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1 Clinique romande de réadaptation, Sion, Switzerland, 2 Swiss federal institute of technology, Lausanne,

Switzerland

* Philippe.Terrier@crr-suva.ch, Ph.Terrier@gmail.com

Abstract

Many diseases and conditions decrease the ability to control balance. In clinical settings,

there is therefore a major interest in the assessment of postural control. Trunk accelerome-

try is an easy, low-cost method used for balance testing and constitutes an alternative

method to the posturography using force platforms. The objective was to assess the respon-

siveness of accelerometry in a battery of 12 quiet standing tasks. We evaluated the balance

of 100 healthy adults with an accelerometer fixed onto the sternum. We used the average

amplitude of acceleration as an indirect measure of postural sways. The tasks of increased

difficulty were realized with or without vision. The battery of tasks was repeated four times

on two different days to assess reliability. We analyzed the extent to which the task difficulty

and the absence of vision affected the trunk sway. The influence of individual characteristics

(age, height, mass, sex, and physical activity level) was also assessed. The reliability analy-

sis revealed that four repetitions of the battery of tasks are needed to reach a high accuracy

level (mean ICC = 0.85). The results showed that task difficulty had a very large effect on

trunk sways and that the removal of vision further increased sways. Concerning the effects

of individual characteristics, we observed that women tended to oscillate more than men did

in tasks of low difficulty. Age and physical activity level also had significant effects, whereas

height and mass did not. In conclusion, age, sex, and physical fitness are confounders that

should be considered when assessing patients’ balance. A battery of simple postural tasks

measured by upper-trunk accelerometry can be a useful method for simple balance evalua-

tion in clinical settings.

Introduction

Postural control is the act of maintaining, achieving or restoring a state of balance during any

posture or activity [1]. Many diseases and conditions can alter postural control and, hence,
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increase the risk of falls [2–5]. Consequently, there is a major interest in postural control

assessment for diagnostic purposes and for evaluation of the efficacy of therapies [2,3,5,6].

Dedicated neural circuits at the spinal and supraspinal levels are responsible for postural

control [7]. Motor control centers receive inputs from visual, vestibular, and somatosensory

systems. In turn, they control the muscles responsible for the postural response. Fundamen-

tally, the task of postural control is to keep the body’s center of mass safely within the base of

support [8]. Even during quiet, upright standing, the occurrence of small postural sways

reflects the constant activity of postural control. When perturbations are minimal, ankle plan-

tar flexors/dorsiflexors and invertors/evertors, are the major muscle groups responsible for

postural response (ankle strategy) [8]. Regulation at hip level become more important in the

case of stronger perturbations (hip strategy) [8]. More complex models of postural control sug-

gest differential regulation in mediolateral (ML) and anteroposterior (AP) directions [9].

Clinical assessment of balance performance often requires distinguishing subtle changes in

postural response that are not apparent during quiet upright standing. As a result, balance per-

turbation methods have been used to increase demand on postural control [10,11]. Postural

control can be challenged through the shrinking of the base of support or through manipula-

tions of sensory feedbacks. Specifically, a smaller base, as in tandem or one-leg stance,

decreases stability [12,13]. Likewise, it is also possible to manipulate tactile and proprioceptive

feedbacks from the feet with a compliant surface such as foam [10]. In addition, suppressing

[14] or altering [15] visual feedbacks induces larger postural sways. In order to assess balance

abilities, a combination of several standing tasks, challenging postural control in various ways,

is therefore needed.

In addition to the effect of different types of balance task on postural response, idiosyncratic

determinants play an important role in balance performance. In other words, individual char-

acteristics can modify the ability to control postural sways. For example, children and older

adults exhibit poorer postural control and larger postural sways [16,17]. In a similar way, sev-

eral studies have also highlighted age-related changes in postural control throughout the life

course [18,19]. Although several balance studies have suggested a difference between men and

women [20,21], the topic remains controversial [18,19,22]. Excess body weight influences bal-

ance performance. Obese individuals therefore tend to exhibit larger postural sways [6,23].

Well-trained athletes have better postural control than average individuals [24]. Thus, it can be

hypothesized that fit individuals, who are more physically active, may exhibit smaller postural

sways. Regarding the clinical assessment of balance ability, it is crucial to characterize the

determinants of postural control to clearly differentiate between pathological results and

expected results given individual characteristics.

The golden standard to assess postural control is the force platform [25]. This consists of a

device sensitive to forces applied on the ground by the subject. The center-of-pressure trajec-

tory (postural sway) informs about the postural response. Classical methods—most often

referred to as posturography—include the analysis of sway velocity (i.e., the speed at which the

center-of-pressure moves) or the analysis of the spatial dispersion of the trajectories (area, root

mean square (RMS), or length of path). Despite their accuracy, force platforms are cumber-

some and limited to laboratory conditions. Accordingly, they cannot ensure a rapid postural

evaluation in many settings, such as a practitioner’s office, a physiotherapist’s training session,

or a patient’s home.

