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Abstract

Rapid distinction between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) tumors is very important in
diagnosis of this disease. Furthermore sequence-derived structural and physicochemical descriptors are very useful for
machine learning prediction of protein structural and functional classes, classifying proteins and the prediction
performance. Herein, in this study is the classification of lung tumors based on 1497 attributes derived from structural
and physicochemical properties of protein sequences (based on genes defined by microarray analysis) investigated through
a combination of attribute weighting, supervised and unsupervised clustering algorithms. Eighty percent of the weighting
methods selected features such as autocorrelation, dipeptide composition and distribution of hydrophobicity as the most
important protein attributes in classification of SCLC, NSCLC and COMMON classes of lung tumors. The same results were
observed by most tree induction algorithms while descriptors of hydrophobicity distribution were high in protein
sequences COMMON in both groups and distribution of charge in these proteins was very low; showing COMMON proteins
were very hydrophobic. Furthermore, compositions of polar dipeptide in SCLC proteins were higher than NSCLC proteins.
Some clustering models (alone or in combination with attribute weighting algorithms) were able to nearly classify SCLC and
NSCLC proteins. Random Forest tree induction algorithm, calculated on leaves one-out and 10-fold cross validation) shows
more than 86% accuracy in clustering and predicting three different lung cancer tumors. Here for the first time the
application of data mining tools to effectively classify three classes of lung cancer tumors regarding the importance of
dipeptide composition, autocorrelation and distribution descriptor has been reported.

Citation: Hosseinzadeh F, Ebrahimi M, Goliaei B, Shamabadi N (2012) Classification of Lung Cancer Tumors Based on Structural and Physicochemical Properties of
Proteins by Bioinformatics Models. PLoS ONE 7(7): e40017. doi:10.1371/journal.pone.0040017

Editor: Hassan Ashktorab, Howard University, United States of America

Received March 27, 2012; Accepted May 30, 2012; Published July 19, 2012

Copyright: � 2012 Hosseinzadeh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: mebrahimi14@gmail.com

Introduction

Lung cancer is a leading cause of deaths from cancer worldwide.

Among lung cancers, non-small cell lung cancer (NSCLC) affects

about 80% of patients and, when diagnosed at a localized stage,

the 5-year survival is about 50%, whereas it decreases to 8% and

3% in the case of lymph node involvement or metastasis,

respectively [1]. Inhalation of tobacco smoke and other environ-

mental carcinogens is considered a major etiologic factor [2].

Epidemiologic studies continue to provide evidence that genetic

variability in the individual response to carcinogens might modify

the susceptibility to cancer. Polymorphisms of genes involved in

detoxification of carcinogens, and those that modulate and repair

DNA damage after carcinogen exposure, have been linked to the

risks of lung cancer [3].

Patients with non-small cell lung tumors (squamous, AC, and

large cell) are treated differently from those with small cell tumors,

therefore pathological distinction between these two types of lung

tumor is very important. The gene expression patterns made

possible the sub classification of adenocarcinoma into subgroups

that correlated with the degree of tumor differentiation as well as

patient survival. Gene expression analysis thus promises to extend

and refine standard pathologic analysis [4]. It has been widely

accepted that lung carcinogenesis is a multistep process and

phenotypic changes resulted from activation of oncogenes and

inactivation of tumor suppressor genes [5]. Non-small cell lung

cancer (NSCLC) is the leading cause of cancer mortality

worldwide. At present no reliable biomarkers are available to

guide the management of this condition. Microarray technology

may allow appropriate biomarkers to be identified but present

platforms are lacking disease focus and are thus likely to miss

potentially vital information contained in patient tissue samples. A

combination of large-scale in-house sequencing, gene expression

profiling and public sequence and gene expression data mining

were used to characterize the transcriptome of NSCLC [6].

