
rsif.royalsocietypublishing.org
Research
Cite this article: Thimbleby H, Oladimeji P,

Cairns P. 2015 Unreliable numbers:

error and harm induced by bad design can be

reduced by better design. J. R. Soc. Interface

12: 20150685.

http://dx.doi.org/10.1098/rsif.2015.0685
Received: 31 July 2015

Accepted: 17 August 2015
Subject Areas:
medical physics

Keywords:
number entry, human error, dependable

systems, evaluating user interfaces
Author for correspondence:
Harold Thimbleby

e-mail: harold@thimbleby.net
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsif.2015.0685 or

via http://rsif.royalsocietypublishing.org.

& 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Unreliable numbers:
error and harm induced by bad design
can be reduced by better design

Harold Thimbleby1, Patrick Oladimeji1 and Paul Cairns2

1College of Science, Swansea University, Swansea SA2 8PP, UK
2Department of Computer Science, University of York, York YO10 5DD, UK

Number entry is a ubiquitous activity and is often performed in safety- and

mission-critical procedures, such as healthcare, science, finance, aviation

and in many other areas. We show that Monte Carlo methods can quickly

and easily compare the reliability of different number entry systems. A sur-

prising finding is that many common, widely used systems are defective,

and induce unnecessary human error. We show that Monte Carlo methods

enable designers to explore the implications of normal and unexpected oper-

ator behaviour, and to design systems to be more resilient to use error. We

demonstrate novel designs with improved resilience, implying that the

common problems identified and the errors they induce are avoidable.
Science is a way of trying not to fool yourself. The first principle is that you must not
fool yourself, and you are the easiest person to fool.

—Richard P. Feynman [1, ch. 4]
1. Introduction
Number entry is often performed as a ‘simple’ subtask within a bigger task. For

instance, using a calculator typically requires entering a series of numbers and

operators. Unnoticed errors while entering the numbers would result in an

error in the calculation. To the user who needs to use a calculator and therefore

has no precise expectation of the result, this error is likely to go undetected and

escalate higher up into the user’s workflow or subsequent tasks.

As users of interactive systems, we have little idea how much our unnoticed

errors introduce inaccuracy or other problems. Our laboratory work [2]

suggests about 3.5% of numbers we enter (on conventional numeric keyboards)

are wrong and we do not notice that they are wrong. Consequently, designing

interactive systems to reduce the rate of unnoticed use errors is a worthwhile

goal. Unfortunately, the same human error problems—errors happen and

remain uncorrected because we are largely unaware of them—beset designers

and manufacturers too: they do not know some designs are defective and

cause problems for users. Finally, purchasers are unable to compare and

choose more dependable or safer equipment when it is available.

When we enter numbers into a system or piece of equipment, some num-

bers will be wrong because we make typing slips or other errors. Numbers

will remain wrong if we do not notice they were wrong. We may use various

techniques, such as entering lists of numbers twice (e.g. checking totals are

the same) or entering checksums to help detect possible errors.

If we notice errors as we type in numbers, we typically use strategies like

pressing or keys to help to correct the errors.

Unfortunately, as this paper shows, common defects in system design can

leave corrected numbers still wrong. Additional unnoticed errors can occur

during the error correction process. If we do not notice the ‘corrected’ numbers

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2015.0685&domain=pdf&date_stamp=2015-09-09
mailto:harold@thimbleby.net
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150685

2
are still wrong (perhaps wrong in different ways), then the

numbers will remain wrong even though we think they are

correct because we corrected them. To our knowledge, this

paper is the first to report and analyse this issue.

The problems we address in this paper can be found

widespread in everyday products that have been manufac-

tured and used for years. Awareness of these potentially

critical problems is evidently very low. In this paper, we

show how to address the problems and how to evaluate

their impact. Further, we show that the problems are avoid-

able, by better production processes and by more careful

purchasing of better products.

We are worried about the scale of preventable errors

induced by poor system design, and by the possibility that

users and operators are being blamed for errors that are not

of their making. The problems are particularly worrying in

areas such as healthcare, where incorrect numbers may

lead, for instance, to incorrect drug doses and patient harm.

