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Abstract: Artificial intelligence (AI) techniques can be a solution for delayed or misdiagnosed
pneumothorax. This study developed, a deep-learning-based AI model to estimate the pneumothorax
amount on a chest radiograph and applied it to a treatment algorithm developed by experienced
thoracic surgeons. U-net performed semantic segmentation and classification of pneumothorax
and non-pneumothorax areas. The pneumothorax amount was measured using chest computed
tomography (volume ratio, gold standard) and chest radiographs (area ratio, true label) and calculated
using the AI model (area ratio, predicted label). Each value was compared and analyzed based on
clinical outcomes. The study included 96 patients, of which 67 comprised the training set and the
others the test set. The AI model showed an accuracy of 97.8%, sensitivity of 69.2%, a negative
predictive value of 99.1%, and a dice similarity coefficient of 61.8%. In the test set, the average amount
of pneumothorax was 15%, 16%, and 13% in the gold standard, predicted, and true labels, respectively.
The predicted label was not significantly different from the gold standard (p = 0.11) but inferior to the
true label (difference in MAE: 3.03%). The amount of pneumothorax in thoracostomy patients was
21.6% in predicted cases and 18.5% in true cases.

Keywords: pneumothorax; artificial intelligence; deep learning; true label

1. Introduction

Pneumothorax is a condition that requires intervention with needle aspiration or chest
intubation. Its recurrence can compromise health-related quality of life (HRQoL) due
to repeated urgent visits to the emergency room or hospital [1,2]. Timely diagnosis and
management are vital to reduce unnecessary mortality or morbidity of pneumothorax,
especially among patients affected by tension pneumothorax [3,4]. Unlike primary pneu-
mothorax in young adults, secondary pneumothorax caused by pulmonary disease can
be critical, because affected patients usually have a poor pulmonary function and fragile
lung parenchyma of emphysema [2,5]. Moreover, early diagnosis and timely management
of pneumothorax are essential for improving survival and HRQoL if patients are under
mechanical ventilation or in a pneumonectomized state [6–9]. However, human errors, in-
cluding delayed identification or misdiagnosis of pneumothorax, can develop into tension
pneumothorax, with fatal consequences [10–12].

Artificial intelligence (AI) can help solve these problems. Well-trained AI, with high-
quality data and algorithms, has been adopted in medicine [13,14]. If AI is applied for the
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early diagnosis of pneumothorax and treatment recommendations, delayed diagnosis can
be resolved. However, apart from detecting the presence of pneumothorax, it is essential to
accurately determine the amount in order to decide on a treatment method [15,16]. Chest
intubation with a large bore can be the most effective treatment; however, it can cause chest
pain, bleeding, shock, and other critical complications [16,17]. Moreover, when the amount
of pneumothorax is less, observation or supply of oxygen is sufficient [15,18]. Therefore, AI,
which can determine the presence and amount of pneumothorax, can suggest a treatment
policy based on an algorithm developed by experienced thoracic surgeons. It prevents
unnecessary human errors and improves the HRQoL of patients.

In this study, an AI-based management model was designed by analyzing chest
radiograph and computed tomography (CT) images of patients with pneumothorax and
comparing it with a clinical algorithm developed by experienced thoracic surgeons.

2. Methods
2.1. Patient Selection

This study was approved by the Institutional Review Board of Chungbuk National
University Hospital (CBNUH 2020-04-030). The need for informed consent was waived
by our ethics committee since data were anonymized and aggregated before access and
analysis. We retrospectively evaluated 317 patients diagnosed with pneumothorax by
a qualified thoracic surgeon or experienced radiologist at a tertiary referral university
hospital between December 2015 and September 2020. We included those who underwent
serial chest radiographs and CT and those investigated for thoracostomy decision-making
and insertion processes. However, we excluded cases where an identifiable cause of
pneumothorax, such as interstitial lung disease (n = 22) or trauma (n = 2), existed, where
simple chest radiography or chest CT was not performed (n = 170), or where interpretation
was difficult because of poor image quality (n = 9). Additionally, 14 cases managed by
physicians other than thoracic surgeons were excluded. Furthermore, four patients with
images that could not be processed in the AI model were excluded.

