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Franziska Böhme1*, Gabriela Bischoff2☯, Claus P. W. Zebitz3☯, Peter Rosenkranz1☯,

Klaus Wallner1☯

1 University of Hohenheim, Apicultural State Institute, Stuttgart, Germany, 2 Julius Kühn-Institute, Institute
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Abstract

In agricultural landscapes honeybees and other pollinators are exposed to pesticides, often

surveyed by residue analysis of bee bread. However, bee bread is a mixture of pollen pellets

of different plants collected over a longer time period. Therefore, pesticide content in the

hive varies with plant species and time of pollen collection. Hence, the analysis of bee bread

is an approximate approach to gain information on detailed pesticide exposure during the

agronomic active season. As high-resolution data is missing, we carried out a pesticide resi-

due survey over five years (2012–2016) of daily collected pollen pellets at three agricultural

distinct sites in southern Germany. 281 single day pollen samples were selected and sub-

jected to a multi-pesticide residue analysis. Pesticide contaminations of pollen differed

between the sites. Intensive pesticide exposure can be seen by high pesticide concentra-

tions as well as a high amount of different pesticides detected. During the five years of

observation 73 different pesticides were found, of which 84% are characterized as non-

harmful to honeybees. To estimate pesticide risks for honeybees, the pollen hazard quotient

(PHQ) was calculated. Even though pesticides were detected in sublethal concentrations,

we found substances not supposed to be exposed to honey bees, indicating the necessity

for further improvement of seed treatments and increasing awareness of flowering shrubs,

field margins and pesticide drift. Additionally, an in-depth analysis of nine pollen samples,

divided into sub-fractions dominated by single plant species, revealed even higher concen-

trations in single crops for some pesticides. We give precise residue data of 1,657 single

pesticide detections, which should be used for realistic laboratory and field tests.
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Copyright: © 2018 Böhme et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The project was partially funded by the

organization „Gesellschaft der Freunde der

Landesanstalt für Bienenkunde an der Universität

Hohenheim e.V.“ and the general budget of the

Apicultural State Institute, Stuttgart, Germany. The

funders had no role in study design, data collection

https://doi.org/10.1371/journal.pone.0199995
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199995&domain=pdf&date_stamp=2018-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199995&domain=pdf&date_stamp=2018-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199995&domain=pdf&date_stamp=2018-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199995&domain=pdf&date_stamp=2018-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199995&domain=pdf&date_stamp=2018-07-06
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199995&domain=pdf&date_stamp=2018-07-06
https://doi.org/10.1371/journal.pone.0199995
https://doi.org/10.1371/journal.pone.0199995
http://creativecommons.org/licenses/by/4.0/


Introduction

Integrated pest management, including chemical crop protection, is an approach by farmers to

ensure crop yield [1]. Actual overall yield losses due to weeds, pests and diseases range between

26 and 40% but may potentially reach 50 and 80%, depending on crop, cultivar, and region

[2]. Facing a growing world population, it is crucial to guarantee continuous high yields on the

available arable land but avoiding negative impacts on the environment at the same time [3].

The latter includes the protection of the farmland and the safety of the produced crops for the

consumer. However, one of the biggest challenges for the use of pesticides is the protection of

pollinators. For many crops, high yield is not only influenced by crop protection, production

site, agricultural practice or cultivar but also by optimized pollination services [1,2,4,5]. Polli-

nation is one of the most important services provided by honeybees (Apis mellifera L.), the

most abundant pollinators in intensively managed agroecosystems due to a loss of wild polli-

nators [4,6–8].

However, pesticides not only impact the target organism, they can contaminate air, soil and

surface, can drift to non-target plants or water, and can leach or run off the soil into surface

water and the aquifer during direct application or indirectly by seed coating [9,10]. Stable or

systemic substances can also accumulate in the soils and sediments and may be taken up by

plants and transported with the vascular system [9].

Hence, there are multiple routes of exposure to pesticides for honeybees or other pollina-

tors: direct contamination during spraying into the blossom [11], by dust deposit abraded

from treated seeds during sowing [12,13], by contaminated water puddles [14], by uptake of

volatilized pesticides [15], or indirectly by collection of nectar, pollen, and guttation droplets

contaminated by (systemic) pesticides [16–18] of crops and even wildflowers [9,19]. Conse-

quently, residues of pesticides can be found in bee matrices like pollen pellets, bee bread,

honey, wax or royal jelly [20–24].

Residue analysis of bee bread is a common tool in monitoring studies as bee bread is

accessed easily and can be stored in sufficient sampling quantities [23–28]. However, bee

bread usually represents a mixture of hundreds of pollen loads, contaminated by pesticides or

not, from different plants. This results in pollen pellets of varying pesticide concentration and

composition within the sample. Therefore, pesticide analysis of bee bread is an approximate

approach to estimate the real exposure to pesticides. A more profound view of pesticide expo-

sure via pollen is offered, when pollen loads of returning foragers at the hive entrance are col-

lected and analyzed [16,26,29–34]. However, in some of these studies only few samples are

drawn during the season, or only few crops or some pesticide applications are monitored.

Additionally, samples were pooled sometimes to receive enough analyzing material, all result-

ing in no detailed data to show the real pesticide exposure during the agronomic active season.

Even though sometimes high pesticide concentrations were measured, most of the detected

pesticide concentrations were found in sublethal levels considering LD50oral values and maxi-

mum pollen consumption rates [35]. However, it is known that even sublethal concentrations

of pesticides to invertebrates would lead to effects, such as impairment of cognitive competen-

cies, changing social interactions or side-effects on growth, development or gene expression in

honeybees [36–43].