In other areas, such as economics, finance and science, unno-

ticed incorrect numbers may remain unnoticed and affect

policy or mislead further work.

Because the scale of this avoidable problem is so surpris-

ing, this paper includes a review of the background on

human error and the nature of number entry. Section 2 of

this paper explores the cultural context that has allowed

poor design—the absence of applied science—to become so

common. Section 3 then presents our methodology, and

finally §4 provides discussion and conclusions drawing on

the results of our investigations.
1.1. Our previous work
The present paper develops our work reported in previous

papers.

Most recently, in [3], we surveyed numeric user interfaces

and showed that many are poorly designed and implemented.

We showed how to formalize interaction using Hoare Triples,

an approach that allows rigorous reasoning about design cor-

rectness, with all the usual benefits of formal methods but

applied to user interface design. We have shown that formal

methods can detect design errors [4]. However, formal

methods do not in themselves help make value judgements

about which designs are better—they help developers to

more reliably implement whatever they wish to implement.

Therefore, in this paper, we show how to measure and quantify

design issues, using Monte Carlo methods. We will present

results from measuring the performance of several designs.

In [5], we showed that simulating a user by a stochastic

process can estimate the safety of numeric user interfaces,

specifically by counting ‘out by 10’ numeric errors. We pro-

vided evidence to substantiate our claim that failings in

user interfaces are ‘ubiquitous’. We showed that modifying

user interfaces to conform with well-known standards

would make them safer.

In much earlier work [6], we showed how a Markov pro-

cess can be used to evaluate the quality of user interfaces.

This approach (which we did not then apply to numeric

user interfaces) has the advantage that it avoids many

assumptions about usability—the Markov process ‘knows

nothing’ about design assumptions, and thus the technique

is very powerful in identifying potential design issues that

may have been overlooked. Markov models are technically

hard to use, so in [7] we showed how Monte Carlo methods
can perform comparable analyses. (Using Markov models

requires more mathematical skill; using Monte Carlo

methods is much simpler but requires more computer time.)

1.2. A new approach
We propose a Monte Carlo approach to help designers avoid

user interface design problems in the first place, as well as to

help users (e.g. during procurement) choose better designs.

Because the approach uses Monte Carlo methods (which

we describe in more detail below), it can be applied to final

implementations, and therefore can help detect implemen-

tation bugs after systems have been completed: it is not just

a formal technique that is used in requirements or specifica-

tion. In particular, it can help find design defects that were

not anticipated during specification and which otherwise

might therefore remain in a system as ‘unknown unknowns’.

Monte Carlo methods are easy to understand and use, and

have none of the daunting problems of conventional formal

methods, which can create other sources of design problems.

In areas like hospital procurement, when critical systems

may be procured for widespread use, basic Monte Carlo test-

ing could provide large improvements at the organizational

scale. More broadly, by developing a clear way to measure

trade-offs this paper raises awareness of these ubiquitous

design problems. We also show how they are preventable.
2. The cultural context
2.1. Human error
Errors are ubiquitous. Accidents happen because we do not

notice errors soon enough to manage or mitigate them—

errors are frequently noticed only in hindsight, often after

an inquiry into an accident. If an error can be noticed and

repaired fast enough, it need not lead to harm, except as

might be occasioned by any delay in its repair. Unnoticed

errors, then, lead to inaccuracy, and sometimes to adverse

or harmful consequences. In general, errors themselves

are not the problem, but the unwanted consequences of

unrepaired or unsuccessfully repaired errors are.

In many contexts, systematic learning is instigated after

noticed harm, for instance by performing an after-action

review or root cause analysis to explore the factors leading

to the harm. The systematic exploration of causes has to

stop somewhere, typically stopping at a human operator

(user, practitioner, scientist, pilot, etc.), concluding that

‘human error’ is the root cause [8]. System defects further

encourage blaming the operator as the logs or records may

misrepresent the operator’s actions: if the design mismanages

an error repair, the mismanagement is recorded as if it is

what the operator actually instructed the system to do.

