specific patients while in fact it should be available to all.

Consequently, this may force the price of the drug up, as it is now

considered as a treatment tailored to a specific portion of the popu-

lation. The opposite applies if a predictive biomarker is incorrectly

labelled as prognostic. In this case, the differential effect of the treat-

ment to subsets of the population will be missed. The drug may be

wrongly considered to have the same effect in all patients, affecting

its price accordingly.

The challenge of finding markers with prognostic character is

explored extensively in biostatistical and Machine Learning litera-

ture alike (Saeys et al., 2007). On the other hand, discovery of pre-

dictive biomarkers has seen much less attention in Machine

Learning, e.g. Su et al. (2008). The biomedical literature on sub-

group identification (Ondra et al., 2016) includes predictive bio-

marker ranking as an intermediate step, with SIDES (Lipkovich

et al., 2011), Virtual Twins (Foster et al., 2011) and Interaction

Trees (Su et al., 2009) as recent examples in this direction.

However, little attention has been paid to the challenge of explicitly

distinguishing between markers with mixed predictive/prognostic

value. A statistical tool that could explicitly distinguish and quantify

the predictiveness and prognosticness of a biomarker may be useful

in study design and clinical interpretation of predictive models. In

our work, we propose a unified approach that provides a language

highly suited to biomarker discovery and related tasks around

personalized medicine.

Our strategy is to align the challenges of data-driven biomarker

discovery with that of information theoretic feature selection

(Brown et al., 2012). The information theoretic viewpoint provides

an ‘algebra’ with well-defined semantics, enabling one to discuss

and quantify the predictiveness/prognosticness of a biomarker—

each separately, but in a self-consistent mathematical framework.

This also formalizes the problem as finding the biomarkers that opti-

mize a well-defined objective function, capturing the joint influence

of patient characteristics and the treatment regime, on the outcome.

Stated informally, this is:

Joint effect of patient characteristics

and treatment on outcome
¼ Prognostic

effect
þ Predictive

effect

We will show how this plain English statement can be formalized

with the algebra of information theory—and allow us to rank bio-

markers by their prognostic or predictive value strength, as meas-

ured in ‘bits’ of information (Shannon, 1948). It is also important to

remember that univariate rankings have limitations—Lipkovich

et al. (2017) recently stated that

‘. . .the key deficiency of univariate [.] models is that they ignore

potential synergistic effects of two or more biomarkers by failing

to account for higher-order interaction effects.’

To deal with this problem, methods such as Interaction Trees and

SIDES take a strategy of recursively partitioning the data, isolating

regions of the space of patients as functions of two or more bio-

markers. However, this results in small-sample issues, and hyper-

parameters for model-building in different data partitions. Using the

information theoretic approach, we derive a novel method, INFOþ,

that captures second-order biomarker interactions, and comes with

natural solutions to the small-sample issue.

We evaluate the performance of the competing methods with an

extensive experimental comparison, to highlight their strengths and

weaknesses in identifying predictive markers. We systematically in-

crease the challenge in simulated data—for example: having bio-

markers that are solely predictive, or of mixed predictive/prognostic

value, having correlated biomarkers, or having an enhanced predict-

ive signal in a subgroup of patients. We will demonstrate that

INFOþ empirically outperforms competing methods, not only in

true positive/negative rates of different marker types, but also in

terms of computational- and data-efficiency. Finally, we introduce a

visualization tool for the prognosticness and the predictiveness of a

set of biomarkers. We hope that the proposed visualization method

will become a standard in the practitioners’ toolkit for identifying

important biomarkers and understanding their effects.

2 Materials and methods

In this section we build links between data-driven biomarker discov-

ery and information theoretic feature selection (Brown et al., 2012).

Firstly, we formally define the concept of predictive versus

prognostic biomarkers, in a language familiar to the bioinformatics

community; following this, we provide an information theoretic

formalization, leading to a set of novel methods for predictive bio-

marker ranking.

2.1 Prognostic versus predictive biomarkers
The distinction between predictive and prognostic markers can be

ambiguous if expressed in natural language. However, it becomes

simple to illustrate and agree upon, if we assume a known underly-

ing model generating the data. We will use this tactic below, using a

linear model as a purely illustrative tool—though all novel methods

in the paper will apply in the general case. We denote the health out-

come Y as a function of the patient characteristics X and the treat-

ment T, for example:

f X;Tð Þ ¼ a1X1 þ a2X2 þ b2X2 þ b3X3ð ÞT;

where a1 and a2 coefficients define the prognostic elements, and b2

and b3 define the predictive. When Y is continuous, f X ;Tð Þ
can model the conditional mean E YjX ;Tð Þ, alternatively, if Y is

binary, f X ;Tð Þ can be the logit of the conditional probability:

logit P Y ¼ 1jX;Tð Þ½ �. If data is generated according to the model

above, X1 is regarded as solely prognostic as it directly influences

the outcome Y—also known as a main effect. The variable X3 is

solely predictive as it influences the outcome only via an interaction

with the treatment variable—also known as an interaction effect.

However, note that variable X2 has both predictive and prognostic

strength.
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Following standard notation (Lipkovich et al., 2017), assuming

linear interactions, the outcome function can be written as:

f X ;Tð Þ ¼ h Xð Þ þ z Xð ÞT;

where h :ð Þ and z :ð Þ are arbitrary functions of the covariates. We

stress again that this is for the purposes of exposition, and all novel

methods/results in the paper apply without such assumptions. There

are two challenges here—firstly ranking variables in X by how much

they influence Y via h Xð Þ (i.e. main effects)—we refer to this as

prognostic ranking. And, secondly, ranking those that influence Y

via z Xð Þ (i.e. interaction effects)—we refer to this as predictive

ranking.

Assuming a binary treatment T 2 f0; 1g, simple algebra yields

that z is the change in outcome Y due to treatment, known as treat-

ment effect:

z Xð Þ ¼ f X; 1ð Þ � f X ;0ð Þ:

The estimation of treatment effect (via first estimating f X ; �ð Þ) moti-

vates a set of methods that utilize the potential outcomes (or coun-

terfactual) modelling (Rubin, 1974). For example, a popular

method in this class is Virtual Twins (VT) (Foster et al., 2011),

which non-parametrically estimates bf X;Tð Þ using random forests

(RF) (Breiman, 2001). Predictive rankings can then derived by rank-

ing the biomarkers on their dependence with the estimated variable

z Xð Þ. Another class of methods for predictive ranking is based on re-

cursively partitioning data using interaction tests between treatment

and covariate—two popular methods here are SIDES (Lipkovich

et al., 2011) and Interaction Trees (Su et al., 2009). Section S1 of

Supplementary Material provides details on all of the competing

methods.