Identifying a useful prognostic biologic and molecular marker is

therefore important to evaluate the biologic and molecular

characteristics that differed from tumor, lymph node, metastasis

TNM staging in non-small cell lung cancer (NSCLC) in order to

predict prognosis and establish preventive methods [7]. A better

understanding of the molecular pathogenesis of SCLC would likely

suggest strategies for earlier diagnosis and new molecular-targeted

therapies [8].
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In recent studies, some classifiers are used for classification of

cancer genes or proteins, for example KNN classifier can have

some utility for some microarray classification problems, acting on

the entire non-dimension reduced dataset. They show that

increasing the dimensionality of these sets (considering pairs,

triples or four-tuples, rather than individual transcript sequences

one by one) can lead to significant improvements with each

dimension gained [9]. In other study, features of proteins

expressed in malignant, benign and both cancers were compared

using different screening techniques, clustering methods, decision

tree models and generalized rule induction (GRI) algorithms to

look for patterns of similarity in two benign and malignant breast

cancer groups [10] or developing and testing a naive Bayesian

classifier based on sequence properties of the genes and the

molecular function and biological processes in which they are

involved in order to unveil their unique features that can assist

towards the identification of new candidate cancer genes [11] or

implementing a systematic method that predicts cancer involve-

ment of genes by integrating heterogeneous datasets by relying on:

(i) protein-protein interactions; (ii) differential expression data; and

(iii) structural and functional properties of cancer genes [12].

Also in the classification of lung cancer, in several studies, the

data mining models have been used. For example a classification

and regression tree (CART) model was trained to classify 41

clinical specimens as disease/nondisease based on 26 variables

computed from the mass-to-charge ratio (m/z) and peak heights of

proteins identified by mass spectroscopy of blood serum samples

from people with and without lung cancer [13], or a training-

testing approach to the molecular classification of resected non-

small cell lung cancer that in this study, a training-testing approach

has been used to test the reliability of cDNA microarray-based

classifications of resected human non-small cell lung cancers

(NSCLCs) analyzed by cDNA microarray [14]. In the other study,

classification of individual lung cancer cell lines (SCLC and

NSCLC) has been performed based on DNA methylation markers

by using of linear discriminant analysis and artificial neural

networks, and in the result, this work supports the promise of ANN

analysis of DNA methylation data as a powerful approach for the

development of automated methods for lung cancer classification

[15]. In another study lung cancer gene expression database

analysis incorporated prior knowledge with support vector

machine-based classification method, together with the application

of support vector machine as the discriminant approach, and

a method proposed that incorporated prior knowledge into cancer

classification based on gene expression data to improve accuracy

[16]. To automatically classify lung tumor-node-metastases (TNM)

cancer stages from free-text pathology reports using symbolic rule-

based classification. The accuracy measure and confusion matrices

were used to evaluate the TNM stages classified by the symbolic

rule-based system. The system was evaluated against a database of

multidisciplinary team staging by decisions and a machine

learning-based text classification system using support vector

machines [17]. Sequence-derived structural and physicochemical

features have frequently been used in the development of statistical

learning models for predicting proteins and peptides of different

structural, functional and interaction profiles.

PROFEAT (Protein Features) is a web server for computing

COMMONly-used structural and physicochemical features of

proteins and peptides from amino acid sequence [18]. Sequence-

derived structural and physicochemical features have frequently

been used for predicting protein structural and functional classes

[19,20,21,22,23], protein–protein interactions [24,25,26], sub-

cellular locations [27,28] and peptides of specific properties [29]

from their sequence. These features are highly useful for

representing and distinguishing proteins or peptides of different

structural, functional and interaction profiles, which is essential for

the successful application of statistical learning methods in

predicting the structural, functional and interaction profiles of

proteins and peptides irrespective of sequence similarity [30].

In this study, with attention to the importance of classification of

lung tumors in diagnosis and treatment of this disease and

application and usefulness of sequence-derived structural and

physicochemical features of proteins, classification of 2 types of

lung tumors based on the structural and physicochemical

properties of proteins investigated by using of bioinformatics and

data mining tools.

Materials and Methods

Data Preparation
Microarray analysis on GSEA db (Gene Set Enrichment

Analysis database) used to extract genes involved in either type

of lung tumors (SCLC or NSCLC). Some genes were COMMON

in both tumors so named as COMMON set. Proteins for each

group of genes (SCLC=59, NSCLC=30 or COMMON=25)

extracted by DAVID server (http://david.abcc.ncifcrf.gov) and

protein sequences extracted from UniProt Knowledgebase (Swiss-

Prot and TrEmble) database. One thousands and ninety seven

protein features or attributes computed by PROFEAT web

(http://jing.cz3.nus.edu.sg/cgi-bin/prof/prof.cgi) including struc-

tural and physicochemical protein. An index Fi.j.k.l is used to

represent the lth descriptor value of the kth descriptor of the jth

feature in the ith feature group, which serves as an easy reference

to the PROFEAT manual provided in the server homepage and

a lists of these feature groups showed in Table S1 (details have

presented in Appendix S1) [18]. A dataset of these protein features

was imported into Rapid Miner (Rapid Miner 5.0.001, Rapid-I

GmbH, Stochumer Str. 475, 44227 Dortmund, Germany)

software, and the type of tumor (SCLC, NSCLC or COMMON)

was set as the target or label attribute.