Wearable accelerometers have been suggested as an alternative method to evaluate postural

control [26–28]. The rationale is to measure the acceleration of body segments induced by pos-

tural response. As a recapitulative index for postural corrective motions, the classical approach

is to assess average dispersion of the acceleration signal over a given period of time [26,28,29].

With the advantage of low cost and portability, accelerometry is valid and reliable [3,5,28,30].

Postural control in healthy adults
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Accelerometry provides similar results as posturography with force platforms [31]. As a result,

many successful applications of postural accelerometry have been reported. These include the

following observations: trunk accelerometry reveals postural instability in Parkinson’s disease

[3]; body sways measured with an accelerometer reflect athletic skill level [32]; and accelero-

metry can assess balance of diabetic patients with peripheral neuropathy [2].

Most accelerometer users attach the sensor to the lower back in order to measure the

motions of the center of gravity [2,30,32,33]. However, some investigators have successfully

assessed postural balance through upper-trunk accelerometry [6,34,35]. Indeed, measuring the

acceleration of the upper trunk may not only offer better sensitivity to postural response but

also yield specific information about trunk dynamics [36–38]. Data obtained by upper-trunk

accelerometry are still sparse. For example, Dalton et al. showed that thorax acceleration can

differentiate between premanifest and manifest Huntington’s disease subjects [34]. Although

the methodology has been proven efficient, further studies are needed to confirm its respon-

siveness and clinical usefulness.

To further explore the efficacy and usability of accelerometry for clinical balance assess-

ment, we designed a cross-sectional study to evaluate whether a battery of quiet standing tasks,

instrumented with a chest-worn accelerometer, could assess postural control. We asked

healthy adults to undergo increasingly difficult balance tasks that were known to increase pos-

tural response. In addition, we aimed to analyze how individual characteristics may interfere

with postural control. In more details, we first evaluated the repeatability of the measurement.

We then assessed whether acceleration amplitude could discriminate among the different bal-

ance tasks. Next, through specific recruitment, we focused on the effects of age and sex on pos-

tural response. Secondary determinants were leg dominance, body mass and height, and

degree of sedentarity. We also assessed whether differences existed between the amplitude of

AP and ML sways.

Methods

Participants

One-hundred healthy adults (50 males, 50 females), with no neurological or orthopedic condi-

tions, participated in the study. We recruited ten males and females for each decade between

20 and 69 years of age. During the first visit, participants’ anthropometric characteristics were

measured. Leg dominance was determined by asking the subjects which leg they would use to

kick a ball [39]. We also asked them how many hours they spent exercising per week. Table 1

summarizes the participants’ characteristics.

Table 1. Characteristics of the participants.

Total (N = 100) 20–29yr (N = 20) 30–39yr (N = 20) 40–49yr (N = 20) 50–59yr (N = 20) 60–69yr (N = 20)

Age (year) 44.2 24.7 34.6 43.9 54.8 63.3

(14.1) (2.8) (2.8) (2.9) (2.7) (3.2)

Body mass (kg) 70.2 68.4 65.4 74.2 71.1 72.0

(14.6) (11.9) (12.8) (15.6) (14.4) (17.2)

Body height (m) 1.72 1.74 1.70 1.74 1.71 1.69

(0.07) (0.06) (0.08) (0.06) (0.08) (0.06)

Exercise (hours/week) 3.0 3.8 3.4 2.3 2.6 2.9

(2.6) (3.5) (2.6) (2.3) (1.6) (2.3)

Values are means (standard deviations)

https://doi.org/10.1371/journal.pone.0211051.t001
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The study was carried out in accordance with the principles enunciated in the current ver-

sion of the Declaration of Helsinki and the requirements of Swiss law and the Swiss regulatory

authority. Ethical approval was obtained from the Commission Cantonale Valaisanne d’Ethi-

que Médicale (Sion, Switzerland) prior to the study (protocol ID: CCVEM 019/11). The partic-

ipants were informed of procedures, risks and benefits, confidentiality, and the voluntary

nature of participation, before signing a consent form.

Data collection

Instrument. The participants wore a tri-axial accelerometer (Physilog system, GaitUp,

Lausanne, Switzerland; sampling rate 200Hz, 16-bit resolution [2]). This instrument has

already been successfully used by others to assess standing balance [2]. It was fixed with a belt

to the anterior upper-trunk level, 5 cm under the sternal notch. The accelerometer measured

trunk accelerations in earth acceleration units (g) along ML, vertical, and AP axes. The sensor

was connected by means of a 1.5 m cable to the data logger held by the experimenter, who

manually switched on the recording at the onset of each standing task and switched it off just

after.

Measurements. The participants stood barefoot to ensure footwear had no effect on pos-

tural control. They had to perform 12 tasks in a different randomized order for each repetition.

Each task lasted 30 s, as recommended for postural stability assessment [40]. Table 2 describes

the assigned tasks, along with the abbreviations used to describe them hereafter. At the onset

of each task, participants were asked to keep the arms alongside the body and to maintain a

light knee flexion (approximately 5˚), with the purpose to avoid knee extension locking.