2.2. Hypothesis and Operational Definition

We hypothesized that the amount of pneumothorax derived by AI modeling is not
statistically different from the actual pneumothorax value. The amount of pneumothorax
is calculated as the radiolucent area between the lung parenchyma and the chest wall on
simple chest images and as the radiolucent volume within the pleural cavity on chest CT.
The volume is more accurate; however, the area is more practical because chest CT is more
expensive and time-consuming than simple radiography. In this study, pneumothorax value
(volume ratio) based on a CT image was defined as the gold standard, and pneumothorax
value (area ratio) based on a simple chest image was defined as the true label. The two
values were derived from manually segmented labels, while AI was used to derive the
predicted label of the pneumothorax value (area ratio) on simple chest images (Figure 1).
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(B) Quantitative value of pneumothorax was calculated using the predicted label; (C) The pneumotho-
rax values calculated from the predicted label and gold standard were compared. The pneumothorax
value (volume ratio) was defined as the gold standard based on a CT image. The pneumothorax value
(area ratio) based on a simple chest image was defined as a true label. The two values were derived
from manually segmented labels, while AI was used to derive the predicted label of pneumothorax
value (area ratio) on simple chest images. X-ray = simple chest radiography, Px_ratio = pneumothorax
ratio, CT = chest computed tomography.

2.3. AI Modeling for Pneumothorax

Pneumothorax labeling (true label; area ratio by simple chest radiography, gold stan-
dard; volume ratio by chest CT) was performed by a radiologist with more than 15 years of
experience to develop an AI model that predicts the amount of pneumothorax and recom-
mends a treatment method. An AI model was developed using a deep learning method
trained with true labels. Subsequently, the AI-predicted pneumothorax was defined as a
predicted label, and the values were compared and analyzed (Figure 2).
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Figure 2. Deep learning model for automatic differentiation and segmentation of pneumothorax.

2.3.1. Deep Learning Architecture with the Images Preprocessing Method

This study used the U-Net architecture because of its significantly accurate medical
image segmentation at various anatomical sites, including the chest [19,20]. It was used
to examine and classify pneumothorax, normal lung, and other lesions presented on a
simple chest radiograph. The following preprocessing steps were performed for effective
segmentation. The feature values of images such as points, edges, corners, textures, and
colors were more consistent through histogram matching, and contrast was enhanced
through histogram equalization. Then, the brightness interval between two consecutive
pixel values was adjusted using the window setting. Images with pixel normalization and
resizing were used as inputs for deep learning models. We tested several hyperparameters
to train the optimal deep learning model, and those with the best performance were selected.
We used the Adam optimizer with a learning rate of 0.0001 and 0.85 decay, categorical
cross-entropy loss, and resolution of 512 × 512 pixels (width × height).

Additionally, we used data augmentation, such as rotation, shift, and contrast change,
to solve insufficient data or overfitting problems. All deep learning modeling and training
procedures were implemented in DEEPPHI (http://www.deepphi.ai/, accessed on 26 July
2022), a web-based open AI platform. DEEPPHI has been used in other deep-learning-
based analyses in medicine [21]. The segmented regions predicted by the AI model were
used for quantification calculations.

http://www.deepphi.ai/
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2.3.2. Quantification of Pneumothorax

Two experienced radiologists labeled the pneumothorax, normal lung, and back-
ground of the pneumothorax. The number of pixels in the labeled matrix was calculated
to determine the pneumothorax amount (that is, the calculation formula) (Figure 3). The
pneumothorax was measured using two types of imaging data: simple chest radiography
and chest CT. First, the pneumothorax was measured on all axial images of chest CT, and
they were all integrated and defined as the gold standard (volume ratio of pneumotho-
rax). Second, the pneumothorax was measured using the same method in simple chest
radiography and the result was defined as the true label (area ratio).
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The area of the pneumothorax is equal to the sum of the pixel matrix, and the calculated ratio of the
pneumothorax is defined as the predicted label.

2.3.3. Statistical Analysis

Each true and predicted label was assessed to determine whether there was a statisti-
cally significant difference from the CT label. Subsequently, the clinical decisions made by
experienced thoracic surgeons were analyzed and compared according to each pneumotho-
rax value. The normality of the measured values was determined using the Shapiro–Wilk
test. Each value was compared using the paired T-test in the case of a normal distribution
and the Wilcoxon signed-rank test in the case of a non-normal distribution. All statistical
procedures were performed by a statistician, and Python 3.8.5 was used for calculating the
pneumothorax quantification ratio and statistical analysis.

2.3.4. Performance Evaluation

Accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predic-
tive value (NPV) were used to evaluate the predictive performance of the deep learning
model. Additionally, the dice similarity coefficient (DSC), the most appropriate metric for
evaluating the segmentation results, was used [22]. Mean absolute error (MAE) was used
to compare the difference between the quantified value of pneumothorax from the CT label
and each X-ray label (true and predicted X-ray labels).