Data Cleaning
Duplicate features removed by comparing all examples with

each other on the basis of the specified selection of attributes (two

examples were assumed equal if all values of all selected attributes

were equal). Then useless attributes removed from the dataset.

Numerical attributes which possessed standard deviations less than

or equal to a given deviation threshold (0.1) assumed as to be

useless and removed. Finally, correlated features (with Pearson

correlation greater than 0.9) omitted. After cleaning, the number

of attributes and records decreased and this database labeled as

Final Cleaned database (FCdb).

Attribute Weighting
To identify the most important features and to find the possible

patterns in features that contribute to lung cancer tumors, 10

different algorithms of attribute weightings were applied to the

cleaned dataset (FCdb) as described below.

Weight by information gain. This operator calculated the

relevance of a feature by computing the information gain in class distribution.

Weight by information gain ratio. This operator calculated the

relevance of a feature by computing the information gain ratio for the class

distribution.

Weight by rule. This operator calculated the relevance of a feature by

computing the error rate of a OneR Model on the example set without this

feature.

Lung Cancer Prediction Based on Protein Attributes
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Weight deviation. This operator created weights from the standard

deviations of all attributes. The values were normalized by the average, the

minimum, or the maximum of the attribute.

Weight by chi squared statistic. This operator calculated the

relevance of a feature by computing, for each attribute of the input example set,

the value of the chi-squared statistic with respect to the class attribute.

Weight by Gini index. This operator calculated the relevance of an

attribute by computing the Gini index of the class distribution, if the given

example set would have been split according to the feature.

Weight by uncertainty. This operator calculated the relevance of an

attribute by measuring the symmetrical uncertainty with respect to the class.

Weight by relief. This operator measured the relevance of features by

sampling examples and comparing the value of the current feature for the nearest

example of the same and of a different class. This version also worked for

multiple classes and regression data sets. The resulting weights were normalized

into the interval between 0 and 1.

Weight by SVM (Support Vector Machine). This operator

used the coefficients of the normal vector of a linear SVM as feature weights.

Weight by PCA (Principle Component Analysis). This

operator used the factors of the first of the principal components as feature

weights.

Attribute Selection
After attribute weighting models ran on the FCdb, each protein

attribute (feature) gained a value between 0 and 1, which revealed

the importance of that attribute with regards to a target attribute

(type of tumors). All variables with weights higher than 0.50 were

selected and 10 new datasets created. These newly formed datasets

were named according to their attribute weighting models

(Information gain, Information gain ratio, Rule, Deviation, Chi

Squared, Gini index, Uncertainty, Relief, SVM and PCA) and

were used to join with subsequent models (supervised and

unsupervised). Each model of supervised or unsupervised cluster-

ing were performed 11 times; the first time it was run on the main

dataset (FCdb) and then on the 10 newly formed datasets (the

results of attribute weighting).

Unsupervised Clustering Algorithms
The clustering algorithms listed below were applied on the 10

newly created datasets (generated as the outcomes of 10 different

attribute weighting algorithms (as well as the main dataset (FCdb).
K-Means. This operator uses kernels to estimate the distance

between objects and clusters. Because of the nature of kernels, it is

necessary to sum over all elements of a cluster to calculate one

distance.
K-Medoids. This operator represents an implementation of

k-Medoids. This operator will create a cluster attribute if it is not

yet present.

Tree Induction Models
DecisionTrees. Five tree induction models including De-

cision Tree, Decision Tree Parallel, Decision Stump, Random

Tree and Random Forest ran on the main dataset (FCdb). A

weight-based parallel decision tree model, which learns a pruned

decision tree based on an arbitrary feature relevance test (attribute

weighting scheme as inner operator), applied to 10 different

datasets created from attribute weighting selection (SVM, Gini

Index, Uncertainty, PCA, Chi Squared, Rule, Relief, Information

Gain, Information Gain Ratio and Deviation).