Table 2. Description of the standing tasks.

Code Name Description

FA_EO Feet apart, eyes open standing with feet 10 cm apart and externally rotated at 10˚ with eyes

open

FA_EC Feet apart, eyes closed standing with feet 10 cm apart and externally rotated at 10˚ with eyes

closed

FT_EO Feet together, eyes open standing with feet together with eyes open

FT_EC Feet together, eyes closed standing with feet together with eyes closed

FF_EO Feet together on foam, eyes open standing with feet together on medium-density foam with eyes open

FF_EC Feet together on foam, eyes

closed

standing with feet together on medium-density foam with eyes closed

OD_EO One leg, dominant limb, eyes

open

standing on the dominant limb with eyes open

OD_EC One leg, dominant limb, eyes

closed

standing on the dominant limb with eyes closed

ON_EO One leg, non-dominant limb,

eyes open

standing on the non-dominant limb with eyes open

ON_EC One leg, non-dominant limb,

eyes closed

standing on the non-dominant limb with eyes closed

BD_EO One leg, board, dominant limb,

eyes open

standing on the dominant limb on a rocking board, unstable in the

frontal plane, with eyes open

BN_EO One leg, board, non-dominant

limb, eyes open

standing on the non-dominant limb on a rocking board, unstable in

the frontal plane, with eyes open

OA_EO One leg, average, eyes open Average of OD_EO and ON_EO

OA_EC One leg, average, eyes closed Average of OD_EC and ON_EC

BA_EO One leg, board, average, eyes

open

Average of BD_EO and BN_EO

https://doi.org/10.1371/journal.pone.0211051.t002
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During the tasks, they had to stand as still as possible, gazing straight ahead. In the case of a

large imbalance, a crossbar was available in front of them to catch themselves before falling; in

this case, they were asked to hold the crossbar as briefly as possible and to resume the task as

soon as possible. Twenty seconds of rest was allowed between tasks. The whole procedure was

repeated a couple of minutes later. A week later (mean: 9.1 days, SD: 3.6), an identical mea-

surement session took place.

Data processing

After downloading acceleration data to a computer, the raw signals were exported to Matlab

(Mathworks, Natick, MA). Firstly, the 3D signals were reoriented taking advantage of the

capacity of accelerometers to function as inclinometers [28]. This procedure attenuated the

effects of sensor orientation, which might not be perfectly constant among participants. The

vertical signal was not analyzed as postural sway occurs in the transverse plane. Secondly, the

acceleration signals (AP and ML) were low-pass filtered to remove high frequency noise.

There is no clear consensus about the optimal filtering for postural sway assessment with accel-

erometers. Most of the postural oscillations occurs at low frequency [26]. Upper bandwidth

limits used in accelerometer studies are: 3.5Hz [3], 11Hz [35], 20Hz [26,32], 50Hz [29], 100Hz

[5], and 250Hz [34]. Based on this literature review, and because we observed that >95% of

the signal power was below 15Hz, we used a cutoff at 30Hz (12th order Butterworth).

We kept a constant number of 6000 samples (each 30 seconds in duration) across the sig-

nals. Finally, as a measure of sway amplitude, the RMS of the acceleration was computed over

the 30-second signals. RMS is the standard method used in most accelerometry studies

[2,3,5,26,27,29,31–34].

Data analysis

Repeatability. The within- and between-session repeatability were analyzed to assess the

number of tests that were needed to reach a sufficient degree of reliability [41,42]. For brevity’s

sake, the detailed methodology and results are available in the supplemental material (S1 File).

Here, we only present an estimate of the repeatability of four measurements. The Spearman-

Brown prophecy formula [43] was applied on the repeatability results regarding one repetition

(see S1 File) to extrapolate the expected repeatability when four repetitions were averaged

together.

Descriptive and inferential statistics. We used standard boxplots—including median,

quartiles, extent of the data and outliers—to graphically depict the individual results, averaged

over the four repetitions (Fig 1). Due to the large spread between tasks and individuals, we

improved visualization by means of a logarithmic scale. In addition, Table 3 displays the medi-

ans and interquartile ranges (IQR). To ease the reading of the table, we multiplied raw RMS

values by 1000, converting g units to mg. Histograms showing the distribution of the sway

amplitude for each standing task can be found in the supporting information (Figure A in S2

File). Supporting information also contains scatter plots that display bivariate distributions of

sway amplitudes against other variables across standing tasks (Figures B–S in S2 File).

Because the RMS acceleration is strictly positive, data were expected to be not normally dis-

tributed (right skewed, Figure A in S2 File). We applied therefore Wilcoxon’s signed rank tests

for the null hypothesis that the difference between conditions comes from a distribution with a

zero median (paired test). We used Bonferroni’s correction to mitigate the multiple-compari-

son bias. We compared axes (AP vs. ML), vision conditions (EO vs. EC.) and leg dominance

(dominant vs. non-dominant) across standing tasks (see Table 3 and the result section).