Diagnostics 2022, 12, 1823 5 of 9

3. Results
3.1. Patient Characteristics

The study included 96 patients: 77 (80%) were men, with an average age of 32 years
(standard deviation of 14.57). After confirming the presence of pneumothorax using a
simple chest radiograph, CT was performed. Before the CT, thoracostomy (chest intubation)
was performed on 67 patients. Of the remaining 29 patients, seven underwent thoracostomy
after CT, and 22 did not. The 67 patients who underwent thoracostomy before CT were
defined as the training set for AI learning and the 29 patients were defined as the test
set (Table 1). There should be no intervention (including chest intubation) to evaluate
AI modeling that could significantly change the amount of pneumothorax between chest
radiography and CT. Therefore, 29 patients who did not undergo chest intubation until the
CT scan constituted the test set.

Table 1. Demographic information of the study population.

Variables Value

No. of patients 96

Age 32.85 ± 14.57

Sex

Male 77 (80.2%)
Female 19 (19.8%)

Manufacturers

Philips Medical Systems 50 (52.1%)
GE Healthcare 31 (32.3%)

DongKang 10 (10.4%)
FUJIFILM Corporation 3 (3.1%)

Samsung Electronics 2 (2.1%)

Thoracostomy before chest CT

Yes (training set) 67 (69.8%)
No (test set) 29 (30.2%)

3.2. Classification by Deep Learning Models

According to the deep-learning-based segmentation model, the pixel-to-pixel accuracy
was 97.23% for the background, 96.15% for the lung, and 97.81% for pneumothorax, with
sensitivities of 99.23%, 83.57%, and 69.18%, respectively (Table 2). Additional pixels were
correctly classified for the label of the lung area compared with pneumothorax. This
result can be confirmed using the dice coefficient score, the harmonic average of precision,
and recall.

Table 2. Results of deep-learning-based automatic region-segmentation models.

Class Accuracy Sensitivity Specificity PPV NPV DSC

Background 97.23 99.23 89.64 97.32 96.85 98.26
Lung 96.15 83.57 98.97 94.78 96.41 88.83

Pneumothorax 97.81 69.18 98.56 55.92 99.18 61.84
All values are expressed as %, positive predictive value (PPV), the negative predictive value (NPV), and dice
similarity coefficient (DSC).

3.3. Quantification of Pneumothorax

The average amount of pneumothorax calculated by the predicted label, true label,
and gold standard was 16.38% (standard deviation 6.45), 12.68% (standard deviation 8.7),
and 14.85% (standard deviation 15.25), respectively. MAE was 5.41% (in true) and 8.45% (in
predicted), indicating a difference of 3.03%. An experienced radiologist is more accurate in
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measuring pneumothorax than AI (Table 3). However, there was no statistical difference
between the gold standard and the predicted label (p = 0.11) (Table 4).

Table 3. Amount of pneumothorax calculated by humans and AI.

Variables Ratio of Pneumothorax MAE Compared to CT

Gold standard (CT) 14.85 ± 15.25 -
True label (chest radiograph) 12.68 ± 8.7 5.41

Predicted label (calculated by AI) 16.38 ± 6.45 8.45
MAE, mean absolute error.

Table 4. Comparison between gold standard, predicted, and true labels.

Variables

Shapiro–Wilk Test Wilcoxon Signed-Rank Test

Statistics p-Value Statistics (W)
(p-Value *)

Gold standard 0.7221 <0.05 144
(0.11)

-

Predicted label 0.7935 <0.05 98
(<0.05)True label 0.8299 <0.05 -

* p-value for comparison between the gold standard and predicted labels.

3.4. Clinical Outcomes

Twenty-two of the 29 patients included in the test set had undergone treatments other
than thoracostomy. The amount of pneumothorax in each group was approximately 10%
in the gold standard and true labels; however, it was 18% in the predicted label. Thoracos-
tomy was performed in seven, and close observation or oxygen supply was performed in
22 patients. The extent of pneumothorax was compared between the thoracostomy and
other treatment groups. They were 30% in the gold standard, 18.5% in the true label, and
21.6% in the predicted label (Table 5). The number of cases in which the amount of pneu-
mothorax exceeded 20% was seven in the gold standard (thoracostomy, n = 3; 43%), five
in the predicted label (thoracostomy, n = 3; 60%), and five in the true label (thoracostomy,
n = 3; 60%).

Table 5. Amount of pneumothorax between thoracostomy and other treatments.