Machine Based Prediction by Leave One-out 10-fold
Cross Validation

Decision Tree. Sixteen machine learning models run on four

decision tree algorithms (Decision Tree, Decision Tree Parallel, Decision

Stump and Random Forest) with four different criteria (Gain Ratio,

Information Gain, Gini Index and Accuracy) on all 11 datasets to find

a suitable model(s) to predict the accuracies and the classification

errors of classes based on protein attributes. To calculate the

accuracy of each model, 10-fold cross validation [14] is used to

train and test models on all patterns. To perform cross validation,

all the records were randomly divided into 10 parts, 9 sets were

used for training and the 10th one for testing (leave one-out). The

process was repeated 10 times and the accuracy for true, false and

total accuracy calculated. The final accuracy reported as the

average of the accuracy in all ten tests.

Results

Data Cleaning
The initial dataset contained 114 records (protein sequences)

with 1497 protein features. Of these records, 59 records were

classified as SCLC class, 30 records belonged to NSCLC class and

25 records were classified as COMMON class. Following removal

of duplicates, useless attributes, and correlated features (data

cleaning) the number of protein features decreased to 1089

features.

Attribute Weighting
Data were normalized before running the models; it was

expected that all weights would be between 0 and 1. Features

gained weight values higher than 0.50 with at least 50% of

weighting algorithms regarded as important protein features

(Table S2).

Unsupervised Clustering Algorithms
Two different unsupervised clustering algorithms (K-Means and

K-Medoids) were applied on FCdb and ten datasets created using

attribute selection (weighting) algorithms. None of clustering

algorithms were able to differentiate fully the proteins that

involved in any types of lung tumor (Table S3).

Tree Induction Models
Five tree induction models (Decision Tree, Decision Tree

Parallel, Decision Stump, Random Tree and Random Forest) ran

on FCdb and 10 datasets that generated after performing 10

attribute weighting algorithms. In total 151 trees generated

(Random Forest model itself included 10 models).

Several models induced simple trees while others were

complicated; 9 Decision Tree and 35 Random Forest models

were the best trees to clearly distinguish between two cancer types.

Distribution of hydrophobicity was the most important attribute

used to build the tree when the Decision Tree model applied to

Information Gain dataset (Figure 1). When the value for this

feature was more than 30.628, the proteins fell into the

COMMON class. The autocorrelation descriptors and dipeptide

compositions were the other features used to build the rest of the

tree. If composition of Cysteine-Glutamic acid ([F1.2.1.24]: polar

dipeptide) was more than 0.087, the protein belonged to SCLC

tumor and otherwise fell into NSCLC class. Composition of

nonpolar dipeptides in NSCLC proteins was more than SCLC

proteins ([F1.2.1.218]: Met-Val) and overhand, dipeptide compo-

sitions of SCLC proteins are more polar than NSCLC proteins

([F1.2.1.326]: Thr-Gly, [F1.2.1.98]: Phe-Val). The details of this

model have become at the below.

Following important points can be extracted from the tress in

general, these results have reported for the first time:

Lung Cancer Prediction Based on Protein Attributes
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1. F1.2 (dipeptide composition), F3.1 (Moran autocorrelation) and

F5.3 (distribution descriptor) were the most important protein

features used by decision tree models to classify three lung

cancer classes (SCLC, NSCLC, COMMON).

2. Distribution of hydrophobicity (F5.3.1) in COMMON class

was very high while the distribution of charges (F5.3.5) was

very low (Figure 2).

3. Generally the composition of non-polar dipeptides in SCLC

class was smaller than COMMON proteins and composition of

polar dipeptide in SCLC associated proteins was higher than

NSCLC class (Figure 1).

Machine Based Prediction by Leave One-out 10-fold
Cross Validation
The accuracies of all induced prediction algorithms are

presented in Table S4. Nearly, the average accuracies of all

models showed accuracies higher than 60%. The lowest accuracies

gained when Stump Decision Tree model ran on Relief dataset

with Gini Index criteria (41.89%). The best predicted accuracy

achieved when Random Forest Decision Tree model ran on Rule

dataset with Gain Ratio (86.00%).