We take a different approach, by reformulating the problem as

an optimization of an information theoretic objective. We introduce

a new method for deriving predictive rankings, without the assump-

tion of linear models, or binary T as above. Our method is directly

applicable to multi-arm trials (i.e. more than two treatment groups)

and captures higher-order biomarker interactions. In the following

sections we introduce our framework.

2.2 A natural objective function
Shannon (1948) in his seminal work ‘A Mathematical Theory of

Communication’ introduced information theory to quantify the

amount of information and the capacity of the communication

channel. One of the most fundamental concepts is mutual informa-

tion. Through time, information theoretic approaches based on

mutual information used to solve challenging problems in various

research areas, e.g. Physics (Lloyd, 1989), Bioinformatics (Steuer

et al., 2002) and Machine Learning (Zeng, 2015).

In simple terms, the mutual information I X; Yð Þ captures the ex-

tent to which two random variables X, Y depend on each other, or

in other words the reduction of uncertainty in one variable Y given

the values of the other X. Mutual information has various interest-

ing properties. For example, it can be associated with both upper

and lower bounds on the Bayes error (Zhao et al., 2013). As a result,

optimizing information theoretic measures to solve challenging

problems, i.e. feature selection (Brown et al., 2012), can lead to

methods with competitive performance.

In clinical trial data, a natural way to select a set of biomarkers

is to maximise the shared mutual information between the target Y

and the joint random variable of the treatment T and the optimal

feature set X�. Using the same analysis as in (Brown et al., 2012)

it can be proved that this criterion is equivalent to maximise the con-

ditional likelihood of the outcome given the features and

treatment, i.e. log p YjXTð Þ. Using the mutual information chain rule

(Cover and Thomas, 2006), this objective can be decomposed in the

following way:

X� ¼ arg max
Xh2X

I XhT; Yð Þ ¼ arg max
Xh2X

I Xh; Yð Þ|fflfflfflfflffl{zfflfflfflfflffl}
Prognostic part

þ I T; YjXhð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Predictive part

0
B@

1
CA

The first part captures the biomarkers with prognostic strength,

while the second captures the biomarkers with predictive strength

(Section S2 of Supplementary Material provides some background

on information theory, while Section S3 motivates why these two

terms capture the prognostic and predictive strength by connecting

the estimation of the mutual information with the deviance of the log-

linear models.). By optimizing these two parts independently we can

derive two different objectives for the two different biomarker sets:

X�Prog: ¼ argmax
Xh2X

I Xh; Yð Þ; (1)

X�Pred: ¼ argmax
Xh2X

I T; YjXhð Þ: (2)

Brown et al. (2012), in the context of feature selection, presented

two heuristics for optimizing Eq. (1), which consider sequentially

features one-by-one for adding or removal; the forward selection

and the backward elimination respectively. For example, in forward

selection at each step k we select the feature X�k that maximizes the

conditional mutual information (CMI):

X�k ¼ arg max
Xk2X~h

JCMI Xkð Þ ¼ arg max
Xk2X~h

I Xk; YjXhð Þ (3)

where Xh is the set of the features already selected, and X~h the

unselected. The CMI criterion can be used to rank the biomarkers

on their prognostic strength and it is provably a hill-climber on the

likelihood (Brown et al., 2012). In the following section we extend

this result to derive predictive biomarker rankings.

2.3 Information theoretic predictive rankings
In order to rank the biomarkers on their predictive strength, we should

derive an optimization procedure for the predictive part Eq. (2). A

common heuristic approach to optimize an objective like this is to se-

quentially consider biomarkers one-by-one for adding or removal.

This heuristic can be seen as a greedy iterative optimization of the

desired objective function. To present this procedure we will use a

time-index notation for the feature sets, where Xhs represent the

selected features at timestep s, while X~h
s the unselected ones.

DEFINITION 1 (Predictive biomarker forward selection step with

CMI). The forward selection step adds the biomarker X�k which

maximizes the conditional mutual information between T and Y in

the context of the joint variable of the currently selected set Xhs and

X�k. The operations performed are:

X�k ¼ arg max
Xk2X~h

s

I T; YjXhs Xkð Þ

Xhsþ1  Xhs [X�k

X~h
sþ1  X~h

snX�k

Using our formalization of the problem and the results of Brown

et al. (2012) the following theorem holds.
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THEOREM 1. The predictive forward selection heuristic adds the

biomarker that causes the largest increase in the predictive part.

While for the backward elimination we have the following

definition:

DEFINITION 2. (Predictive biomarker backward elimination step

with CMI). The backward elimination step removes the biomarker

X�k which minimizes the conditional mutual information between T

and Y in the context of the variable of the currently selected set Xhs

without X�k. The operations performed are:

X�k ¼ arg min
Xk2Xhs

I T; YjfXhsnXkgð Þ

Xhsþ1  XhsnX�k
X~h

sþ1  X~h
s [X�k

Using the results of Brown et al. (2012) the following theorem

holds.

THEOREM 2. The predictive backward elimination heuristic

removes the marker that causes the minimum possible decrease in

the predictive part.

For simplicity from now on we will focus on the forward selec-

tion procedure, where at each step we select the feature not ranked

so far X�k 2 X~h that maximizes the following score:

X�k ¼ arg max
Xk2X~h

JPRED�CMI Xkð Þ ¼ arg max
Xk2X~h

I T; YjXhXkð Þ (4)

We will call this criterion as PRED-CMI, since it measures the pre-

dictive strength of each biomarker Xk by measuring the conditional

mutual information between treatment and outcome given the joint

variable between Xk and the currently ranked biomarkers Xh. In the

following section we propose low-dimensional approximations, that

will allow us to reliably estimate the conditional mutual information

when the dimensionality of Xh becomes prohibitively high.

2.4 Lower-dimensional criteria for predictive rankings
In both scenarios, deriving prognostic rankings using CMI, and

deriving predictive rankings using PRED-CMI, we need to tackle an

important challenge: as the number of selected features grows, the

dimension of Xh also grows, and this makes our estimations less reli-

able. To overcome this problem low-dimensional criteria need to be

derived.