Postural control in healthy adults
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Multivariate adaptive regression splines (MARS). We sought to evaluate potential asso-

ciations between participants’ characteristics and sway amplitude. To this end, we selected the

multiple adaptive regression splines (MARS) algorithm because of its appropriateness to han-

dle nonlinear relationships, its ability to detect interactions among predictors, and its good

bias-variance tradeoff [44]. As a nonparametric regression method, MARS offers a very good

alternative to multiple regression analysis when many predictors and interactions need to be

assessed [45]. Indeed, MARS can include important variables in the model and excludes unim-

portant ones (automatic variable selection). In short, the MARS algorithm combines the logic

of stepwise multiple regression and decision trees. Piecewise linear splines (basis functions)

split predictors around knots. A forward pass recursively adds basis functions that reduce the

residual error. Then, a backward phase prunes the model by penalizing model complexity. For

further information, refer to the tutorial article of Everingham and Sexton [46].

We implemented MARS through the Matlab package ARESLab [47]. We applied piecewise

linear modelling (‘cubic’, false). We tuned the model to include potential pairwise interactions

(‘maxInteraction’, 2). The number of knots for building basis functions was limited by imposing

a minimum of eight points between knots (‘UseMinSpan’, 8). In the same way, to lower spuri-

ous fitting at the end of data intervals, we set a minimum span of 15 near the ends

Fig 1. Descriptive statistics of sway amplitude. One-hundred participants performed twelve 30-s standing tasks (see Table 2 for tasks description). Trunk sways were

measured with an accelerometer. The root mean square (RMS) of the 30-s acceleration signals assessed the average amplitude of the sways. Boxplots show medians,

quartiles, data extents, and outliers, separately for the AP and mediolateral axis. A logarithmic scale was used to enhance the visualization.

https://doi.org/10.1371/journal.pone.0211051.g001
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(‘useEndSpan’, 15). Other tuning parameters were set to default values. The predictors were age,

sex, body height, body mass, and exercise. The dependent variables were the sway amplitudes

(RMS). To attenuate potential bias induced by outliers, we excluded values that were more than

2.5 standard deviations away from the mean. Detailed MARS results are presented in S2 File

(fitting curves). 3D plots were used to illustrate relevant interactions among predictors.

Results

We planned to measure 4800 standing tasks, that is, 12 tasks within two intrasession repeti-

tions and two intersession repetitions measured in 100 subjects. Although there were 149 miss-

ing tasks (3%) due to organizational and technical issues, we obtained at least two measures

per participant for each standing task. No participants experienced very large imbalance and

touched the safety bar longer than a couple of seconds. No participants reported fatigue and

lack of attention during the experiment.

Repeatability

The repeatability analysis (see S1 File) demonstrated a low repeatability when a single repeti-

tion was considered. Repetitions had to be averaged together to obtain ICCs exceeded the 0.7

threshold commonly admitted as a lower limit for acceptable reliability [48]. Table 3 shows the

extrapolated reliability of four measurements of standing tasks. The average ICC was 0.83 in

the AP direction (range 0.71–0.94), and 0.87 in the ML direction (range 0.75–0.95).

Effect of task difficulty

The demanding tasks were logically associated with larger sways (Fig 1 and Table 4). Indeed,

the sway amplitudes rose from 0.0062 g for standing feet apart up to 0.15 g when standing on

the rocking board (i.e., a 24-fold increase). In more details, in EO conditions, standing with

feet together increased sway amplitudes by 11% along the AP axis, and by 15% along the ML

Table 3. Repeatability (ICC) of the postural control measures.

Anteroposterior Mediolateral

ICC CI ICC CI

FA_EO 0.81 (0.74 – 0.86) 0.83 (0.77 – 0.88)

FA_EC 0.86 (0.80 – 0.90) 0.77 (0.68 – 0.83)

FT_EO 0.77 (0.67 – 0.83) 0.87 (0.82 – 0.91)

FT_EC 0.84 (0.78 – 0.88) 0.85 (0.79 – 0.89)

FF_EO 0.71 (0.60 – 0.79) 0.79 (0.70 – 0.85)

FF_EC 0.77 (0.67 – 0.84) 0.75 (0.67 – 0.82)

OD_EO 0.84 (0.78 – 0.89) 0.82 (0.75 – 0.87)

OD_EC 0.88 (0.84 – 0.92) 0.93 (0.90 – 0.95)

ON_EO 0.73 (0.62 – 0.80) 0.88 (0.83 – 0.91)

ON_EC 0.89 (0.85 – 0.92) 0.92 (0.89 – 0.94)

BD_EO 0.84 (0.77 – 0.88) 0.90 (0.86 – 0.93)

BN_EO 0.87 (0.82 – 0.91) 0.90 (0.86 – 0.93)

OA_EO 0.84 (0.78 – 0.89) 0.91 (0.87 – 0.93)

OA_EC 0.94 (0.91 – 0.96) 0.95 (0.94 – 0.97)

BA_EO 0.91 (0.87 – 0.93) 0.93 (0.91 – 0.95)

ICC: intraclass correlation coefficient. CI: confidence interaval. See Table 2 for the other abbreviations

https://doi.org/10.1371/journal.pone.0211051.t003
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axis as compared to standing with feet apart. Standing on foam increased AP sways by 8% in

the AP direction, and by 21% in the ML direction as compared to standing with feet apart.