Knowing, that even small amounts of pesticides could have effects on honeybees and that

there is a lack of studies with precise residue data, our main target was to reveal the exact pesti-

cide content of pollen loads collected daily by foragers during the agronomic active season

before storage inside the hive. For this purpose, we had chosen apiaries situated in different

agricultural landscapes in South Germany and collected pollen pellets with pollen traps for five

years. A representative number of nearly 300 pollen pellet samples, each representing a single
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day, were analyzed for nearly 300 active ingredients currently used in agricultural practice.

The resulting high-resolution residue data is now available. Furthermore, to get a better under-

standing of the hazard posed to honeybees by the measured pesticide concentrations, we calcu-

lated the pollen hazard quotient (PHQ) following the method by Stoner and Eitzer [31]. In

addition, we conducted in depth analyses from nine analyzed samples to identify key plant

species within the pollen loads to show plant specific pesticide contamination.

Material and methods

No permits were needed. The beekeepers were voluntarily taken part in this study ontheir per-

sonell ground. Due to privacy protection of the beekeepers the exact coordinates of the apiaries

will not be given. No endangered species were involved in this study.

Collection sites: “Meadow”, “grain” and “fruit”

In close cooperation with the respective beekeepers in the State of Baden-Württemberg, repre-

sentative apiaries for agricultural used landscapes in regions with temperate climate were cho-

sen. Within these areas the voluntarily participating beekeepers had their private apiaries. As

honeybees have a vast flight range of a several kilometers radius around the hive, it was not

possible to get any information on details of the respective crop protection strategies and

intensity by the numerous farmers cultivating the fields in the vicinity of the apiaries. Further-

more, the crop protection intensity usually varies from year to year due to the prevailing

weather conditions and pressure by damaging factors. The sites are at least 50 km apart from

each other. The “meadow” site (323 m a.s.l.; meters above sea level) is located in the north-east

of the town Göppingen. The area around the apiary is characterized by about 60% permanent

grassland, i.e. pasture, meadow, orchard meadows and traditional extensive orchards. “Grain”

site (569 m a.s.l.) is situated in the east of the village Ertingen, at the edge of a forest. It is char-

acterized by more intensive agriculture with high percentages of small grains (wheat, barley,

oat, etc.), grain and silage maize, winter oilseed rape and meadows. “Fruit” site is in the south

of Heilbronn (157 m a.s.l.). 40% small grains and maize, as well as 30% permanent crops such

as vine, pome, stone and soft fruits, characterize this site. Additional information for each site

is given in Table A-C in S1 Tables and in Table A-C in S2 Tables.

Pollen collection

Pollen traps were set up from spring (March) until late summer (August), depending on the

site, at the entrance of one honeybee colony at each of the three locations in Southern Ger-

many. Pollen collection started 2012 and ended 2016 for the “meadow” and “grain” sites. The

beekeeper of the “fruit” site collected pollen three years from 2012 to 2014. The place of the

colonies remained the same during the whole experimental period (= stationary beekeeping).

Bee colonies were maintained according to good apicultural practice. Pollen pellets were col-

lected daily or every second day by each beekeeper and stored separately in labeled plastic bags

at -20˚C. Pollen pellets were shipped frozen to the Apicultural State Institute where they were

stored under -20˚C until chemical analysis.

Due to financial limitations 9–39 samples for each site and sampling period were chosen

and sent to the laboratories for pesticide residue analysis. Depending on the quality (uncon-

taminated with debris and not slushy) and quantity (more than 5 g pollen per day), samples

were selected randomly to cover the entire sampling period of beekeeping. This resulted in

varying numbers of samples for each month, year and site, with at least one sample each week.

Yet, samples have not been pooled and results represent the pesticide contamination of a single

sampling day from one apiary.

Pesticide residues in pollen loads of honeybees
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Pesticide residue analysis

Residue analysis of a total of 281 samples (over the three sites and three to five years), each > 5

grams, have been performed at two laboratories. The agricultural analytic and research insti-

tute in Speyer (LUFA Speyer) performs a multi-residue QuEChERS method following Ana-

stassiades et al. [44] (§ 64 LFGB, BVL L 00.00-115/1:2015–03) following an analysis by GC-MS

(/MS) and LC-MS/MS. The Julius Kühn-Institute (JKI) uses a multi-residue method as

described by Böhme et al. [45]. Both laboratories were looking for 282 different substances

(pesticides and some metabolites) currently used in agricultural practice.

The following samples were analyzed by (i) LUFA Speyer: “grain”: 2012–2016, “meadow”:

2015 and 2016, in depth analysis of sub-fractions of predominantly one plant species (see

below “Fractions of pollen samples”); by (ii) JKI: “meadow”: 2012–2014, “fruit”: 2012–2014.

In order to compare all samples from both laboratories, the highest limit of detection

(LOD) and limit of quantification (LOQ) for each substance from the analysis by LUFA Speyer

had to be chosen and the results obtained from the laboratory of the JKI were considered

accordingly. Values or substances below this LOQ were not considered for the comparison.

Residue evaluation

To estimate the hazard to bees emanating from contaminated pollen loads, the pollen hazard

quotient (PHQ) was calculated following Stoner and Eitzer [31]. This method was chosen as it

provides a simple and comprehensive way to calculate the risk based on LD50-values easily

available in the internet. The concentration of each pesticide found in a sample (μg/kg) was

divided by the LD50 (honeybee oral; μg/bee) for the respective substance. LD50 values were

obtained from the University of Hertfordshire pesticides properties database [46], the US EPA

ecotoxicology database [47] or the Agritox database of the French government [48]. PHQ cal-

culations for thymol based on LD50 concentrations (honeybee contact) by Dahlgren et al. [49].