For deriving prognostic rankings, the machine learning literature

for feature selection is vast of low-order criteria. Brown et al. (2012)

showed that a criterion that controls relevancy, captures feature

interactions through redundancy and complementarity and provides

a very good tradeoff in terms of accuracy, stability and flexibility is

the Joint Mutual Information (JMI) criterion (Yang and Moody,

1999): JJMI Xkð Þ ¼
P

Xj2Xh
I Xk; YjXj

� �
:

Now we will tackle the challenge of deriving low-order criteria

for the predictive rankings. The simplest way is to measure the con-

ditional mutual information of T and Y given each biomarker inde-

pendently without any regards of the others. This criterion can be

seen as a univariate information theoretic way to derive predictive

rankings, and from now on we will call it INFO. The score that

INFO uses to rank the biomarkers is:

JINFO Xkð Þ ¼ I T; YjXkð Þ: (5)

While this is a low-dimensional criterion—we simply need to esti-

mate the conditional mutual information between three variables—

it fails to capture the dependencies between the biomarkers, i.e.

collinearity/multicollinearity. We can illustrate these dependencies

better by using the information theoretic identity I A; BjCDð Þ ¼ I

A; BjDð Þ � I C; BjDð Þ þ I C; BjADð Þ to re-write the PRED-CMI cri-

terion as

JPRED�CMI Xkð Þ ¼ I T; YjXkð Þ � I Xh; YjXkð Þ þ I Xh; YjTXkð Þ: (6)

The first term captures the predictive strength of the biomarker Xk

being considered for inclusion in Xh: The second term capture the

three-way interaction between the existing biomarker set Xh, the tar-

get Y and the biomarker Xk. Finally, third term captures the four-

way interaction between Xh, Y, T and the biomarker Xk: The last

two are those that capture the collinearity between Xk and Xh. We

refer to these three terms as: the predictive relevancy, the predictive

redundancy and the predictive complementarity of the biomarkers.

As we see, INFO is an approximation of PRED-CMI that cap-

tures only the first term, which measures the predictive strength of

biomarker Xk, but it fails to account for terms that capture the re-

dundancy between the biomarkers. These, the predictive redundancy

and predictive complementarity, are high dimensional functions of

Xh—we can approximate them (to second-order interactions) with a

sum as follows.

JINFOþ Xkð Þ ¼
X

Xj2Xh

I T; YjXjXk

� �
: (7)

We refer to this as INFOþ, and using the same identity as before, it

can be re-written in the following ranking-equivalent form:

JINFOþ Xkð Þ / I T; YjXkð Þ

� 1

jXhj
X

Xj2Xh

I Xj; YjXk

� �
� I Xj; YjTXk

� ��
�;

where jXhj is the number of biomarkers already ranked. As we see

from the last expression, INFOþ captures all the three desirable

terms for predictive biomarker ranking: predictive relevancy, pre-

dictive redundancy, and predictive complementarity. Furthermore,

as the size of Xh grows, INFOþdoes not involve high dimensional

conditional information estimations as the ones in PRED-CMI

Eq. (6). Instead it averages over all possible lower dimensional (pair-

wise) terms, I Xj; YjXk

� �
and I Xj; YjTXk

� �
8 Xj 2 Xh. By averag-

ing over all possible pairwise terms, INFOþ captures second-order

biomarker interactions. In theory this could be extended to arbitrary

higher order interactions, but data constraints will always limit this.

Algorithm 1 describes our approach for deriving predictive bio-

marker rankings. The provided algorithm is in a user-friendly form

for illustrative purposes, but can easily be optimized to be 2–3

orders of magnitude faster than a direct translation. Note that in

some scenarios i.e. subgroup identification (Foster et al., 2011), and

especially in high-dimensional settings, we might be interested in

only a few biomarkers (Lipkovich and Dmitrienko, 2014). To this

end, in contrast to existing methods (i.e. SIDES/VT/IT) which rank

all biomarkers, our INFOþ forward step-wise procedure can return

only the top-K, without the need to rank all of them. This capability

removes a significant computational burden (see Section 3.1.10).

As we already mentioned, our methods rank the biomarkers by

estimating conditional mutual information quantities. To this end

we can use any off-the-shelf estimator suggested in the literature

(Section S4 of the Supplementary Material provides a short review

and details on how to estimate conditional mutual information.).

Since in clinical trials we often encounter small-samples, in our im-

plementation we used a shrinkage estimator suitable for ‘small n,

large p’ scenarios (Hausser and Strimmer, 2009). This approach can

be extended to handle various types of covariates, i.e. categorical,

continuous and mixed and various types of outcomes, i.e.
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categorical, continuous and survival. Furthermore, when we

have mixed type of data direct comparison of the mutual informa-

tion values might be problematic. To overcome this issue, we use

normalized versions of the conditional mutual information, which

take into account the diverse characteristics of each covariate (Vinh

et al., 2010).

3 Results

This section presents a comprehensive study in comparing our infor-

mation theoretic methods with state-of-the-art approaches for bio-

marker rankings that capture their predictive strength. We will

compare our methods (INFO and INFOþ) against various methods,

which can be discussed/characterized from the perspective of the

statistical tools each is using: penalized linear regression methods

[such as MCR (Tian et al., 2014)], counterfactual modelling meth-

ods [such as VT (Foster et al., 2011)] and recursive partitioning

methods [such as SIDES (Lipkovich et al., 2011) and IT (Su et al.,

2008)]. Section S5 of the Supplementary Material provides the ne-

cessary details regarding the implementation of the competing

methods.

3.1 Experiments with simulated data
We simulate a large number of different scenarios and Section 3.1.1

presents all the necessary details of the simulation models. Section

3.1.2 presents the evaluation measures that we will use. Finally,

Sections 3.1.3–3.1.10 explore empirically a series of interesting

questions for the performance characteristics of the different

methods.