Regarding the one-leg tasks, considerable between-subject variance indicates very variable

mastering among the participants.

Directional effect

Sway amplitudes differed between the AP and ML axes (Fig 1 and Table 4): regarding bipedal

tasks (i.e., FA, FT, and FF) the trunk oscillated more in the sagittal plane (AP) than in the fron-

tal plane (ML). Conversely, the rocking-board tasks (BD and BN) induced a stronger sway in

the ML direction as compared to the AP direction. The one-leg tasks (OD and ON) exhibit

intermediate results: with eyes open, the differences between both axes are limited, but, with

eyes closed, the ML sways were stronger than the AP sways.

Importance of vision

The results show a strong dependence on visual inputs to control sway amplitude (Fig 1 and

Table 4). In addition, visual deprivation effects rise sharply with task difficulty. Whereas no

significant difference was indeed noted in the FA task, a prominent relative difference of about

500% was evident in the one-leg tasks (ON and OD). Besides, the results show a directional

dependence: in the absence of visual information, trunk oscillations increased more in the ML

than in the AP direction.

Effect of leg dominance

In the one-leg tasks, the results show no leg dominance effect. Indeed, postural sway is of a

similar amplitude whatever leg was used for performing the task. In more detail, with eyes

open (ON and OD), a non-significant difference of 7% and 4% was observed in AP and ML

directions (AP: p = 0.42; ML: p = 0.89, respectively). Similarly, with eyes closed, the relative dif-

ferences were AP: 2% (p = 0.50); ML: 6% (p = 0.10). Concerning the rocking-board task, the

differences were AP: 3% (p = 0.12); ML: 1% (p = 0.69). Accordingly, averaging the results of

both legs seems valid.

Table 4. Descriptive statistics and comparisons between conditions.

N = 100 FA EO FA EC FT EO FT EC FF EO FF EC OD EO OD EC ON EO ON EC BD OD BN EO

Descriptive

stats

AP 12.4 13.2 13.8 15.6 13.4 17.2 15.8 46.6 16.2 45.3 48.9 46.2

(4.6) (5.0) (4.7) (5.8) (6.4) (6.1) (6.7) (41.7) (6.7) (39.7) (29.9) (28.4)

ML 6.2 6.3 7.1 9.4 7.1 9.4 7.5 11.5 13.8 85.3 152.2 149.6

(2.9) (2.4) (2.8) (2.7) (2.8) (2.7) (2.9) (4.3) (7.5) (83.0) (86.7) (90.6)

Axes:

AP vs.ML

-50% -52% -49% -40% -44% -33% -13% 67% -15% 89% 211% 224%

Vision:

EC vs. EO

AP 7% 13% 28% 195% 180% N/A

ML 2% 33% 54% 463% 520% N/A

Top rows show the descriptive statistics via medians and interquartile ranges across standing tasks. Unit is mg (g = earth acceleration unit). Below, relative differences

between conditions and inferential tests (Wilcoxon rank tests) are presented. Significant results are in bold print. Significance thresholds (Bonferroni-corrected for

multiple comparisons) are: p = 0.004 for axes (12 comparisons); and p = 0.01 for vision (5 comparisons). ML: mediolateral. AP: anteroposterior. EC: eyes closed. EO:

eyes open. For other abbreviations, see Table 2.

https://doi.org/10.1371/journal.pone.0211051.t004
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Idiosyncratic determinants of sway amplitude

Across the bipedal tasks (FA, FT, and FF), the MARS results show associations between pos-

tural sway and subject characteristics only for the ML direction. Accordingly, Table 5 shows

only ML results for those tasks. Conversely, across unipedal tasks (OA and BA) the MARS

results show relevant associations for both AP and ML axes.

Regarding bipedal tasks, individual characteristics explained 20% of the variance of trunk

sways (Table 5, R2 range: 0.10–0.26). Unipedal tasks are slightly more discriminant: MARS

analyzes revealed that on average 26% of the sway variance among participants were explained

by the predictors (Table 5, R2 range: 0.14–0.36).

Age. Age explains the most variance among the participants (Table 5). Indeed, age was

associated as the main effect with sway amplitudes in seven out of nine of the standing tasks.

Age also interacts with other predictors, especially in one-leg tasks (OA and BA). Large sway

amplitudes tend to be more frequent in older individuals (Figures M, O, P, R in S2 File). In

addition, a J-shaped relationship—with the lowest sway amplitude at around 30 years of age—

was observed in several tasks (FA_EO; FT_EO; FF_EO; OA_EO; BA_EO, Figures M, O, R in

S2 File).