Figure 1. Decision Tree model on Information Gain dataset.
doi:10.1371/journal.pone.0040017.g001

Lung Cancer Prediction Based on Protein Attributes
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Discussion

Lung cancer can be roughly divided into two groups according

to pathology: non-small cell lung cancer (NSCLC) (80.4%) and

small cell lung cancer (16.8%) [31]. Patients with non-small cell

lung tumor are treated differently from those with small cell

tumors. The pathological distinction between small cell lung

cancer (SCLC) and non-small cell lung cancer is, therefore, very

important [4]. Many studies have considered to classification of

lung cancer [16,32,33,34,35,36,37,38,39]. For example, RNA

expression patterns associated with non-small cell lung cancer sub

classification have been reported, but there are substantial

differences in the key genes and clinical features of these subsets

casting doubt on their biological significance. In this recent study,

a training-testing approach have used to test the reliability of

cDNA microarray-based classifications of resected human non-

small cell lung cancers (NSCLCs) analyzed by cDNA microarray.

These results demonstrated that gene expression profiling can

identify molecular classes of resected NSCLCs that correctly

classifies a blinded test cohort, and correlates with and supple-

ments standard histological evaluation [14]. In summary, exten-

sive and detailed support for the idea that gene expression-based

classification of tumors will soon become clinically useful for

cancer of the lung have provided [4]. Molecular classification of

NSCLC using an objective quantitative test can be highly accurate

and could be translated into a diagnostic platform for broad

clinical application [40].

Sequence-derived structural and physicochemical descriptors

have frequently been used in machine learning prediction of

protein structural and functional classes [19,20,21,22,23,24],

protein-protein interactions [24,25,26,41], subcellular locations

[27,28,42,43], peptides containing specific properties [29,44],

microarray data [45] and protein secondary structure prediction

[46]. These descriptors serve to represent and distinguish proteins

or peptides of different structural, functional and interaction

profiles by exploring their distinguished features in compositions,

correlations, and distributions of the constituent amino acids and

their structural and physicochemical properties [18,20,26,30] and

this proved that currently used descriptor-sets are generally useful

for classifying proteins and the prediction performance may be

enhanced by exploring combinations of descriptors [47].

In present study, we used structural and physicochemical

properties of proteins that involve in any types of lung tumors for

classification of them and detecting most important protein

properties that have participated in distinguish of lung tumors.

Various modeling techniques were applied to study 1497 attributes

of proteins that involved in two and four types (unpublished data)

of lung cancer. When the number of variables or attributes is

sufficiently large, the ability to process units is significantly

reduced. Data cleansing algorithms were used to remove

correlated, useless or duplicated attributes which results in

a smaller database [48,49]. About 15% of the attributes discarded

when these algorithms were applied on the original datasets.

Ten different attribute weighting models applied on final

cleaned dataset; as each algorithm uses a specific pattern to define

the most important features, thus, the results may be different [50].

The feature groups of F5.3 (distribution descriptors), F1.2

(dipeptide composition) and F3.1 (autocorrelation ) were the most

important attributes selected by attribute weighting models to

distinguish between SCLC, NSCLC and COMMON classes of

lung tumor types, as defined by 80% of the attribute weighting

algorithms (Table S2).

Furthermore in the appropriate decision trees, compatible

results with attribute weighting algorithms were shown and the

same protein attribute groups (F2.1, F3.1, F5.3 and F1.2) selected

as the most important attributes in classification of lung tumor

proteins. In addition, most induced trees showed F5.3 attributes,

distribution of hydrophobicity in COMMON proteins was very

high and distribution of charged residues in these proteins was

very low, therefore the results confirmed proteins from COM-

MON class were very hydrophobic.

The importance of hydrophobicity has been highlighted in some

studies [51,52,53]. It is well known that hydrophobicity plays

a major role in determining the properties of amino acids, peptides

and proteins. In another study, hydrophobic residues were

predominant in slow range of folding, and hydrophilic residues

frequently occurred in fast range. In general, the surrounding

environment of proteins is water. Typically, the side-chains of

hydrophobic residues are buried in the interior of proteins to form

hydrophobic core, which is apart from water, while the side-chains

of hydrophilic residues are exposed to the surface of proteins,

which is close to water molecular [54]. Therefore, the results of

our study, for the first time, confirm that the importance of

hydrophobicity in allowing fast folding of the COMMON proteins

between two types of lung tumors and increasing their capability

for tumorigenic property.