3.1.1 Simulation models

With our simulated models we capture a wide variety of different

scenarios. For each model we simulate data with various size n and

dimensionality p. For each dataset we assumed equal allocations of

patients to intervention and placebo arms, i.e. a clinical trial with

1:1 randomization. Following Lipkovich et al. (2011) experimental

setting, most of our models emulate the challenging scenario

of ‘failed’ clinical trials, where the overall treatment effect in a popu-

lation is nonexistent. We simulated data using different logistic

regression models, categorized in three levels of difficulty:

‘easy’, ‘medium’ and ‘hard’ with the different functional forms

f X;Tð Þ ¼ logit P Y ¼ 1jT;Xð Þ½ �. Section S6 of Supplementary

Material presents in detail the simulation models. Table 1 summa-

rizes all the above models in increasing challenge for identifying pre-

dictive biomarkers. In the experiments of the main paper we focused

on categorical covariates, so in all scenarios, after we generated the

data, each covariate was discretized in 2–5 levels using an equal-

width strategy (Section S7 of Supplementary Material presents ex-

perimental results using continuous covariates). Furthermore, in

order to have a better control over the effect of the prognostic (i.e.

main-effects) and predictive part (i.e. interaction-effects), for each

part we use the same functional form but with different variables.

By following this approach we can control the relative strength of

the predictive part using a coefficient h:

3.1.2 Evaluation measures

One natural evaluation measure is to check how accurate are the dif-

ferent methods on correctly placing the predictive biomarkers in the

top of the rankings. Let us define as XPred: the set of biomarkers with

predictive strength, with size q ¼ jXPred:j. Also, bX q

Pred: the set of the

top-q biomarkers returned by any of the methods that produce pre-

dictive rankings. We define as true positive rate (TPR) the fraction

of predictive biomarkers correctly ranked in the top-q positions of

the list:

TPR ¼ jXPred: \ bX q

Pred:j
q

Since our main objective is to introduce an information theoretic

method for disentangling predictive and prognostic strength, it will

be interesting to see how many times prognostic biomarkers are mis-

takenly placed in the top of the predictive rankings. Let us define as

XProg:nXPred: the set of markers with solely prognostic strength,

while X Irr: are the irrelevant markers, i.e. the ones that they are nei-

ther prognostic nor predictive. The false negative rate (FNR¼1 �
TPR) can be decomposed in two terms:

FNR ¼
j XProg:nXPred:

� �
\ bX q

Pred:j
q

þ jX Irr: \ bX q

Pred:j
q

¼ FNRProg: þ FNRIrr:

TPR captures how accurate are the algorithms in correctly identify-

ing the predictive biomarkers, while FNRProg: how often they tend

to select as predictive biomarkers those that contain only prognostic

information.

Algorithm 1 Greedy forward selection for INFOþ ranking

Input: Clinical trial data X ;T;Y and size of the returned

ranking K

Output: List of top-K predictive biomarkers Xh

1: X~h ¼ X " Set of candidate biomarkers

2: Set Xh to empty list " List of selected biomarkers

3: for k:¼1 to K do

4: Let X�k 2 X~h maximise JINFOþðXkÞ ¼
P

Xj2Xh

IðT; YjXjXkÞ

5: XhðkÞ ¼ X�k " Add biomarker X�k to the list

6: X~h ¼ X~hnX�k " Remove biomarker X�k from the candidate

set

7: end for

Table 1. Different scenarios of increasing challenge in identifying

predictive biomarkers

Fully separate

pred/prog

biomarkers?

Correlated

biomarkers?

Interaction

terms?

Subgroups?

M-1

M-2 �

M-3 � �

M-4, M-5 � � �

M-6, M-7 � � � �

Notes: Fully-separate pred/prog biomarkers is where there are no bio-

markers with both predictive and prognostic strength, so a method cannot

find a predictive biomarker by simply picking up on its prognostic nature.

Correlated covariates creates situations where we might mistakenly pick up a

noisy/prognostic biomarker, as it may be correlated to the predictive one for

which we are searching. Interaction terms creates situations where two bio-

markers interact to cause the outcome, which needs to be accounted for in the

biomarker discovery algorithm. The presence of Subgroups creates situations

where clearly defined groups of patients have enhanced treatment effect.

More ticks equate to a more challenging scenarios.
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We generate test data from the simulation models, and rank the

biomarkers on their predictive strength using the methods presented

above. In this synthetic situation, we have the ground truth set of

biomarkers that have any degree of predictive strength: XPred:, and

the same for prognostic markers XProg:: We use this to calculate the

TPR and FNRProg:; for each ranking. Finally, we report the average

results over multiple simulated datasets. For the ranking methods

that use an estimate of the classification error to produce a variable

importance score, such as VT, and in order to avoid overfitting, we

use out-of-bag estimates (Foster et al., 2011).

3.1.3 Does markers’ prognostic strength affect the predictive

ranking?

Before exploring in depth the performance of the different methods

for deriving predictive biomarkers, the first thing we should explore

is whether the ranking they produce is biased towards the prognostic

strength of each biomarker. To answer this question we generate

200 datasets from the M-1 model with p¼30 biomarkers and with-

out any predictive information, i.e. setting h¼0. Under this model,

we have no predictive biomarker, five prognostic X1; . . . X5, and the

rest are irrelevant. To rank the biomarkers on their predictive

strength we use three different methods (INFOþ, VT, SIDES), and

we derive the ranking score as follows: the most important marker

takes score 30, the second most important 29 till the least important

which takes score 1. Since there is no predictive biomarker, we ex-

pect that on average the score of each biomarker should be the

same, �15:5. Figure 1 shows that VT is biased towards the prognos-

tic biomarkers, i.e. X1; . . . X5, since on average, these biomarkers

get higher score and they are on the top of the list. SIDES is also

biased towards prognostic markers, but in smaller extent than VT. Our

method, INFOþ, is not biased towards the prognostic strength, since it

produces equal scores for each biomarker. This also shows that ranking

biomarkers on their conditional mutual information I T; YjXð Þ; cap-

tures the predictive strength, and not any prognostic information.

REMARK 1: VT appears to show bias towards the prognostic bio-

markers, whereas INFOþ is not, since the conditional mutual infor-

mation, I T; YjXð Þ; explicitly captures the predictive strength.

3.1.4 What happens when biomarkers have solely predictive

strength?

The experiments of this section focus on two scenarios where the

predictive biomarkers have diverse nature. Firstly, when we have

predictive biomarkers that carry also prognostic information (M-1),

and, secondly, when we have models that the predictive biomarkers

do not appear in the prognostic part (M-2). Figure 2 presents an

interesting finding. The results in model M-1 show that VT achieves

very high TPR, especially for scenarios with small predictive signals

(i.e. h ¼ 1=5), but on the other hand FNRProg: is also very high. In

other words, when there is a strongly prognostic signal, VT falsely

assumes prognostic biomarkers as predictive. However, in model

M-2, when biomarkers cannot have mixed predictive/prognostic na-

ture, TPR of VT drops dramatically, and FNRProg: remains high.