Finding out what went wrong can fuel a spiral of delay,

litigation, secrecy and denial. It is more productive to think

about how to help ensure things go right more often in the

future [8]. To do so requires a different perspective: how to

change the system, and how to know whether and to what

extent proposed changes affect safety—fuelling a positive

spiral of action, innovation, disclosure and evidence-based

improvement [9].

In science more generally there is low awareness of rou-

tine error and its consequences, with more emphasis on

fraud and incompetence. Nature’s editorial comment [10]

that ‘underlying these issues, often, is sloppiness, whether

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150685

3
in the handling of data, in their analysis, or in the inadequate

keeping of laboratory notes. As a result, the conclusions of

such papers can seem misleadingly robust’. To this list, the

present paper adds misleading sloppiness in the design of

the equipment or systems the authors of these papers are

relying on to do their research.

In most systems, there are interrelated agents who

manage or are affected by error (table 1). Although these

roles do not always divide neatly into different individuals

(for example, somebody may be injured by a system they

designed for their own use), there is a crucial difference

between operator and designer.

Operators work under pressure to manage concurrent,

real-time task demands, and they are typically unable to

walk away from their tasks to ‘time out’ and reflect. They

work under an unavoidable efficiency–thoroughness trade-

off (ETTO) [13]: the more they accommodate to the demands

of the tasks, the less they can be thorough anticipating, detect-

ing or managing error. On the contrary, designers can and

should be thorough designing systems that are resilient to

error—their tasks are not constrained by real-time or other

situational issues (except for arbitrary marketing or manufac-

turing deadlines, that arguably should not trump design

quality considerations). For example, the operator of an infu-

sion pump might be an anaesthetist with a patient dying

right in front of them if they do nothing; whereas the infusion

pump manufacturer had years to refine the design of the pump

the anaesthetist is now operating. Designers should therefore

tilt the ETTO principle in favour of thoroughness for the

benefit of operators. Unfortunately, like operator errors,

design errors occur because designers do not notice them.

Designers fail to notice errors for largely the same reasons

as operators do, namely loss of ‘situational awareness’ [14]:

design is hard enough already without having to worry

about unlikely operator error. Design errors remain as

‘latent conditions’ [15] that may induce operator error, fail

to warn operators of error, or exacerbate operator attempts

to recover from error. Although formal methods are increas-

ingly used to improve the reliability of programs, it is only

very rarely applied to the user interface. The user interface

‘just provides numbers’ and the program handling those

numbers may be correct, but the user interface has not been

formalized [3]. Designers need new methods to identify

design errors and to evaluate their impact—and to help

design more reliable systems.
2.2. Motivating problems
The introduction provides context for our research. We are

particularly motivated by five observations together painting

a tragic picture:

— Systems in widespread use have subtle design defects

[5,7,16–19]. We give concrete examples throughout this

paper.

— 90% of medical devices are released onto market without

testing [20]. Software-related recalls of medical devices are

increasing [21].

— Preventable death in US hospitals is estimated to be

approximately 440 000 per year [22]—scaled by UK : US

population, that is some 87 000 preventable hospital

deaths in the UK per year. Severe harm is estimated at

10–20 times higher. Unfortunately, we do not know
what proportion is design-related, though user program-

ming errors involving tasks such as entering and

modifying drug dose parameters in a single hospital infu-

sion pump model were estimated to contribute to 65–667

US deaths per year [23].

— When patient harm occurs, the professionals involved are

also harmed [12], more so if attribution of blame is unjus-

tified. This occurs as investigators are largely unaware

whether (and, if so, how much) error is induced by poor

design of devices.

— There is very little applicable science in the area. There

needs to be an effective way to start to measure and

scope the problem, in particular to help drive informed

improvement.

It might seem that our emphasis on medical user inter-

faces makes this paper more specialized than it is. On the

contrary, the user interface defects reviewed here occur in

every type of user interface, but especially for medical sys-

tems one might have expected greater care to be exercised

in their design and requirements, since the consequences

of failing to do so directly costs lives. There is no evidence

that medical systems are designed any better; indeed the

routine confidentiality surrounding medical system design

ensures that rigorous evaluation (whether needed for

research or for informed device procurement) and public

discussion on quality are much harder than they need be.

