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EDITORIAL COMMENT
Connecting the Dots for Connective
Tissue Growth Factor Roles in
Cardiac Wound Healing After
Myocardial Infarction*
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I n response to myocardial infarction (MI), the for-
mation of scar comprised of extracellular matrix
(ECM) is essential to maintain structure of the

left ventricle (LV); however, too much or different
ECM composition can generate an LV that is overly
stiff and increases pre-load to the myocardium. Con-
nective tissue growth factor (CTGF) (also known as
CCN2) is a matricellular protein that influences fibro-
blast activation, cell migration, and cardiomyocyte
hypertrophy (1). Cardiac fibroblast-mediated produc-
tion of macrophage-recruiting chemokines are
induced by CTGF (2,3). CTGF is low in the healthy
adult heart and is markedly up-regulated in response
to cardiac injury (4,5). CTGF gene expression is
induced as early as 2 days after MI and remains
elevated for up to 8 weeks (4,6). Therefore, under-
standing the mechanisms whereby CTGF regulates
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LV remodeling will provide insight into cardiac
wound healing and help to elucidate additional tar-
gets that may be of therapeutic use.
In the study by Vainio et al. (7) in this issue of
JACC: Basic to Translational Science, the potential of
CTGF monoclonal antibody (mAb) therapy was tested
in 3 different study protocols in mice: one inhibiting
during the initial inflammation and scar formation
period, a second evaluating chronic administration
effects in a permanent occlusion MI model, and the
third examining acute effects following ischemia and
reperfusion (7). CTGF mAb during the early prolifer-
ative phase of MI limited infarct expansion, increased
survival, and limited the development of LV systolic
dysfunction. Starting administration later reduced
remote fibrosis and myocyte hypertrophy. The
mechanisms of action were to modulate develop-
ment, inflammation, and ECM genes to promote
repair. Jnk signaling in fibroblasts was identified as a
major node of action.

This paper is interesting because CTGF is known
for its role in activating fibroblast polarization to an
ECM synthesizing cell phenotype (8), yet its inhibi-
tion enhanced rather than impaired repair. This
report also highlights that timing is a crucial factor for
consideration in drug administration, as different
benefits were seen when the mAb was started at 3
days versus 7 days after MI and was evaluated at 1
week versus 7 weeks.

Protocol 1. The first protocol started mAb admin-
istration at 3 days after MI and evaluated at day 7
after MI. Under this administration, they observed
less reduction in ejection fraction at 1 week, indi-
cating that CTGF treatment slowed the progression of
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LV dilation. There was increased survival, although
the cause was not given; rupture, acute heart failure
indicated by lung congestion, and sudden cardiac
death due to arrhythmias are the 3 causes typically
observed. There was less infarct scar thinning and
infarct expansion. From these findings, the authors
conclude that enhanced ejection fraction and frac-
tional shortening meant improved systolic physi-
ology. Improved systolic physiology indicates
myocyte actions versus diastolic physiology that in-
dicates ECM differences. Because diastolic function
also contributes to these equations and neither alone
showed differences, the effect was likely due to the
combination. The improvement in systolic properties
is not likely due to preservation of myocytes in the
infarct region, because initiation at 3 days after MI
would not limit ischemic injury. The effect, therefore,
was on surviving myocytes in the remote and border
zones. Because treatment was started 3 days after MI
surgery, it would have been good to see the day 3
echocardiography results to show that the 2 groups
started out treatment looking the same. Day 7 was an
appropriate time to evaluate, as most of inflammation
and ECM responses occur by this time (9).

Protocol 2. The second protocol started mAb
administration 1 week after MI and evaluated at week
7 MI. They observed reduced ECM accumulation (i.e.,
collagen) in the remote region. Myocyte size and LV
mass were reduced, indicating a tempered hypertro-
phic response to MI. Infarct size was not different, as
would be expected since treatment started 1 week
after MI, a time when salvage would not be expected.
RNA-seq showed repair (inflammation and ECM
genes) and development genes increased with mAb
treatment. The 2 most prominent development genes
were Nkx2.5 and Gata4. This protocol revealed
transforming growth factor (TGF) b–independent
signaling stimulated by CTGF, which provides new
targets for therapeutic exploration.

Protocol 3. The third protocol started mAb admin-
istration 24 h before MI (a prevention rather than
inhibition strategy) and evaluated after 30 min
ischemia and 3 or 24 h reperfusion. This protocol
revealed findings that are in contrast to a previous
report using cardiac myocyte-specific overexpression
of rat CTGF, which showed protection from acute
ischemia/reperfusion injury (10). Using the CTGF
mAb strategy, the current study noted protection
with inhibition, opposite the overexpression strategy
used previously. These results highlight that trans-
lational protocols often do not recapitulate genetic
models. We also have seen that matrix metal-
loproteinase-9 null and inhibition strategies show
divergent effects on MI remodeling (11,12),
highlighting the distinction between modifying gene
expression under artificial conditions and using clin-
ically relevant antibody or inhibitor strategies.
Although therapeutic efficacy was not determined by
measuring Ab concentrations in plasma or LV, it is
likely that 100% inhibition was not achieved,
providing another difference from gene deletion
strategies. This protocol shows that the effects of the
antibody are not acute and are not myocyte-centric,
consistent with the other 2 study protocols showing
that inflammation and ECM were the primary mo-
lecular targets.

Combined, the 3 study protocols reveal a lot about
CTGF roles in MI wound healing. Standards have been
set up for ischemia studies, and for the most part
these are met in this study (9). At the same time, there
were a few study limitations that should be noted.
Because all 3 study protocols were distinct, results
cannot be interwoven among them. Protocols 1 and 2
are translational, whereas protocol 3 is preventative.

The heart rate in the sham group (Table S1 in
Vainio et al. [7]) was under 400 beats/min, and frac-
tional shortening was an average of 25%, which is low
for control mice (13). It is unusual for heart rate to
increase with MI in the mouse permanent occlusion
model, and a lack of wall thinning at day 7 after MI is
not typical (9,13). It is likely there was wall thinning
and infarction was achieved, based on the histological
section shown in Figure 2C in Vainio et al. (7). The
results combined indicate some technical issues with
echocardiography acquisition that may be compli-
cating data interpretation.

The 30-min ischemia period was the minimum
time needed to induce infarction, and a lack of effect
may indicate that minimal damage occurred. This
protocol would not mimic the patient scenario, where
30 min to reperfusion is not the usual treatment
window. The early increase in Jun kinase 2 and signal
transducer and activator of transcription (STAT)3 to
then signal fibroblast activation could indicate that
CTGF treatment was stimulating a much earlier acti-
vation than typically seen.

Knockdown of CTGF in cardiac fibroblasts in-
creases expression of CCN5 (3). Whereas CTGF pro-
motes fibroblast activation, ECM accumulation, and
cardiac hypertrophy, CCN5 has opposing effects (5).
CCN5 was not measured in this study, and whether
the improved cardiac outcomes in response to CTGF
mAb are due to suppression of CTGF or up-regulation
of CCN5 would be of interest to determine in future
studies.

Regardless of the study limitations, the study by
the Kerkela team reveals several mechanisms
whereby CTGF is regulating negative components of
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cardiac wound repair after MI through effects on
propagating inflammation and ECM accumulation in
the remote region. This study also highlights the
benefits of using translational protocols to bridge
between genetic mouse models and clinical
application.
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