Dipeptide composition was other important protein feature

groups selected as an important in present study. In our recent

studies, we showed that specific dipeptides play the central role in

classification of breast cancer and protein halo stability and

thermo stability [10,55,56]. The importance of sequence-based

classification in detection of various proteins expressed in breast

cancer and the importance of Ile-Ile dipeptide in clustering of

proteins, were reported there [10]. In this paper, most of decision

tree models showed that composition of polar dipeptide in SCLC

Figure 2. Model 1 of Random Forest on SVM dataset. In the first
step if distribution of charge was equal to or lower than 22.703 the
proteins fell into COMMON class; dipeptide composition was other
important feature for drawing this tree.
doi:10.1371/journal.pone.0040017.g002
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proteins were more than NSCLC proteins and vice versa, resulting

NSCLC proteins to show more hydrophobicity. These results have

reported for the first time and may be one of the main factors to

facilitate SCLC tumors distribution.

In present study, autocorrelation descriptor was another

important feature group for classification of lung tumors.

Autocorrelation descriptors are a class of topological descriptors,

also known as molecular connectivity indices, describe the level of

correlation between two objects (protein or peptide sequences) in

terms of their specific structural or physicochemical property [57],

which are defined based on the distribution of amino acid

properties along the sequence [58]. Eight amino acid properties

are used for deriving the autocorrelation descriptors: hydropho-

bicity scale [59]; average flexibility index [60]; polarizability

parameter [61]; free energy of amino acid solution in water [61];

residue accessible surface areas [62]; amino acid residue volumes

[63]; steric parameters [64]; and relative mutability [65]. One of

recent study proved that the AASA (amino acid sequence

autocorrelation) information is very effective to represent the

relationship between the protein sequence and corresponding

folding rates [54]. So the autocorrelation properties may play an

important role in folding of three lung cancer tumors studied here

and this feature has been reported for the first time in this study.

Autocorrelation approach had successful usage for modeling

molecular properties, biological activities [66,67] and prediction

of protein helix content [68]. In a recent study, a method for

reconstructing the strain distribution by modifying the autocorre-

lation technique, ‘‘combined autocorrelation method’’ proposed.

In the experiments using a tumor phantom and an extracted

breast tissue including a cancer tumor, each elastic modulus image

obtained by the combined autocorrelation method and the 3-D

finite element tissue model clearly displayed the region harder

than surrounding soft material or tissue. These results reveal that

the combined autocorrelation method is a promising means for

diagnosing tumors [69] as shown in this paper.

Unsupervised clustering algorithms have been widely employed

in a variety of areas in the biological sciences, including diagnostics

and image processing [70], EST [71], cancer detection [72],

promoter analysis [71], gene and protein bioinformatics

[56,73,74,75,76]. Here, we used two different unsupervised

clustering methods (K-Means and K-Medoids) on FCdb and 10

datasets created from protein attributes, which were assigned high

weights. The performances of these algorithms varied significantly.

Some methods were able to nearly assign NSCLC protein into the

correct class (for example, the K-Medoids algorithm, when applied

to FCdb and Deviation, Gini Index, Information Gain, PCA and

Uncertainty datasets). The results showed that the K-Medoids

algorithm was nearly able to classify SCLC proteins into the

correct class when runs on the Chi Squared dataset. But none of

clustering algorithm was able to correctly classify COMMON

proteins into respective class (Table S3). For more exact clustering

of proteins that belonged to any types of lung tumors, other

clustering models such as EM applied to data with higher

accuracies (unpublished data).

As shown in Table S4, the overall accuracies for tree induction

models were generally high enough and improved when the

criteria changed. For example, the accuracy for Decision Tree

Stump model for Accuracy criterion was 41.89%, but improved to

84.00% when the criterion changed indicating a very sharp

increase in the model accuracy and performance. The best

accuracy achieved when the Random Forest model ran with Gain

Ratio criterion (86.00%) which makes it the best model to apply in

such conditions and is the first machine based learning algorithm

to predict lung cancer tumor types based on protein attributes.

To our best knowledge, the findings of this study for the first

time showed that protein features can be effectively used to

determine any types of lung cancer tumors. Dipeptide composi-

tion, Moran autocorrelation and distribution descriptor were the

most important protein features selected by bioinformatics tools.

Also for the first time, we showed SCLC proteins were more

hydrophilic than NSCLC.
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