The confidentiality plus the variation in design across

brands tends to lock operators into using, or wanting to

use, specific types or makes of device: different, possibly

even safer, user interfaces will feel more awkward in

hard-to-quantify ways.

For all these reasons, we need to help designers and

developers avoid or reduce the problem and its impact,

help procurers choose between designs in an informed way,

and help operators adopt strategies to reduce errors on the

systems they have to use—and help them identify, articulate

problems, complain and resist having to use defective sys-

tems. We have to help investigators and reporters

understand the central role of poor design in causing inci-

dents: does such ignorance warrant a newspaper headline

calling a nurse ‘blundering’ [18,24]?
2.3. Repairing error, and problems of defective design
Skilled typing (how most computers systems are used)

involves two nested mental processes, an ‘outer’ one involved

with the intention to type and an ‘inner’ one involved with the

lower level actions to physically type [25]. The lower level

process can detect errors and repair them by, for instance,

pressing a delete key. Repair can be achieved by skilled typists

without conscious awareness at the higher level. Incorrect

implementation of the delete key is therefore unlikely to be

noticed, which in turn may lead to further errors.

Delete keys for repairing errors are widespread. On many

devices (typically mobile devices, but also simulations of

devices on PCs, such as ‘desktop’ calculator applications),

neither the decimal point nor the delete key work correctly

in a way that can be reliably learned by the lower level

repair processes. On many devices, additional decimal

points are ignored, so deleting a second decimal point mis-

leadingly deletes all decimal points. On some devices, the

delete key ignores decimal points altogether and only deletes

Table 1. Terminology used in this paper. The table makes clear that the designer has responsibility both at the blunt end and at the sharp end. (In a sense,
the regulators, procurers and managers are all designers, since they specify or choose from a set of designs, which itself is a design activity.)

blunt end

sharp end

regulator the organization that specifies high-level design rules and procedures (such as ISO 9241, ISO 19471, etc.)

designer the person or persons who design, create or program the system. Designers are typically remote, as in

manufacturers or their sub-contractors. In this paper, we are particularly concerned with designers of

interactive systems

system the environment in which the operator works. The system includes the devices as well as the standard

operating procedures, training and other people. (This paper is particularly concerned with the human

interface of automated parts of the system.)

procurer people who choose designed (manufactured, programmed) products and assemble them into local systems

manager or

supervisor

people who are responsible for and devise rules within which operators work. Managers typically set

requirements for designers

team in resilient organizations [11], the operator is seen as working within an effective team; other people help

the operator avoid, monitor and mitigate error

operator the person ‘at the sharp end’ who is normally (but not always appropriately) considered responsible for

outcomes

device the part of the system that physically causes the incident; for example, the operator may have pressed a

button on the device, but the device actually caused the harm

victim the person or persons immediately suffering from the consequences of unmanaged or inadequately

managed error

second victim operators or others who suffer indirectly, for instance from depression or inappropriate line management

response [12]

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150685

4

digits, so (which the operator

might think would be corrected to) becomes treated

as .

Repeatedly pressing or how long a key is held down may

change its behaviour (e.g. pressing twice or holding it

for several seconds switches some devices off): on such sys-

tems exact key press timings need to be recorded. Correctly

logging user interaction is particularly important on user inter-

faces with touch screen technology where user input might be

through gestures, or multiple contacts on the screen. On many

systems, then, logs purporting to record operator actions are

misleading, making it impossible to distinguish between oper-

ator errors and repaired errors the system defectively corrects.

Some number entry design problems of the sort we are

concerned with are illustrated by the widely available

Apple iPhone calculator (checked on iOS versions 7.1.2

through 8.4, 2015) as follows:
— keying gives

, 10 times higher than intended;1

— keying

gives , when it should be reported as an error the

calculator detects (see table 2 for step-by-step details);

— keying gives , a non-

sense result (NaN means ‘not a number’ and is the

consequence of an internal design error that should not

have become visible to the user [26]); and

— if the user has already entered part of a number, say,

pressing will keyclick normally yet do

nothing.
Such design defects are surprising, as Apple is widely

recognized as the leading manufacturer of high-quality,

easy-to-use products. Calculators are not complex, and in

principle they can be rigorously engineered to be reliable.