By comparing the results of the two models we can conclude that

when we have biomarkers with both predictive and prognostic

strength (i.e. M-1), VT achieves high TPR, but when the two sets are

distinct (i.e. M-2) the gains in TPR are vanishing. In terms of

FNRProg:, VT always has very high error rate on selecting solely

prognostic biomarkers as predictive, and it performs always worse

than random selection. This highlights that VT is somewhat biased

towards the biomarkers with strong prognostic effect. Furthermore,

from Figure 2 we observe that the recursive partitioning methods

(SIDES/IT) perform very similar in all scenarios, while our

INFOþmethod outperforms all of the rest in almost every setting,

and it achieves a better trade-off between TPR/FNRProg:.

REMARK 2: VT is biased towards predictive biomarkers that also

carry prognostic information. INFOþ achieves better performance

by disentangling the predictive and prognostic information of each

biomarker.

3.1.5 What happens when we have correlated and interacted

markers?

In this section we motivate the necessity of multivariate methods,

such as INFOþ, that capture higher-order biomarker interactions.

We will compare INFOþwith two univariate approaches: our in-

formation theoretic INFO, and MCR, which, due to the linear mod-

elling, does not capture higher order biomarker interactions. For the

purpose of this section we will focus on three models M-2, M-3 and

M-4 with diverse characteristics.

Model M-2 does not contain higher order interactions and the

biomarkers are uncorrelated. In this case we expect that higher-

order methods do not provide any actual benefit, and Figure 3 veri-

fies it. All three methods have similar performance in terms of TPR,

and this holds for various values of the predictive strength h.

However, this is not the case when we have correlated features

(model M-3). In this case INFOþoutperforms the univariate meth-

ods, and this trend is even stronger when we also have interaction

terms in the model (model M-4). In the latter scenario the univariate

methods completely fail, even with strong predictive signals.

REMARK 3: INFOþ captures interactions between biomarkers

without the need to explicitly model the functional form of the pre-

dictive part.

3.1.6 What happens when we change the sample size?

In this section we compare the different methods in terms of their ef-

ficacy with the sample size. We focus on the medium difficulty

model M-5 and we explore how the different methods perform as

we vary the sample size. We simulate from small trials of n¼100
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X23
X2
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Fig. 1. VT and SIDES, whilst searching for predictive signals, mistakenly give

high rank to variables that are purely prognostic, with no predictive signal

whatsoever (black bars); whereas, INFOþ correctly assigns them a rank no

better than random. This is the average ranking score over 200 simulated

datasets generated by model M-1, in the absence of any predictive informa-

tion h¼0, sample size 2000 and dimensionality p¼30 biomarkers. The

dashed line is the average expected score, representing a ranking by random

chance. Anything above can be considered as significant
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subjects, up to larger ones with n¼2000. Figure 4 presents our find-

ings. Our method achieves higher TPR, increasing faster with n, and

similarly shows a more rapid decrease in FNRProg:, outperforming

the competitors.

REMARK 4: INFOþ is the most sample efficient method, i.e. it

converges faster with the sample size.

3.1.7 What happens when we increase dimensionality?

Another interesting hypothesis to explore is how the above methods

perform when we have a large number of covariates/biomarkers. To ex-

plore this we use the medium difficulty model M-6 and on Figure 5 we

present how the different methods perform for various dimensionalities,

p ¼ f50; 100; 200; 400g covariates. As we see INFOþ consistently out-

performs the other methods in terms of TPR, for both low and high di-

mensional trials, while it controls very well FNRProg:.

REMARK 5: INFOþ is the most efficient method in the presence

of large number of noisy variables.

3.1.8 What happens when we have different size of subgroups?

As we already mentioned, an important usage of predictive bio-

markers is to define subgroups of people with an enhanced treat-

ment effect (Lipkovich et al., 2017). Defining these subgroups is

crucial for personalised medicine, and in this section we will explore

how the methods perform, in the presence of such subgroups. We

will focus on models M-6 and M-7, which have subgroups with di-

verse characteristics.

Figure 6 shows that when we have subgroups that are defined by

a small number of biomarkers, such as two in M-6, our method

achieves better TPR than the other two. This trend is more marked

in medium to strong predictive signals (i.e. h � 1), while for weak

signals all the methods perform similarly. The same holds for more

complex scenarios, i.e. M-8, where the subgroup is defined by a

three-variable interaction term.

REMARK 6: INFOþ achieves competing performance in ranking

biomarkers in the presence of subgroups with an enhanced treat-

ment effect.
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Fig. 2. When biomarkers have both prognostic/predictive strength (M-1) VT achieves higher TPR, otherwise (M-2) the gains in TPR are vanishing. In terms of

FNRProg:, VT always has very high error rate on selecting solely prognostic biomarkers as predictive, and it performs worse than random selection. This is the

average TPR/FNRProg: over 200 simulated datasets for three different values of the predictive strength h: 1/5 means a strongly prognostic signal, 1 means equal

strength between prognostic and predictive signals, and 5 means a strongly predictive signal. The sample size is 2000, and the dimensionality p¼30 biomarkers.

Dashed lines show the TPR/FNRProg: if we were ranking the biomarkers at random. (a) M-1: Biomarkers can be both prognostic and predictive. (b) M-2:

Biomarkers are solely either prognostic or predictive

(a) (b) (c)

Fig. 3. INFOþ captures correlations (M-3) and high-order biomarker interactions (M-4), and it outperforms methods that fail to capture these complex structures

(i.e. INFO/MCR). This is the average TPR over 200 simulated datasets for various values of the predictive strength h: small values of h mean that the prognostic

signal is stronger than the predictive, while the opposite holds for large values of h. For h¼ 1 both signals have the same strength. The sample size is 2000 and

the dimensionality p¼30 biomarkers. (a) M-2: Uncorrelated features, no interaction terms. (b) M-3: Correlated features, no interaction terms. (c) M-4: Correlated

features, with interaction terms

Fig. 4. Comparing VT/SIDES/INFOþ for varying sample sizes. This is the aver-

age TPR/FNRProg: over 200 simulated datasets from model M-5 with various

sample sizes n. We simulated the data with predictive strength h¼5 and

dimensionality p¼ 30

Fig. 5. Comparing VT/SIDES/INFOþ for problems with different dimensional-

ities. This is the average TPR/FNRProg: over 200 simulated datasets from M-6

various dimensionalities p. We simulated the data with predictive strength

h¼5 and sample size n¼2000
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3.1.9 What happens in trials with a significant overall treatment

effect?