For metabolites, the respective LD50 value of the parent pesticide was used for calculations.

Total PHQ per sample (= day; tPHQday) was calculated as the sum of all PHQs of the pesticides

in the respective sample.

PHQ of> 50 are considered “relevant”. Assuming a daily pollen consumption of 9.5 mg by

a nurse bee [24,31,35], a PHQ of 50 would correspond to 0.05% of the LD50 consumed in one

day (resulting in 0.5% of the LD50 in an average 10-day nursing period) [31].

Statistical analysis. PHQ and tPHQday values were analyzed using the computer software

JMP 1 11.1.1 (SAS Institute Inc., Cary, NC, USA) as follows: (i) analysis of variance using a

generalized linear model (GLM procedure) for effects by site, year, and month, and (ii) by

one-way ANOVA followed by pairwise Student-t test between sites and years.

Each active substance is assigned the respective mode of action class following the classifica-

tion of the FRAC [50], IRAC [51] and HRAC [52] (Table 1). Since several active substances

share the same mode of action, the concentration of each substance at a single day were

summed. Grouped pesticides were then analyzed statistically as described above. In the same

way total insecticides/day and total fungicides/day were analyzed.

Fractions of pollen samples

After receiving the results of the residue analysis, nine samples were chosen for in depth analy-

sis to show the contribution of plant specific pesticide residues to the pesticide contamination

of the whole sample. The pollen pellets remaining after taking five grams for residue analysis

(correspond here to composite sample), were separated according to their color (correspond

here to fraction). A subsample of the color fraction was ground, dissolved in water with a drop-

let of a tensioactive agent (soap), spread on a microscopic slide, left to dry and embedded with

Pesticide residues in pollen loads of honeybees
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Kaiser’s glycerol gelatin and a cover glass. Light microscopic palynological analyses were per-

formed at the honey laboratory at the Apicultural State Institute before fractions were sent to

LUFA Speyer for pesticide residue analysis.

Results

Pesticide residues

Altogether, 281 honeybee corbicular pollen load samples from three locations were analyzed

in a multi-residue screening. One fifth of all samples were found uncontaminated. In total 73

different pesticides, comprising herbicides, fungicides and insecticides (including varroacides

and one insect repellent), and some of their metabolites were detected, of which 31 substances

have systemic properties (Table 1). At “fruit” 58 different substances were detected in only

three sampling years, followed by “grain” with 37 and “meadow” with 24 different substances

in five sampling years. At all sites and years fungicides account for more than 50% of the

detected substances (Table 2). Generally, the least intensive chemical crop protection activity

was identified at the “meadow” site, considering number of detected pesticides, number of pes-

ticide detections and maximum pesticide concentrations. Most of the samples free of pesticide

contamination were collected at “meadow” (43.9%) with a mean pesticide load of 2.0 pesticides

per sample, followed by “grain” (13.3%) and 3.8 pesticides per samples (Fig 1). All pollen sam-

ples collected at the “fruit” site contained, on average 9.8 pesticides per sample. The lowest

maximum concentrations were measured at “meadow”, followed by “grain” and further

exceeded by “fruit” with 294.6, 1,496.4 and 7,177.7 μg/kg, respectively. (Table A-C in S3 Tables

and S4 Tables).

In all years at “meadow” and “grain”, the months April and May revealed the majority of

contaminated samples as well as most pesticide detections, whereas most of the uncontami-

nated or less contaminated samples were found in the summer months June and July. At

“fruit” site all months showed high pesticide frequency, with high contamination also in June

or July (Table 2, Fig 1).

Due to the classification of the respective plant protection products according to German

authorization, 83.6% of the measured substances are likely to appear in pollen, due to permit-

ted application into the flower. Twelve of the substances found are not supposed to appear in

pollen. Eight substances (and some of their metabolites) are classified harmful to adult bees or

bee brood (i.e. methiocarb, clothianidin, imidacloprid, dimethoate, fenoxycarb, pirimicarb,

indoxacarb, nicotine) (Table 1).

Fig 1. Frequency of contaminated pollen trap samples (n = 281) separated for each site overall years. “Meadow”

and “grain” were sampled from 2012–2016, “fruit” was sampled 2012–2014.

https://doi.org/10.1371/journal.pone.0199995.g001

Pesticide residues in pollen loads of honeybees

PLOS ONE | https://doi.org/10.1371/journal.pone.0199995 July 6, 2018 8 / 21

https://doi.org/10.1371/journal.pone.0199995.g001
https://doi.org/10.1371/journal.pone.0199995


T
a

b
le

2
.

S
u

m
m

ar
y

o
f

m
a

in
p

es
ti

ci
d

e
re

si
d

u
e

re
su

lt
s

o
f

h
o

n
ey

b
ee

co
ll

ec
te

d
p

o
ll

en
lo

a
d

s
fo

r
ea

ch
si

te
a

n
d

y
ea

r.