Table 5. Idiosyncratic determinants of sway amplitude.

R2 MARS Model

FA_EO ML 0.13 BF1 = max(0, AGE-40),

y = 6.09 + 0.09�BF1

FA_EC ML 0.22 BF1 = max(0, AGE-32), BF2 = max(0, 1-SEX), BF3 = BF2 � max(0, 27-AGE)

y = 6.49 + 0.04�BF1–1.03�BF2 + 0.38�BF3

FT_EO ML 0.25 BF1 = max(0, 42-AGE), BF2 = max(0, 1-SEX), BF3 = max(0, 58-AGE)

y = 9.34 + 0.21�BF1–0.96�BF2–0.16�BF3

FT EC ML 0.22 BF1 = max(0, AGE-28), BF2 = max(0, 28-AGE), BF3 = max(0, SEX), BF4 = max(0, HEI-1.77)
� max(0, AGE -43)

y = 7.34 + 0.06�BF1 + 0.29�BF2 + 1.57�BF3 + 3.57�BF4

FF EO ML 0.10 BF1 = max(0, SEX), BF2 = max(0, HEI -1.67) � max(0, AGE -60)

y = 7.09 + 1.51�BF1 + 8.98�BF2

FF_EC ML 0.26 BF1 = max(0, AGE-28), BF2 = max(0, 28-SEX), BF3 = max(0, SEX)

y = 8.23 + 0.13�BF1 + 0.74�BF2 + 1.62�BF3

OA EO AP 0.21 BF1 = max(0, AGE-40) � max(0, 3.5-EXE)

y = 16.11 + 0.08�BF1

OA_EO ML 0.36 BF1 = max(0, AGE-27)�max(0, MAS-67), BF2 = max(0, AGE -27)�max(0, EXE-3.5),

BF3 = max(0, MAS-82), BF4 = BF3 � max(0, 35 -AGE), BF5 = max(0, 82-MAS) � max(0,

AGE-27), BF6 = max(0, 82-MAS) � max(0, 27-AGE)

y = 10.05 + 0.04�BF1–0.07�BF2–1.03�BF3 + 0.15�BF4 + 0.01�BF5 + 0.06�BF6

OA_EC AP 0.33 BF1 = max(0, AGE-32), BF2 = BF1 � max(0, EXE-3), BF3 = max(0, 1.75-HEI), BF4 = max(0,

65-MAS) � max(0, 32-AGE)

y = 37.37 + 1.47�BF1–0.25�BF2–110.20�BF3 + 0.46�BF4

OA_EC ML 0.27 BF1 = max(0, 33-AGE), BF2 = max(0, 46-AGE)

y = 108.31 + 10.73�BF1–5.49�BF2

BA_EO AP 0.22 BF1 = max(0, AGE-29), BF2 = max(0, 29-AGE)

y = 36.05 + 0.83�BF1 + 2.38�BF2

BA_EO ML 0.14 BF1 = max(0, 29-AGE), BF2 = max(0, AGE-29) � max(0, HEI-1.79)

y = 139.65 + 7.67�BF1 + 70.05�BF2

Results of the MARS models. Sway amplitude (RMS) for each standing task is the dependent variable (y). Predictors

are age (AGE), sex (SEX), height, (HEI), mass (MAS), and exercise (EXE). BF: basis function. AP: anteroposterior.

ML: mediolateral. EC: eyes closed. EO: eyes open. For other abbreviations, see Table 2.

https://doi.org/10.1371/journal.pone.0211051.t005
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Sex. An effect of sex is evident in all the bipedal tasks (FA, FT, and FF). Women tended to

exhibit larger sways along the ML axis than men.

Height, mass, and exercise. Finally, other factors are associated inconsistently with pos-

tural sway mostly through interactions with age, especially in the more difficult tasks. A closer

examination of age-by-exercise interactions in 3D plots reveals a kind of protective effect of

exercise against aging for more demanding tasks (Fig 2). Thus, older participants exhibit a

higher postural sway only if they report fewer hours of exercise per week.

Discussion

We measured 100 healthy adults performing 12 quiet standing tasks with an accelerometer

fixed onto the sternum. We used the average amplitude of the acceleration signal (RMS) as an

indirect measure of the thorax sway, and, hence, as an index of postural response. We aimed at

highlighting typical traits of postural control. We noticed low repeatability of a single sway

measure (S1 File), which emphasizes the need for averaging several trials together. We con-

firmed three well-known observations: 1) sways increase with task difficulty; 2) vision is

important to attenuate postural sways; and 3) sways increase with age. In addition, we

highlighted more subtle facts: 1) postural control acts differently along the AP and ML direc-

tions; 2) leg dominance has no effect on sway amplitude; 3) women oscillate laterally slightly

more than men when performing bipedal standing tasks; 4) body mass and height do not have

a relevant effect on sway amplitude; and 5) being more active may protect against age effects.