So far our models (M-1–M-7) simulated scenarios of ‘failed’ clinical

trials, where the treatment effect in the population is nonexistent,

and there was a significant effect only within a small subgroup of

the population. In this section we will focus on the performance of

the algorithms when there is a significant effect of the treatment

across the whole population, i.e. a successful trial. To emulate this

scenario we use two medium difficulty models M-8 and M-9, with

diverse characteristics: the first one has a common treatment effect

for all the examples, while the second has a stochastic subject-

specific treatment effect, generated independently of the covariates

(Section S6 of Supplementary Material provides more details).

Figure 7 presents how the different methods perform for various

strengths of the predictive signal. Our method outperforms the other

methods in terms of TPR, especially for medium and high predictive

effects, while achieving lower FNRProg:.

REMARK 7: INFOþoutperforms the competing methods when

we have successful trials, i.e. when there is strong treatment effect

on the outcome independently of the covariates.

3.1.10 Which algorithm is more computationally efficient?

Lastly, it will be interesting to compare the performance of the

methods in terms of their computational complexity. For this set of

experiments we compare the average CPU time that each method

needs to return the rankings, and see how it scales with the sample

size and the dimensionality. All the experiments were run on a PC

with Intel [textregistered] Core(TM) i5-2400 CPU @ 3.10 ghz and 8

GB RAM, on a 64-bit Windows 7 OS.

Furthermore, we will use our optimized computational imple-

mentation of INFOþ. In the user-friendly INFOþ implementation

presented in Alg. 1, every time we select a marker we estimate from

scratch the INFOþ score, or in other words we need to estimate jXhj
conditional mutual information terms for each unselected biomarker

(Alg. 1 Line 4). But we can optimize this process by storing the

score of each unselected biomarker, and update it in every iteration.

With this optimization, instead of estimating jXhj terms for every

unselected biomarker, we estimate just one.

Figure 8a shows that our optimized version of

INFOþoutperforms all of the other methods for all sample sizes.

Furthermore, by our step-wise forward selection we can improve the

computational cost, by just asking to return the top-K biomarkers

instead of the full ranking. This is very useful in practice, where we

have high-dimensional data where only few variables contain mean-

ingful information. Figure 8b shows the execution time for various

values of top-K biomarkers, using our optimized version of INFOþ.

As we observe, we can save computational time by just returning the

most important predictive biomarkers instead of ranking all of

them. This result can be very useful in high dimensional trials.

REMARK 8: Our optimized implementation of INFOþ is the most

computationally efficient way to derive full rankings. Furthermore,

by our forward step-wise procedure, INFOþ is suitable for explor-

ing the ranking of the top-K most influential biomarkers, something

very useful for high-dimensional trials.

3.2 Applications to real clinical trials
Now we will present two applications of our methods in real clinical tri-

als, and introduce a new graphical representation that provides more in-

sight into the prognostic and predictive strength of each biomarker.

3.2.1 Lung cancer study: IPASS trial

It is of interest to explore how the suggested methods perform on a

real clinical trial data, which has a known predictive biomarker. We

explore the IPASS study (Mok et al., 2009): a Phase III, multi-

center, randomized, open-label, parallel-group study comparing

gefitinib (Iressa, AstraZeneca) with carboplatin (Paraplatin, Bristol-

Myers Squibb) plus paclitaxel (Taxol, Bristol-Myers Squibb) as a

(a) (b)

Fig. 6. Comparing VT/SIDES/INFOþ for problems with subgroups with

enhanced treatment effect. This is the average TPR over 200 simulated datasets

for various values of the predictive strength h. The sample size is 2000 and the

dimensionality p¼ 30 biomarkers. (a) M-6: 50% of the examples, defined by

two biomarkers, have an enhanced treatment effect. (b) M-7: 25% of the exam-

ples, defined by three biomarkers, have an enhanced treatment effect

(a) (b)

Fig. 7. Comparing VT/SIDES/INFOþ for models that simulate successful trials, where there is a treatment effect on the outcome independently of the covariates.

This is the average TPR over 200 simulated datasets for various values of the predictive strength h: small values of h mean that the prognostic signal is stronger

than the predictive, while the opposite holds for large values of h. For h¼ 1 both signals have the same strength. The sample size is 2000 and the dimensionality

p¼30 biomarkers. (a) M-8: Common treatment effect. (b) M-9: Stochastic subject-specific treatment effect

(a) (b)

Fig. 8. Comparing VT/SIDES/INFOþ in terms of their execution time. For

INFOþwe have two versions, one that it returns a full ranking of all biomarkers,

and one that it is just returns the top-K most important biomarkers. For all the

experiments we simulated data from M-1 with predictive strength h¼ 1.

(a) Execution time vs sample size. (b) Using INFO+ with various top-K. For (a)

we fixed dimensionality p¼ 30 and we simulate various sample sizes, while for

(b) we fixed sample size n¼2000 and we simulate various dimensionalities

3372 K.Sechidis et al.
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first-line treatment for clinically selected patients from East Asia,

who had advanced non small-cell lung cancer (NSCLC). The pri-

mary end point was progression-free survival (PFS).

It is known that gefitinib inhibits the epidermal growth factor re-

ceptor (EGFR), and is now indicated for the first-line treatment of

patients with NSCLC whose tumours have specific EGFR muta-

tions. Figure 9 presents the main finding of IPASS study (Mok et al.,

2009): the presence in the tumor of a mutation of the EGFR gene is

strongly predictive for better outcome with gefitinib. We therefore

expect EGFR mutation status to appear as a strongly predictive bio-

marker. A detailed description of the trial can be found in Section S8

of the Supplementary Material.