M
ea

d
o

w
a

)
g

ra
in

fr
u

it
a

)

Y
ea

rs
2

0
1

2
2

0
1

3
2

0
1

4
2

0
1

5
2

0
1

6
2

0
1

2
2

0
1

3
2

0
1

4
2

0
1

5
2

0
1

6
2

0
1

2
2

0
1

3
2

0
1

4

S
am

p
li

n
g

d
at

es
0

2
.0

4
.-

0
7

.0
6

.
0

1
.0

5
.-

1
0

.0
8

.
1

2
.0

4
.-

0
5

.0
5

.
2

1
.0

4
.-

1
0

.0
7

.
0

5
.0

5
.-

3
0

.0
7

.
2

6
.0

3
.-

3
0

.0
7

.
1

8
.0

4
.-

2
8

.0
7

.
0

1
.0

4
.-

0
6

.0
7

.
2

1
.0

4
.-

2
1

.0
7

.
1

9
.0

4
.-

2
1

.0
7

.
0

1
.0

4
.-

2
5

.0
6

.
0

8
/0

9
.0

5
.-

0
1

/

0
2

.0
8

.

2
0

/2
1

.0
4

.-
7

/

8
.0

6
.

N
r.

an
al

y
ze

d

sa
m

p
le

s
(%

p
o

si
ti

v
e

sa
m

p
le

s)

1
6

(5
0

)
2

2
(4

0
.9

)
9

(1
0

0
)

1
9

(7
8

.9
)

1
6

(3
1

.3
)

3
9

(8
4

.6
)

3
0

(7
0

)
2

0
(8

0
)

2
7

(1
0

0
)

2
7

(1
0

0
)

2
4

(1
0

0
)

2
0

(1
0

0
)

1
2

(1
0

0
)

N
r.

d
if

fe
re

n
t

p
es

ti
ci

d
es

(F
/I

/

H
)b

)

7
(6

/1
/0

)
9

(7
/1

/1
)

7
(5

/1
/1

)
8

(6
/2

/0
)

9
(4

/2
/3

)
1

7
(9

/4
/4

)
1

4
(9

/2
/3

)
2

3
(1

1
/5

/7
)

2
5

(1
4

/5
/6

)
1

8
(1

2
/3

/3
)

4
4

(2
7

/1
2

/5
)

4
0

(2
7

/1
0

/3
)

3
4

(2
6

/4
/4

)

M
in

/m
ax

am
o

u
n

t
o

f

p
es

ti
ci

d
es

p
er

sa
m

p
le

0
/2

0
/7

2
/5

0
/6

0
/5

0
/8

0
/7

0
/1

1
1

/1
0

1
/9

1
/1

8
4

/2
0

4
/1

6

R
an

g
e

o
f

co
n

ce
n

tr
at

io
n

s

(m
in

-m
ax

;
μg

/

k
g

)

2
.3

–
1

3
.2

2
.0

–
2

9
4

.6
2

.0
–

1
1

.1
2

.0
–

1
0

5
.3

2
.1

–
1

9
.2

2
.0

–
3

6
4

.3
2

.2
–

1
9

1
.3

2
.1

–
8

7
1

.6
2

.1
–

3
1

5
.6

2
.0

–
1

,4
9

6
.4

2
.0

–
8

4
1

.7
2

.0
–

7
,1

7
7

.7
2

.0
–

6
,8

3
1

.3

m
in

-m
ax

tP
H

Q
d

a
y

(n
)

=

ti
m

es
�

5
0

0
.0

0
–

0
.7

8
0

.0
0

–
4

6
.0

6
0

.1
9

–
6

.8
5

0
.0

0
–

9
.8

7
0

.0
0

–
0

.4
2

0
.0

0
–

1
2

6
.5

0
(2

)
0

.0
0

–
7

5
.7

8
(2

)
0

.0
0

–
1

0
7

.5
1

(1
)

0
.0

0
–

2
2

1
.9

9
(1

)
0

.0
0

–
3

5
.6

7
0

.0
4

–
5

3
4

.8
1

(1
�

5
0

0
)

0
.2

0
–

6
1

5
.4

8
(3

,

3
�

5
0

0
)

0
.6

8
–

1
2

5
.8

9

(6
)

M
o

n
th

w
it

h

m
o

st
p

es
ti

ci
d

e

d
et

ec
ti

o
n

s
(%

o
f

an
n

u
al

d
et

ec
ti

o
n

s)

M
ay

(6
3

.6
)

M
ay

(9
6

.8
)

A
p

ri
l

(8
4

)
M

ay
(4

5
.5

)
M

ay
(1

0
0

)
M

ay
(4

6
.4

)
M

ay
(6

5
.1

)
A

p
ri

l
(4

8
.4

)
M

ay
(5

1
.2

)
M

ay
(4

5
.8

)
Ju

n
e

(4
1

.5
)

Ju
n

e
(3

9
.6

)
M

ay
(5

6
.9

)

S
u

b
st

an
ce

s
w

it
h

th
e

h
ig

h
es

t

co
n

ce
n

tr
at

io
n

s:

m
ax

.

co
n

ce
n

tr
at

io
n

(μ
g

/k
g

)

tr
if

lo
x

y
st

ro
b

in
:

1
3

.2
,

th
ia

cl
o

p
ri

d
:

1
2

.3
,

p
en

cy
cu

ro
n

:

4
.5

th
ia

cl
o

p
ri

d
:

2
9

4
.6

,

d
im

o
x

y
st

ro
b

in
:

1
6

1
.6

,
b

o
sc

al
id

:

7
5

.9

fl
u

az
if

o
p

1
1

.1
,

m
et

co
n

az
o

l:

8
.9

,

d
im

o
x

y
st

ro
b

in
:

7
.4

th
ia

cl
o

p
ri

d
:

1
0

5
.3

,

d
im

o
x

y
st

ro
b

in
:

9
3

.8
,

b
o

sc
al

id
:

6
2

.6

fl
u

o
p

y
ra

m
:
1

9
.2

,

p
ic

ar
id

in
:

1
8

.7
,

p
ro

th
io

co
n

az
o

le
-

d
es

th
io

:
8

.7

th
ia

cl
o

p
ri

d
:

3
6

4
.3

,

tr
ia

d
im

en
o

l:

7
2

.7
,

te
b

u
co

n
az

o
le

:

5
0

.0

th
ia

cl
o

p
ri

d
:

1
9

1
.3

,

fl
u

o
p

y
ra

m
:

1
3

4
.3

,

tr
ia

d
im

en
o

l:
8

0
.8

fl
u

az
if

o
p

:
8

7
1

.6
,

th
ia

cl
o

p
ri

d
:

1
1

1
.9

,

fl
u

o
p

y
ra

m
:
5

9
.7

p
ic

ar
id

in
:

3
1

5
.6

,

fl
u

ro
x

y
p

y
r-

m
et

h
y
l:

2
4

2
.5

,

th
ia

cl
o

p
ri

d
:

1
0

3
.4

b
o

sc
al

id
:
1

,4
9

6
.4

,

d
im

o
x

y
st

ro
b

in
:

5
7

6
.2

,
p

ic
ar

id
in

:

4
1

2
.0

d
im

et
h

o
m

o
rp

h
:

8
4

1
.7

,
M

C
P

A
:

6
6

7
,.
0

th
ia

cl
o

p
ri

d
:

4
7

0
.4

fe
n

h
ex

am
id

:

7
,1

7
7

.7
,

d
im

et
h

o
m

o
rp

h
:

2
,6

7
8

.4
,

ip
ro

v
al

ic
ar

b
:

9
7

4
.7

fl
u

az
if

o
p

:

6
,8

3
1

.3
,

cy
p

ro
d

in
il

:

1
,2

8
2

.6
,

fl
u

d
io

x
o

n
il

:

1
,0

8
5

.1

M
o

st
fr

eq
u

en
t

p
es

ti
ci

d
es

;
(n

)
=

ti
m

es
d

et
ec

te
d

p
er

y
ea

r

th
ia

cl
o

p
ri

d
(5

)
th

ia
cl

o
p

ri
d

/

fl
u

az
if

o
p

(e
ac

h

7
),

b
o

sc
al

id
(4

)

m
et

co
n

az
o

l
(8

),

fl
u

az
if

o
p

(6
),

th
ia

cl
o

p
ri

d
(5

)

th
ia

cl
o

p
ri

d
/

cy
p

ro
d

in
il

(e
ac

h

9
),

b
o

sc
al

id
(7

),

p
ro

th
io

co
n

az
o

le
-

d
es

th
io

(6
)

p
ro

th
io

co
n

az
o

le
-

d
es

th
io

(4
),

fl
u

o
p

y
ra

m
/

p
ro

su
lf

o
ca

rb

(e
ac

h
2

)

th
ia

cl
o

p
ri

d
(2

5
),

te
b

u
co

n
az

o
le

(1
7

),

p
ro

th
io

co
n

az
o

le
-

d
es

th
io

(1
5

)

p
ro

th
io

co
n

az
o

le
-

d
es

th
io

(1
6

),

th
ia

cl
o

p
ri

d
(1

4
),

d
im

o
x

y
st

ro
b

in

(1
1

)

th
ia

cl
o

p
ri

d
(1

3
),

p
ro

th
io

co
n

az
o

le
-

d
es

th
io

(1
2

),

fl
u

az
if

o
p

(1
1

)

p
ro

th
ic

o
n

az
o

le
-

d
es

th
io

(1
9

),

p
ic

ar
id

in
/

th
ia

cl
o

p
ri

d

(e
ac

h
1

3
),

p
en

d
im

et
h

al
in

/

te
b

u
co

n
az

o
le

(e
ac

h
1

0
)

p
ic

ar
id

in
(2

3
),

p
ro

th
io

co
n

az
o

le
-

d
es

th
io

(1
3

),

te
b

u
co

n
az

o
le

(9
)

th
ia

cl
o

p
ri

d
(2

1
),

B
o

sc
al

id
(1

6
),

te
b

u
co

n
az

o
le

(1
2

)

cy
p

ro
d

in
il

/

fl
u

d
io

x
o

n
il

(e
ac

h
1

7
),

th
ia

cl
o

p
ri

d
(1

5
),

b
o

sc
al

id
(1

3
)

th
ia

cl
o

p
ri

d

(1
0

),

p
ro

su
lf

o
ca

rb

(9
),

fl
u

az
if

o
p

(8
)

a
)

C
o

m
p

ar
is

o
n

o
f

si
te

s
b

as
ed

o
n

th
e

L
O

D
/L

O
Q

as
o

b
ta

in
ed

b
y

L
U

F
A

S
p

ey
er

.
b

)
F

=
fu

n
g

ic
id

es
,
I

=
in

se
ct

ic
id

es
,

H
=

h
er

b
ic

id
es

h
tt

p
s:

//
d
o
i.o

rg
/1

0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
1
9
9
9
9
5
.t
0
0
2

Pesticide residues in pollen loads of honeybees

PLOS ONE | https://doi.org/10.1371/journal.pone.0199995 July 6, 2018 9 / 21

https://doi.org/10.1371/journal.pone.0199995.t002
https://doi.org/10.1371/journal.pone.0199995


Pollen hazard quotient

Pollen hazard quotients (PHQ) are calculated based on LD50 values and therefore represent the

toxicity of substances. Hence, very toxic substances yield in high PHQ values. The PHQ values

ranged between 0.002 and 600 within all observation years, sites and pesticides. At “meadow”

site the lowest PHQ were calculated and did not exceed relevant thresholds (max. PHQ 25.56).