The iPhone number entry shows at most one decimal

point, which is unlike most calculators which always show

exactly one decimal point. On these calculators, pressing

never has any visual effect, even though many provide

keyclick feedback which normally implies the key did

something.

Further number entry design errors in the iPhone and

other manufacturers’ similar products have been noted else-

where [16,18,27,28].
2.4. Why do problems persist?
This paper exhibits a wide range of basic defects with the

design of number entry user interfaces, yet these are mature

user interfaces that have been deployed very widely and

from respected manufacturers.

Neither manufacturers nor operators are noticing these

basic problems nor trying to fix them, even for when sys-

tems are used, as calculators routinely are, in safety- and

mission-critical applications. If nothing else, it is evident

that dependability (safety) and ease of use are different

things, and when aiming for dependability, ease of use is

deceptive—if something looks and feels nice, it may not

help the operator be safe and effective

The question is begged, why do the problems persist?

A range of possible answers is presented in appendix

A. The answers show how low awareness leads to persistent

low awareness and then to inaction. Even with best practice

Table 2. Detecting error on the Apple iPhone calculator. We illustrate the
problem with division by zero in the example where the operator intends
to calculate 1 4 0:7þ 2� 5 but omits the 7 in error. Division by zero is
detected, and is displayed, but the operator continues, and
finally reaches a display that appears to show that 10 is the correct answer
to the calculation (the correct answer is 11.4285714 to the precision of the
iPhone). A more dependable calculator would display
continuously until is pressed or the operator otherwise indicates they
have recognized the error.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150685

5

using formal methods, it is not possible to formalize design

principles of which one is unaware.

Our previous work [29] studied a deeper problem: not

only are the user interfaces for number entry defective, but

the programming languages that implement them are defec-

tive too: many of the issues we discuss in this paper apply not

just to interactive user interfaces but to numbers in programs.

Even motivated programmers may have a huge job ahead of

them if they wish to implement dependable user interfaces.
3. Towards solutions
To start to address the problems raised above in §2, we propose a

simple, rigorous process to reveal and quantify important vari-

ation in design—variation that usually goes unnoticed, with

the result that poor design choices are often made. The approach

introduced in this paper of quantifying aspects of user interface

quality (here, applied to numeric user interfaces) will help break

some of the deadlocks to progress.

Put briefly, human error occurs because we are unaware of

facts that if they had been properly considered would have chan-

ged what we did. Unfortunately, the nature of human cognition

ensures it is not possible to arbitrarily increase awareness—to

perform a task requires concentration, which leads to loss of

‘situational awareness’ and inevitably there is a trade-off

between performing a task well and being aware of the

wider environment [13]. While we might like to just increase

awareness, in practice it is not so straightforward.

Instead, we prefer to think of error being dependent on

‘vulnerability’. If we imagined awareness and vulnerability

as simple probabilities, then

vulnerability ¼ 1� awareness:

However, the differences are more profound: focusing on

awareness, the word itself seems like it is the user’s or oper-

ator’s own problem to be more aware; while focusing on

vulnerability, it is more clearly the system’s responsibility

to create a less vulnerable environment. This in turn implies

the designer should be more aware—developing systems

that help reduce and manage vulnerability.
3.1. Safety metrics
We define vulnerability v as the conditional probability an

operator does not attempt to repair a keying error,

v ¼ 1� Pr (repairs errorjerror):

Here ‘repairs error’ means the operator attempts to repair the

error in any normal way; hence harm occurring when v ¼ 0,

when the operator always repairs errors, is caused by design

defects—repairing an error correctly may fail on some

devices. Monte Carlo experiments make it easy to simulate

human behaviour with any v and with any distribution of

error probability.