It is well established that repeated measures are needed to obtain a reliable estimation of

postural control. In a study that measured acceleration RMS at low-back level, the repeatability

of a single measure was low (ICC in bipedal tasks: 0.22–0.57) [49]. Similarly, it has been

reported [50] that the RMS of the center-of-pressure (COP) trajectory measured during 30 sec-

onds through force platforms also exhibits low intrasession reliability (ICC 0.35–0.39). There-

fore, the low reliability is not essentially due to measurement methods, but mostly due to the

inherent variability of postural control. A higher repeatability has been reported for unipedal

tasks (ICC: 0.69–0.85), very likely due to the higher inter-individual variability observed for

Fig 2. Age-by-exercise interactions. 3D plots of the MARS model output for the one-leg standing tasks (see Table 2 for the exact description of the tasks). The

equations of MARS models are in Table 5.

https://doi.org/10.1371/journal.pone.0211051.g002

Postural control in healthy adults

PLOS ONE | https://doi.org/10.1371/journal.pone.0211051 January 23, 2019 10 / 17

https://doi.org/10.1371/journal.pone.0211051.g002
https://doi.org/10.1371/journal.pone.0211051


these challenging tasks [30]. Our results regarding the within-session repeatability of one mea-

surement (see S1 File) are in line with these studies (bipedal ICCs: 0.38–0.63, unipedal ICCs:

0.40–0.83). Several authors recommend averaging several tests together to increase the reliabil-

ity of balance assessment [21,50,51]. Others recommend assessing balance on different days to

establish a valid baseline [26]. Our analysis supports these recommendations (Table 3): the

reliability of the average of four tests collected on two different days were indeed high (average

ICC: 0.85).

Because leg dominance seems to have no relevant effect according our results and the litera-

ture [39], averaging the results from both legs could also be a solution to improve reliability.

However, many pathologies and conditions can induce left-right differences between lower

limbs. If anything, comparing results from both legs may be informative.

Previous studies have used varying standing tasks to investigate aspects of postural control

[9,10,13,27,52]. The rationale is to challenge somatosensory, visual, and vestibular inputs dif-

ferentially. Our choice of standing tasks (Table 2) accounts for this diversity. The results indi-

cate that measuring trunk acceleration at chest level can discriminate between the chosen

tasks. As expected, RMS values do indeed increase with task difficulty (Fig 1 and Table 4). In

our sample of healthy individuals, the increase in postural sway attested by higher RMS values

is limited among bipedal tasks (+11%–+21%), which reflects the resilience of postural control.

It is likely that vision and vestibular input compensate for perturbed somatosensory inputs. In

contrast, one-leg tasks, especially when standing on the rocking platform, induced larger pos-

tural sways in line with the challenge demanded by those tasks.

In bipedal tasks, the results (Table 4) show that sway amplitude is greater in the sagittal

plane than in the frontal plane (relative difference: 44% to 52%). Two studies that measured

RMS acceleration at the low-back level during quiet standing have reported similar results

[2,49]. Corrections at ankle joint level may dominate postural control along the AP axis,

whereas the hip joint could be more important along the ML axis [9]. The morphology of the

ankle joint allows more freedom longitudinally than laterally: this is probably why the ampli-

tude of movements and the force needed to control them are larger in the sagittal plane. In

contrast, the results show fewer differences between axes in the one-leg tasks carried out with

eyes open (13% to 15%). Here, too, comparable results have been found [49]. Probably, stand-

ing on one leg requires more work from hip abductors/adductors to shift the center of mass

laterally on the weight-bearing leg, which increases sways in the ML direction.

Postural control relies on sensory inputs in a complex way [53]. It is well established that

low-frequency sways are preferentially stabilized by vision [15,54]. In quiet standing, postural

control can compensate for vision deficits using other sensory inputs [53,55,56]. In confirma-

tion of this, we observed that visual deprivation has no substantial effect when standing feet

apart (Table 4). In more challenging situations, the literature reports that postural control

relies preferentially on vision, such as in reduced stance-width tasks [12] or in one-leg standing

[14]. Similarly, our results confirm that the more difficult the standing task, the more the

sways increase with eyes closed (Table 4 and Fig 1).

In eyes-closed conditions, the results show that postural sways increase more in the ML

direction than in the AP direction (Table 4). The effect is especially strong in one-foot stand-

ing. We hypothesize that the tilt of landmarks in the visual field induced by the left-right head

movements constitutes relevant cues that postural control can exploit to correct ML sways. In

contrast, forward/backward motions induce fewer changes in the visual field, which might

explain why somatosensory and vestibular inputs are more likely to correct AP sways.

The results suggest that older adults exhibit larger postural sways. In fact, in contrast to the

other predictors (sex, age, body mass and height, and exercise), age was selected by the MARS

algorithm for all the standing tasks (Table 5). Furthermore, a close inspection of the MARS

Postural control in healthy adults

PLOS ONE | https://doi.org/10.1371/journal.pone.0211051 January 23, 2019 11 / 17

https://doi.org/10.1371/journal.pone.0211051


equations (Table 5) reveals nonlinear associations. An inflexion point between 30 and 40 years

of age is thus most often observed. Many other studies have found that postural sway increases

in older people (>65 year old) [16,57–59]. In addition, similar to our results, other studies

have shown that middle-aged adults show a deterioration of balance function [18,19]. One

explanation could be that muscle strength declines at a higher rate after the fourth decade of

life [60].