The “relevant threshold of 50” [31] has been exceeded six times by the pesticides methio-

carb and dimethoate at “grain” site (max. 164.41) and twelve times at “fruit” site by the pesti-

cides dimethomorph, fenhexamid, fluazifop and indoxacarb. Clothianidin and imidacloprid

exceeded at “fruit” site four times even a threshold of 500 (max. 600; Table 2) during the three

years of observation.

Statistical analysis of PHQ values for some pesticide groups (DMI-fungicides, QoI-fungi-

cides and pyrethroids) did not significantly differ between “meadow” and “grain”, yet both

sites differed significantly in all groups from “fruit” site (Table 3).

Considering the sum of all PHQs per sample and day, which represents the total pesticide

load (tPHQday), seven samples of “grain” (4.9%), and 13 samples of “fruit” (23.2%) exceed a

tPHQday value of 50, of which values of four days even exceed a threshold of 500 (Table 2). In

general, statistical differences were found amongst the three sites but not between years and

months (GLM, S2 = 34.265133, d.f. = 2, 11, p< 0.0001). However, looking at each year, signifi-

cant differences among sites were found only in 2013 and 2014, with “fruit” site being different

from the other sites (2013: F = 6.6353, d.f. = 2, 69, p = 0.0023 and 2014: F = 10.8483, d.f. = 2,

38, p = 0.0002, respectively).

Taking the sum of all fungicides and insecticides into account, the factor site shows signifi-

cant differences, while year and month do not differ, with the “fruit” site showing a significant

heavier pesticide load compared to both other sites (GLM, S2 = 34.974217, d.f. = 2, 11,

p< 0.0001 and GLM, S2 = 18.83227, d.f. = 2, 11, p< 0.0001, respectively).

Maximum residue limit

Considering the maximum residue limits (MRL) of pesticides in apicultural products, 27 dif-

ferent pesticides exceeded their limits (three pesticides at “meadow”, 10 pesticides at “grain”,

25 pesticides at “fruit”). In total, up to 2, 8, or 15 samples in a single year for “meadow”,

“grain”, and “fruit”, respectively, would have been classified “not marketable” (Table 1, Fig 2).

In depth residue analysis of color-sorted pollen pellet fractions

In depth analysis of nine previously analyzed samples (each corresponds here to a composite

sample) revealed pesticide contamination caused by predominantly one plant species. Each of

Table 3. Honeybee risk exposure to pesticide groups as expressed by PHQ. PHQ values of single detections in the

same sample of the same pesticide group were added (mean ± SEM). One-way-ANOVA, followed by a pairwise Stu-

dent t-test at α = 0.05.

Pesticide groupsa) meadow grain fruit F d.f. p

DMI–fungicidesb) 0.033 ± 0.087 a 0.205 ± 0.066 a 0.905 ± 0.105 b 22.4721 2, 278 < 0.0001

QoI–fungicidesb) 0.065 ± 0.186 a 0.171 ± 0.141 a 0.912 ± 0.225 b 4.9262 2, 278 0.0079

non bee-toxic neonicotinoidsc) 0,597 ± 0,425 a 1,753 ± 0,322 b 4,287 ± 0,514 c 15.6119 2, 278 <0.0001

Pyrethroids 0.723 ± 0.378 a 0.010 ± 0.286 a 1.989 ± 0.458 b 6.7775 2, 278 0.0013

a) means in a line followed by the same letter do not differ significantly.
b) Abbreviations see Table 2
c) Acetamiprid, thiacloprid; clothianidin and imidacloprid were detected only at “fruit” site

https://doi.org/10.1371/journal.pone.0199995.t003
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the nine chosen samples was sorted according to pollen pellet color resulting in five to twelve

fractions of plant species (correspond here to fraction). In many cases, active substance con-

centrations in the fractions exceeded the concentrations found of the same substances in the

composite sample (e.g. up to 1,600 x for fenhexamid in the sample from June 14, 2012)

(Table A-I in S5 Tables). Some substances were detected in low concentrations in the fractions

that were not found in the composite samples before. Frequently, the same substances are

detected in multiple fractions and varying widely in the range of their concentrations. The

Fig 2. Number of pollen samples for each site and year that exceed maximum residue limits for apicultural

products (MRL, μg/kg) for at least one pesticide per sample. “Meadow” and “grain” were sampled from 2012–2016,

“fruit” was sampled 2012–2014.

https://doi.org/10.1371/journal.pone.0199995.g002

Fig 3. Box-and-whisker-plot of the range of concentrations (μg/kg) of pesticides being identified in at least 8 sub-

fractions of the composite sample (06.06.2013) of “fruit” site. Extreme concentrations exceeding 120 μg/kg:

azoxystrobin 567.8 μg/kg, boscalid 207.5 μg/kg, cyprodinil 452.3 μg/kg, fenhexamid 4,452.4 μg/kg, tebuconazole

2,589.3 μg/kg, trifloxystrobin 589.4 μg/kg. Circles and stars indicate outliers.

https://doi.org/10.1371/journal.pone.0199995.g003
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range of concentrations is shown in a box-and-whisker-plot exemplarily for one date

(06.06.2013, “fruit” site), for pesticides being detected in at least eight sub-fractions (Fig 3).

Furthermore, single crops, such as Brassicae sp. or grapevine (Vitis vinifera L.) show high pesti-

cide pollution (Figs 4 and 5). Some tree or weed species, such as false acacia (Robinia pseudoa-
cacia L.), maple (Acer L.) or Ranunculus L. or dandelion (Taraxacum F. H. Wigg.), were also

contaminated, even though in lower concentrations. However, in some commonly bee polli-

nated weed species, such as Achillea L., high concentrations of pesticides could be detected

(Fig 6).