On the full 1217 subjects, all three of VT/SIDES/INFOþ, iden-

tify EGFR mutation status as the most predictive biomarker—how-

ever, an interesting question is to explore how they perform with

minor perturbations in the data. Table 2 presents, for each method,

the top-3 biomarkers with the highest score, averaged over 500

bootstrap samples along with required computational time. As we

see, INFOþ is an order of magnitude faster than the competing

methods. Of the biomarkers seen in Table 2, it is reassuring that

INFOþ suggests EGFR mutation status to be the most predictive; as

discussed above gefitinib inhibits EGFR, which was noted to have a

significant interaction with the treatment indicator in the original

study (Mok et al., 2009). Ethnicity is also related to the likelihood

of EGFR mutation status; it is unsurprising that this has been pulled

out by VT as a possible predictive biomarker, while our method,

INFOþ, manages to capture this interaction.

Now we will present a visualization tool, PP-graphs, that cap-

tures both the prognostic and predictive strength of biomarkers. It is

our hope that this may provide useful information to healthcare pro-

fessionals, in controlling false discoveries in clinical trials.

Description of PP-graphs: A PP-graph (Fig. 10) is a scatter plot,

where each point represents a biomarker, while coordinates (x, y)

capture its prognostic and predictive strength respectively. For

example, one way to measure prognostic strength is to rank the bio-

markers, and then use a normalized score that takes values in 0; 1½ �,
where 1 is the score for the most-prognostic biomarker. To derive a

prognostic ranking we can use the dataset fxi; yign
i¼1 and any

method that ranks biomarkers on their dependence with the

output. For example, we can use any information theoretic method

(Brown et al., 2012), such as MIM/JMI, or we can use RF and

rank the biomarkers on their variable importance score. On

the other hand, to derive predictive rankings we can use the dataset

fxi; ti; yign
i¼1 and any method presented so far for deriving predictive

rankings, such as INFO/INFOþ/VT/SIDES/IT/MCR. Furthermore,

we can capture the sample variations on the ranking scores by using

a resampling methodology. For example, instead of estimating the

scores only once from the whole dataset, we can average over the

scores of a large number of bootstraps.

The red area (vertical shaded region) represents the top-K

prognostic-biomarkers, while the green (horizontal shaded region)

the top-K predictive. For example for the PP-graphs of Figure 10 we

used k ¼ 1; which corresponds to the score cut-off value of

p� kð Þ=p ¼ 23� 1ð Þ=23 ¼ 0:96, where p¼23 is the total number

of biomarkers in IPASS trial. The biomarkers being in the red (verti-

cal shaded region) and green (horizontal shaded region) areas, are

the ones that ranked, on average, in the first position of the prognos-

tic and predictive ranking respectively. The intersection of these two

areas—top right area—will contain the biomarkers that are both

prognostic and predictive.

(a) (b) (c)

Fig. 9. Kaplan–Meier curves for the probability of progression-free survival (PFS) for: (a) the overall population, where we see that the study met its primary ob-

jective and showed the superiority of gefitinib as compared with carboplatin-paclitaxel for PFS [Hazard Ratio (HR)¼0.74, 95% CI 0.65–0.85; P<0.001].

Furthermore, EGFR mutation carries predictive information: (b) in the mutation positive subgroup patients treated with gefitinib had significantly longer PFS than

the ones treated with carboplatin-paclitaxel (HR¼0.48, 95% CI 0.36–0.64; P< 0.001), while (c) in mutation negative subgroup, patients in carboplatin-paclitaxel

group had longer PFS than the ones in gefitinib (HR¼2.82, 95% CI 2.03–3.94; P<0.001). Note: as this is an unplanned analysis, all P values are nominal, and they

have been used as descriptive measures of discrepancy and not as inferential tests of null hypotheses

Table 2. Top-3 predictive biomarkers in IPASS for each competing

method

Position INFOþ VT SIDES

1st EGFR mut.

status (X2)

Weight (X5) WHO perf.

status (X1)

2nd Weight (X5) EGFR mut.

status (X2)

EGFR mut.

status (X2)

3rd Age (X11) Ethnicity (X7) Bilirubin (X15)

Time (s) 0.97 18.52 6.76

(a) (b)

Fig. 10. PP-graphs for IPASS trial using two different approaches: (a) VT and RF:

for this graph we used random forests to derive the prognostic score of each bio-

marker, and the counterfactual modelling of Virtual-Twins for the predictive score,

(b) INFOþ and JMI: for this graph we used two information theoretic approaches

that capture higher order interactions, JMI and INFOþ for the prognostic and pre-

dictive score respectively. Note that with our INFOþ the most predictive biomarker

is X2 (EGFRMUT), which we know that carries predictive information
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PP-graphs for RF biomarker discovery in IPASS: Figure 10a

shows the PP-graph of RF based methods. For the prognostic axis

we used RF to rank the biomarkers, while for the predictive axis

VT, which is a counterfactual modelling method based on RF.

Furthermore, we plot the average predictive/prognostic normalized

ranking scores over 500 bootstrap samples of IPASS dataset. Using

VT, the top four predictive biomarkers (y-axis) are X5, X2, X7 and

X11 (Supplementary Table S5 provides the names of the bio-

markers). However, we could ask the question whether these bio-

markers are also prognostic, and, by using RF, we observe that

X5;X11;X7 and X13 are the most prognostic biomarker (x-axis).

Knowing the result from Section 3.1.4, that VT may be biased to-

wards strongly prognostic biomarkers, we might now change our in-

vestigation: instead of pursuing X5 we should perhaps prioritize X2:

PP-graphs for information theoretic biomarker discovery in

IPASS: Instead we can use the information theoretic methodology

proposed in this paper, in which the predictive (y-axis) and prognos-

tic (x-axis) rankings are derived from a self-consistent manner. For

example, in Figure 10b, the ranking in the y-axis is derived by using

INFOþ, while the ranking in the x-axis by using JMI (Section 2.4).

Both of these approaches capture higher order interactions, by using

low dimensional approximations. This PP-graph shows that our

suggested INFOþ approach correctly ranks as the most important

predictive biomarker X2 (green area, horizontal shaded region).