Variables Thoracostomy Other Treatments

Gold standard 30.0 ±22.5/Median: 28.8 10.0 ± 7.9/Median: 8.0
True label 18.5 ± 11.9/Median: 14.8 10.8 ± 6.6/Median 8.4

Predicted label 21.6 ± 9.7/Median 19.2 14.7 ± 4.1/Median 13.6

4. Discussion

It is generally accepted that the amount of pneumothorax is ‘small’ when accumulated
air in the pleural cavity accounts for less than 20% of the total volume of hemithorax,
which can then be observed without intervention [23]. Previous studies have proposed
various methods for estimating the amount of pneumothorax, but these methods provide
estimation rather than exact quantification. Kircher and Swartzel [24] drew a rectangle
from a reference point to demarcate the contours of the hemithorax and the lung and
subtracted one from another to find the percent pneumothorax. Some studies have also
exploited deep learning techniques, but the experiments were limited to a single imaging
modality; Islam et al. [25] used X-ray images, while Rohrich et al. [26] used CT images. To
the best of our knowledge, this is the first study to focus on quantifying the proportion
of pneumothorax through a deep learning model, cross-checking measurements from
chest radiographs and CT, and providing concise parameters that can facilitate treatment
decision-making.
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The predictions by the AI model developed using labeling data measured by an
experienced radiologist, in terms of the presence and amount of pneumothorax, were in
agreement with the real-world practice of thoracic surgeons. The pneumothorax amount
calculated by the AI model was not statistically different from that estimated using CT
imaging, defined as the gold standard. Thus, the AI model can make accurate predictions
without CT imaging. This helps determine the appropriate clinical treatment, such as
immediate chest intubation. The MAE, the amount of pneumothorax labeled by the
radiologist, was more accurate than that labeled by the AI. However, AI is always available,
and there is no fatigue even with repeated measurements [14]. Therefore, it may play a role
in an emergency requiring immediate pneumothorax diagnosis and decision-making when
the radiologist is absent on duty [27].

Notably, this model agrees with the real-world practice of experienced thoracic sur-
geons. Chest intubation was determined by considering the pneumothorax amount and
clinical symptoms. A chest may be intubated if the amount of pneumothorax is more than
15% [28], the distance from the apex to the cupola is more than 3 cm [16], and a visible
rim of over 2 cm exists on the lung margin and chest wall at the level of the hilum [15].
However, the decision is based on each surgeon’s experience due to difficulties in the
calculation, inaccuracy, and usage [29]. The average amount of pneumothorax for thora-
costomy was 30% in the gold standard, 19% in the true label (radiologist), and 22% in the
predicted label (AI). Therefore, in actual clinical practice, chest intubation is performed
when the pneumothorax is approximately 30% based on CT; however, according to AI,
more than 22% can be considered an indication for chest intubation. Therefore, this model
agrees with the clinical guidelines provided by the thoracic surgeons in the hospital; 20%
of pneumothorax by the predicted label is used as the basis for treatment. This model
imitates the decision-making of an experienced thoracic surgeon. Notably, when treatment
other than thoracostomy was performed, the human and gold standard showed similar
pneumothorax rates (10%). However, AI overestimated (14%); therefore, caution is required
in interpretation.

This study has several limitations. First, the training set was small (67 patients). How-
ever, because the radiologist labeled all axial CT images for all patients, the actual labeling
case included more than 6000 images. The model is expected to be more suitable for
screening if sensitivity is improved by increasing the number of training cases in the future.
Second, owing to the limited data availability, the test set was limited in size, primarily
patients with a small amount of pneumothorax. Additional validation is required to deter-
mine whether it is also effective for patients with large pneumothorax. Chest intubation
is a treatment of choice for patients with large pneumothorax or prominent symptoms.
Therefore, although this model was validated for a small amount of pneumothorax, it has
clinical value. Finally, because this was a retrospective study, selection bias could not be
excluded. A more accurate model can be created using a large-scale prospective study.
Further research is required to improve the sensitivity and practicality of this method.

AI can be useful in actual clinical practice. As it has a fixed value for a model that
has already been trained and verified, it can be used in clinical areas and hospitals if
there are only chest X-ray images as inputs. Unlike physicians, who are human and could
make mistakes if they are tired or stressed, an AI would not. A well-made AI could help
physicians detect and manage pneumothorax and would become most useful in extreme
situations. It could, therefore, improve the clinical results and increase the HRQoL.

This paper proposed a deep-learning-based method that supports treatment decisions
based on the segmentation and quantification of pneumothorax on images. The predictive
value based on chest radiographs reflects the actual amount of pneumothorax and correlates
well with real-world practice by expert thoracic surgeons.
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