Fig 4. Comparison of the concentrations of the same pesticides detected in the composite sample of 03.05.2012 of

“fruit” site and in the sub-fraction Brassicae sp. of the same sample.

https://doi.org/10.1371/journal.pone.0199995.g004

Fig 5. Comparison of the concentrations of the same pesticides detected in the composite sample of 14.06.2012 of

“fruit” site and in the sub-fraction V. vinifera of the same sample. Dimethomorph has an extreme value with

3,747.70 μg/kg in the sub-fraction.

https://doi.org/10.1371/journal.pone.0199995.g005
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Discussion

This long-term study provides for the first time detailed information on the daily pesticide

intake into honeybee colonies through pollen foragers during the agronomic active season.

We thereby compared three agricultural landscapes with different crops and different chemical

crop protection intensity over a period of five years. We were able to show the changes during

the seasons, and the range of pesticide concentrations within the months, as well as the chang-

ing pesticide combinations.

Remarkable differences in residue levels between sites depending on the agricultural inten-

sity were found. Surprisingly at the “meadow” site with huge portions of grassland and

meadow orchards we found different pesticides in all observation years. However, in compari-

son to the other sites it showed the lowest intensity of pesticide use. We found many samples

without any detectable contamination and the few positive samples only with low concentra-

tions of pesticides. The “grain” site shows already a higher pesticide use with greater portions

of grains and maize in the surrounding fields. More substances and higher concentrations of

pesticides were measured, especially in spring months. Finally, the “fruit” site, with high por-

tions of permanent crops, such as grapes, is the site with the highest pesticide loads, through-

out all months and years of monitoring and 100% contaminated samples, although this site

was sampled only three years.

Even though we found the highest concentrations at “fruit”, in comparison with other stud-

ies, these concentrations are still on a low level. The highest concentrations found in our study,

also being in mg/kg, were up to 14 times lower compared to the maximum concentrations

reported by Stoner and Eitzer [31], Traynor et al. [24] and Mullin et al. [23], where pesticide

concentrations exceeded 10,000, 20,000 and even 90,000 μg/kg. This is in accordance with an

Fig 6. Comparison of the concentrations of the same pesticides detected in the composite sample of 28.05.2012 of

“fruit” site and in the sub-fraction Achillea of the same sample.

https://doi.org/10.1371/journal.pone.0199995.g006
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evaluation by Johnson et al. [22] who affirms that it is not unusual to find mg/kg residue levels

in hive matrices or collected goods of honeybees when foraging in conventionally farmed land

or as pollinators in monocultures with no alternative flowers.

Consequently, PHQ calculations reflected the same image. The higher the cultivation inten-

sity of a field, the more pesticides are used, considering frequency of applications and amount

of different substances used. Hence, PHQ are higher at sites with more chemical crop treat-

ments, due to higher concentrations and a higher frequency of comparatively more bee toxic

substances. Accordingly, the concentrations measured at the “meadow” site and the toxicity of

the detected substances resulted in lower PHQ values, not even coming up the relevant thresh-

old of PHQ = 50. PHQ of 50 was exceeded only at “grain” and fruit”, when substances are cate-

gorized harmful to honeybees (methiocarb, dimethoate, clothianidin, imidacloprid) or when

measured concentrations were in mg/kg (fluazifop-butyl, dimethomorph, fenhexamid). In

general, PHQ values calculated from our pollen samples, are low compared to other studies.

Here, PHQs of 500 are exceeded only four times, with 600 being the highest. Traynor et al.

[24] calculated in bee bread samples from citrus a PHQ of> 2,000, McArt et al. [57] calculated

from beebread from apple orchards a PHQ > 4,000, and Stoner and Eitzer [31] calculated

maximum PHQ values of> 40,000.

However, to estimate the possible toxicity for bees, PHQs are only estimates. Stoner and

Eitzer [31] were concerned that the picture might be misleading, as honeybee larvae are

exposed to more pollen in a very susceptible stage of development [35]. For example, the insec-

ticide fenoxycarb has a low toxicity for adult bees (LD50 = 200 μg/bee) which sums up for a low

PHQ. Yet studies have shown, that this pesticide is very toxic when ingested by larvae [58–61].

Also, Traynor et al. [24] noted, that PHQ calculations are only simplistic reflections, as pesti-

cide interactions, such as synergism or antagonism are not taken into account, as well as

potential metabolism or detoxification of the substances. For this reason, Sanchez-Bayo and

Goka [62] included also synergistic effects and frequency of pesticide occurrence into their

risk calculations.

Synergism or antagonism of substances may occur, when different substances are exposed

to honeybees at the same time. Here, too, we found multiple different substances in one sam-

ple, adding up to dozens of different substances during the year inside the hive, as other

authors reported previously [23,24,33,34]. Negative side-effects have been proven for e.g. tank

mixtures of pyrethroids with sterol biosynthesis inhibiting fungicides (SBI—fungicides) or SBI

—fungicides and neonicotinoids[63–68].

In addition to synergistic or additive effects, side-effects by sublethal pesticide concentra-

tions are possible as well. Even though we have shown, that pesticide concentrations exceeded

mg/kg in few samples, pesticide detections occurred in sublethal concentrations. Sublethal

effects on pesticides, i.e. insecticides have been investigated in honeybees or other pollinators.