3.2.2 Cardiovascular disease study: Aurora trial

Another interesting scenario to explore is how our methods perform

in a trial where there is no known predictive biomarker. We explore

the AURORA study (Fellström et al., 2009): a randomized, double-

blind, placebo-controlled, multicenter trial in which 2776 patients

with end-stage renal disease were randomly assigned 1:1 to double-

blind treatment with rosuvastatin at a dose of 10 mg or placebo. The

primary endpoint was the time to a major cardiovascular event

(MACE) defined as a nonfatal myocardial infarction, nonfatal

stroke, or death from cardiovascular causes. All myocardial infarc-

tions, strokes and deaths were reviewed and adjudicated by a clinic-

al end-point committee whose members were unaware of the

randomized treatment assignments, in order to ensure consistency of

the event diagnosis. A detailed description of the trial can be found

in Section S9 of the Supplementary Material. For full details of the

trial see (Fellström et al., 2009).

Figure 11a presents Kaplan–Meier curves of the cumulative inci-

dence of the primary end point (MACE) in the overall population,

where we see that the study failed to meet its primary objective: treat-

ment with rosuvastatin was not associated with a reduction in major

adverse cardiac events (HR¼0.95, P¼0.516). Furthermore, rosuvas-

tatin had no benefit in any examined subgroup, more details can be

found in (Fellström et al., 2009). It is important to have a structured

way to explore the data in such trials, in which any hypotheses arising

out of the data may be handled in a controlled manner.

Table 3 presents, for each predictive biomarker discovery method

VT/SIDES/INFOþ, the top-3 biomarkers with the highest score, aver-

aged over 500 bootstrap samples. None of the suggested variables have

been previously identified as predictive, although Age has previously been

identified as prognostic in a post hoc analysis (Schneider et al., 2013).

As in the IPASS trial, it is also informative to explore the prog-

nostic strength of each biomarker. Figure 12 presents the PP-graphs

for AURORA trial. As earlier, the red area (vertical shaded region)

represents the top-K prognostic-biomarkers, while the green (hori-

zontal shaded region) the top-K predictive. For the PP-graphs of

Figure 12 we used again k ¼ 1; which corresponds to the score cut-

off value of p� kð Þ=p ¼ 44� 1ð Þ=44 ¼ 0:9773, where p¼44 is the

total number of biomarkers in the trial. The biomarkers being in the

red (vertical shaded region) and green (horizontal shaded region)

areas, are the ones that ranked, on average, in the first position of

the prognostic and predictive ranking respectively. Figure 12a shows

that only VT ranks a biomarker in the predictive area. VT ranks X1

(Age) as the most predictive biomarker, but the same biomarker also

carries the most prognostic information. Taking into account the

previously observed bias of VT to prognostic biomarkers, we might

conclude that age is a false positive. On the other hand, Figure 12b

shows that our suggested method, INFOþ, does not rank any bio-

marker close to the predictive region (green area, horizontal shaded

region)—a result in agreement with the trial findings.

At this point it is useful to explore more the biomarker that

INFOþ returned as the most predictive, the percent of lymphocytes

(X24) in the blood. Interestingly, in the subgroup of 994 patients

with low percentage (<65%) (Fig. 11b) the ones receiving rosuvas-

tatin they had longer MACE-free survival than the ones receiving

placebo (HR¼0.78, P¼0.037).

(a) (b) (c)

Fig. 11. Kaplan–Meier curves for the cumulative incidence of the primer end point in the two study groups for: (a) the overall population, where we see that the study

did not met its primary objective since treatment with rosuvastatin was not associated with a reduction in major adverse cardiac events (HR¼ 0.95, 95% CI 0.83–1.10;

P¼ 0.516). In (b) we can see that Lymphocytes may carry a predictive information, since in the 994 patients with low percent lymphocytes (<65%) those who were

treated with rosuvastatin had much longer MACE-free survival than the ones taking the placebo (HR¼0.78, 95% CI 0.61–0.99; P¼0.037). On the other hand, in (c) we

see that for patients with high percent lymphocytes (>¼65%) there is no evidence of predictive information (HR¼1.08, 95% CI 0.90–1.29; P¼0.415). Note: as this is

an unplanned analysis, all P values are nominal, and they have been used as descriptive measures of discrepancy and not as inferential tests of null hypotheses

Table 3. Top-3 predictive biomarkers in AURORA for each compet-

ing method

Position INFOþ VT SIDES

1st Lymphocytes (X24) Age (X1) Hematocrit (X21)

2nd Apolipoprotein B (X30) BMI (X7) Haemoglobin (X22)

3rd Leukocyte conc. (X23) Pulse pres.

(X15)

Leukocyte conc. (X23)
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The INFOþmethod has identified inflammatory status (lympho-

cytes & leukocytes) as predictive markers, which is a new and unval-

idated hypothesis, which did not surface in the AURORA trial. For

example, the subgroup of Figure 11b was 994 patients, a non-trivial

subgroup size in a trial of this nature. The patient population is,

though, known to be complicated, and further research is necessary

to assess the plausibility of the suggested biomarkers. There are pre-

viously noted prognostic associations for cardiovascular events in

the literature (Xiang et al., 2018), but no investigation of predictive

nature with Rosuvastatin. Such a future investigation seems plaus-

ible to yield interesting results, but we do not claim any association

from this dataset/paper alone—as always, methods such as INFOþ,

are exploratory rather than confirmatory.

4 Conclusions

The primary contribution of this work is a formalism for data-

driven ranking of predictive versus prognostic biomarkers. With an

information theoretic approach, we can disentangle the prognostic

versus predictive strength of a biomarker, naturally allowing for

issues such as correlated biomarkers. We presented a novel proced-

ure for predictive biomarker discovery, INFOþ, which we evaluated

over a wide gamut of synthetic data, increasing in difficulty. Our

results demonstrate that INFOþ captures higher order interactions

between biomarkers without the need to explicitly model the func-

tional form of the predictive part. Furthermore, it disentangles better

the predictive and prognostic information of each biomarker, and as

a result, provides a better performance in terms of TPR/FNRProg::

The INFOþ approach also requires 1–3 orders of magnitude less in

computation, compared to appropriate baselines, making it feasible

to explore datasets larger than ever before. Furthermore, we intro-

duced a new visual representation, the PP-graph, that captures both

the prognostic and the predictive strength of a set of biomarkers. We

expect that this tool will prove beneficial in visualizing and

interpreting biomarker investigations for clinical trials. Finally, by

formalizing the problem of predictive biomarker discovery in infor-

mation theoretic terms, we can potentially extend this work to other

challenging scenarios, such as misclassification bias (Sechidis et al.,

2017) or partially labelled data (Sechidis and Brown, 2018).
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