We also observed that younger participants (under 25 years of age) might also have larger

postural sways (J-shaped curve, see, e.g., Figure R in S2 File). Likewise, a U-shaped relationship

has been observed between age and postural sway speed, with higher values in children and

older adults [17]. The maturation of an optimal postural control might need the accumulation

of situational experiences that is only reached in the first decade of adulthood [17].

The MARS results (Table 5) revealed that women tended to oscillate more than men along

the ML axis during bipedal tasks. Although significant, the effect was moderate (standardized

effect size about 0.5). Several have shown a gender effect through the analysis of the COP tra-

jectories during quiet standing [20–22]. Others, however, did not find any relevant gender

effect on postural control [39,57], report opposite results [18], or are not conclusive [19]. Body

mass and height were not retained by most of the MARS analyses; thus, it is unlikely that the

sex effect is due to anthropometric differences between male and female. Considering that the

hip joint is particularly important for ML balance in quiet standing [8], mechanisms explain-

ing this sex difference might imply strength and control of abductors/adductors of the hip, and

pelvic anatomy. Besides, Ku and colleagues suggest that the larger Q-angle found in women

may increase the ML sway [22]. Other sources also highlight sex differences in hip abductor

muscle properties [61], in hip abductor function when landing from a jump [62,63], in hip

adduction and internal rotation during sport maneuvers [64], and in anterior pelvic tilt and

thigh internal rotation [65]. Further studies are needed to investigate these points in the con-

text of postural control.

The inconsistent associations of anthropometric variables with sway amplitude (Table 5)

suggest that lighter/heavier or smaller/taller persons do not tend to have a different postural

control than the average individual. However, note that the distribution of the anthropometric

variables in our sample reflects the normal distribution in the population, in which extreme

values are logically underrepresented. Accordingly, obese individuals may exhibit altered pos-

tural control, as pointed out by other studies with dedicated designs [6,23].

We postulated that more active individuals might exhibit better postural control through

regular practice of exercise. In support of this hypothesis, other researchers have observed that

strength training can improve balance ability in the elderly [66,67]. However, our results sup-

port this hypothesis only partially. On the one hand, age-by-exercise interactions highlight

that older participants maintained low postural sways if they were more active (Fig 2). On the

other hand, however, the skewed distribution of exercise levels among the participants (see

Figure B-S in S2 File) might have favored spurious correlations. Studies specifically designed

for detecting the exercise effect on postural control are needed to clarify the issue further.

The study has two limitation: first, we did not compare thorax accelerometry with conven-

tional accelerometry that measures trunk acceleration at the lower back level. Although our

results tend to indicate that a chest-worn accelerometer is responsive enough to assess postural

control, further studies are needed to directly compare the performance of both upper-trunk

and lower-trunk accelerometry. Second, given the upper-trunk placement of the accelerome-

ter, the respiratory movements were recorded in addition to the postural sways. This might

have influenced the results of the tasks that induced minimal sways (FA, FT). Because postural

control compensates for respiration [68], it is difficult to distinguish respiratory movements

from the postural corrections induced by them. This requires further investigations.
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Conclusions

The current study shows that a battery of standing tasks measured with a wearable accelerome-

ter fixed to the upper trunk can evaluate postural control thoroughly. Whereas most other

studies have focused on specific aspects of balance, our study covers a large spectrum of

explanatory variables. The method seems responsive enough to distinguish among those

diverse effectors and offers comparable reliability as other methods.

Nowadays, accelerometers are cheap, and readily available sensors are embedded in many

devices, such as smartphones and activity trackers. Accelerometers are easy to use for the prac-

titioner and non-invasive for the patient. Furthermore, the computation of acceleration ampli-

tude through RMS is straightforward and does not require specialized software. Therefore, in

many settings, we think that wearable sensors sensitive to movement could replace classical

posturography using force platforms with positive effect.

From a physiological perspective, our results show that subtle variations of postural sways

can reveal underlying individual characteristics. Notably, we detected a gender effect that has

only been inconsistently observed so far. Likewise, we observed a mitigating effect of exercise

that has not been reported so far in middle-aged adults and that deserves further studies.

From a clinical perspective, our findings identify which confounders should be considered

when assessing patients’ balance. Prominently, postural outcomes must be adjusted for age,

even in young and middle-aged adults. In addition, adjustments for sex should be realized in

case of bipedal standing tasks. The RMS results (Table 4) can serve as reference values, and

MARS equations (Table 5) can be used to adjust values according to individual characteristics.

However, further investigation is required to tailor the balance tasks to the needs and capabili-

ties of specific patients, to establish reference values for different pathologies, and to explore

the method’s sensitivity to change.
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