It is known, that behavior and cognitive performance is impaired, such as learning, memory,

homing or flight behavior [36,37,69–73]. In addition, there are changes in biochemistry,

growth and development, gene expression [39–42,74,75] or social interactions [38,76]. Even

though most effects are determined in worker bees, effects on queen fecundity or sperm viabil-

ity are reported, too [77,78].

However, as eusocial honeybee colonies are considered to be a superorgansm, they are able

to tolerate or buffer stressors such as pesticides or sublethal effects better in comparison to soli-

tary living pollinators [79]. Wild bees use few pollen pellets for provisioning single larvae and

these consume pollen directly without a nurse bee in between. Nonetheless, residue analysis of

single color fractions revealed sometimes even higher concentrations in certain plant species

in comparison to the whole daily collected pollen sample. Generally speaking, pollen of single

crops, such as grapes (V. vinifera) or Brassica sp. show more pesticides and higher residue
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values. Furthermore, pesticides found in pollen pellets of trees such as horse chestnut (Aesculus
hippocastanum L.), maple (Acer) or false acacia (R. pseudoacacia) or wild flowers and compan-

ion plants, respectively, indicate applications during flowering or drift. In addition, from high

pesticide concentrations in weed species, such as Achillea, direct applications in the field, aim-

ing probably towards fungal diseases in grains and Achillea may be inferred. Hence, solitary

bees, that only use small amounts of a certain pollen source for the provision of their nests, are

generally more endangered in such intensively cultivated agroecosystems [9,80]. Wild bees not

only contribute to biodiversity but are also important indicators of environmental health and

should not be harmed by pesticides [5,81]. Therefore, not only honeybees but other species of

bees should be taken into consideration when crop protecting substances are tested for regis-

tration and risk assessments of pesticides should be revised [82].

Not only in the daily collected samples but also in their color sorted fractions, we found 12

substances that are either categorized harmful to honeybees or are not supposed to be exposed

to honeybees. For example, picaridin is not a crop protection agent, rather than a common

ingredient of commercially available insect repellents. On inquiry, the beekeeper confirmed

using a repellent to keep away ticks when working outside at the apiary. This substance on legs

and arms probably could contaminate the pollen load during pollen collection. However, this

compound is not known to be harmful to honeybees [83]. Another example is seed coating,

where an exposure to bees is not expected. However, during sowing process, substances used

for seed treatments may be abraded, emitted by machinery and cause dust-drift to adjacent

flowering plants [12,84]. This could explain the frequent detection of methiocarb, fuberidazole

or pencycuron in our spring samples at the time of sowing. Two other substances, coumaphos

and thymol, are registered as varroacides for in-hive applications. These substances might vol-

atilize inside the hive and settle on the hairs of the honeybee. When combing through the hair

while making pollen packages the substances could be incorporated into the pollen loads.

Toxic neonictinoids, i.e. clothianidin and imidacloprid, have been found at the “fruit” site as

well a few times with a maximum concentration of 2.4 μg/kg and therefore also below the level

considered for acute honey bee toxicity. Our data do not reveal a clear source for the contami-

nation of pollen with these systemic pesticides. As these neonicotinoids are persistent in soil,

water and non-target plants, the accumulation in the environment from earlier use cannot be

excluded [19,85,86]. Pollen from oilseed rape may be contaminated. However, clothianidin

was not found in Brassica sp. sub-fractions in our analyses. Dust abrading from seed treated

fodder beet or beet root, which is sown at that time, seems unlikely due to abrasion-proof seed

pilleting, but can also not be excluded. We can only speculate, from which plants these detec-

tions originate, and further in-depth analyses should be conducted. As clothianidin is regis-

tered as spray application in some crops, an unintentional contamination of flowering weeds

or shrubs is imaginable. Thus, single contaminated pollen loads might have contaminated the

composite sample.

“Cocktails” of pesticides in pollen might raise concern for human health, too, as pollen pel-

lets are used as nutritional supplements [87]. Looking at maximum residue limits for apicul-

tural products, single samples at every site exceeded the limits for some substances leading to

an exclusion of the respective pollen samples from further sales. MRL are based on residue

data when pesticides are applied correctly according to use instructions [54]. Nonetheless,

directly collected pollen by honeybees in the field from treated plants were not considered

when thresholds for apicultural products were defined. Therefore, the current agricultural

practice makes it impossible for beekeepers to merchandise pollen collected in intensive land-

scapes–independent of whether there is an impact on human health or not.

Nonetheless, concluding from the majority of concentrations and pesticides found, we

assume no misuse of pesticides by the farmers at our three sites and in the observation period,
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which would lead to direct lethal effects. However, further improvements of seed coatings or

sowing technique should be considered. In any case, flowering shrubs, weeds or ruderal plants

should be considered while applying chemicals, as well as drift of substances to flowering

plants nearby.

The study at hand supports results of other researchers handling pesticide residues in pollen

or bee bread samples. We further contribute more details on changes on daily and monthly

levels of pesticide exposure. As the detected pesticide concentrations are in sub-lethal levels,

we find no reason to believe, that the data published here are to be blamed for higher winter

colony losses. Nonetheless more research is necessary in this regard, as they raise concern on

chronic effects of these sub-lethal concentrations as well as effects of pesticide mixtures or

interactions of pesticides with diseases or pathogens. Some studies already dealt with these

questions [45,88–91] even though most investigations still engage in only one endpoint and

not in a combination of all three aspects. However, further research needs to be done in order

to assess possible risks of chronic ingestion of pesticide mixtures in sub-lethal concentrations

on honeybees and other pollinators. Our study gives detailed information to be used to design

experiments based on field realistic data.
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