We define risk r conventionally as the expectation of

harm. Various metrics can be used depending on the task:

counting ‘out by f’ errors for quantities that have to be

within a tolerance factor f but do not need to be exact; count-

ing over-doses but ignoring under-doses; or measuring the

expectation of the ‘out by’ ratio. A simple metric is clearest

for this paper: we take harm to be 1 if the intended number

and the entered number are different, 0 if they are the

same. This is a proxy for harm for tasks like entering pass-

words, credit card IDs, patient IDs, all of which have to be

exact or will fail.

As vulnerability increases, for any reason, we would

expect risk to increase (other things being equal). We there-

fore introduce risk ratio, the ratio of risk to vulnerability, r/v.

Ideally, risk ratio should be as low as possible. Figure 2

vividly illustrates how risk ratio highlights two common

but poorly performing designs, contrasting them with more

dependable alternatives.

As operators or training and procedures reduce or attempt

to reduce vulnerability it is important that risk ratio also

decreases (and certainly does not increase)—otherwise the

improvements will be counter-productive, made so by

defective design.

It is possible to further refine these concepts, but this is

unnecessary for our purposes. Indeed, we suggest that

having more complex definitions of vulnerability or risk

would tend to obscure some of the issues that remain obvious

with simple definitions.
3.2. Monte Carlo methods for numeric input
Performing experiments with human operators that last long

enough to encounter enough unnoticed errors to establish

whether purported design failings are statistically significant

is very time-consuming to undertake, and is certainly exces-

sively time-consuming to perform repeatedly as a design is

iteratively improved.

Instead, in this paper, we run Monte Carlo experiments

on user interfaces. The Monte Carlo experiments simulate

human typing, involving both error and error repair.

Probabilistic methods have previously been used to find

input that crashes programs [30], but, apart from our own

work [5,31], building on methods to assess usability

[6,7,19], they have not been used to assess safety or accuracy.

The present paper is the first to consider operator error correc-

tion and the behaviour of delete and clear keys.

Monte Carlo methods use a random process to explore a

state space. To analyse a user interface, the Monte Carlo pro-

cess generates random key presses that control the user

interface exactly as a user operating it would.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150685

6
To use Monte Carlo for analysing numeric user interfaces,

we choose a random number as the target n for the simulated

operator to enter. A standard algorithm converts n to a

sequence of keystrokes. This sequence of keystrokes is then

modified by random processes to simulate well-known

forms of human error, such as digit repetition. With a given

probability, the simulated operator will notice such errors

and correct them, e.g. by pressing the key. On

completion of entering the modified sequence of keystrokes,

the number actually entered is compared to the target value n.

Once a Monte Carlo experiment is set up, there is no over-

head in performing experiments—an advantage over the

costs of conventional user studies: recruiting participants,

briefing them and collecting data. A typical Monte Carlo

experiment can run continuously much faster than the fastest

human can achieve in their best bursts of productivity.

A Monte Carlo experiment is trivial to conduct, and

designers can rapidly compare many designs. Finally,

Monte Carlo experiments can be parametrized to study a

range of behavioural patterns.

Ideally, delete keys should work adequately for repairing

the majority of errors, and if the higher level cognitive pro-

cess notices an error, pressing a clear key or following other

strategies can be used to recover.

An operator can make a typing error by:

repetition of a key—repaired by pressing delete;

omission of a key—repaired by typing the missing key;

transposition of two keys—repaired by deleting two keys

then retyping them in the correct order;

substitution of one key for another—repaired by pressing

delete, then retyping the correct key; or by

insertion of another key—simply repaired by pressing

delete.

These are typing errors and do not cover the possibility

that the operator is mistakenly intending to type the wrong

number, for instance following a reading error or misunder-
standing how numbers work [2].

For the Monte Carlo model in this paper, we assume the

errors occur independently of each other and with equal prob-

ability per keystroke, comparable to empirical results in [2].

We assume that once an error occurs and is noticed by the

inner cognitive process that the operator continues as if the

repair succeeds. It makes little difference whether the less

than or equal to 4 or so repair keystrokes are themselves sub-

ject to error; modelling repair perfectly would require

additional parameters (certainly, different repairs, being of

different lengths, would have different overall error rates),

and hence more ways of generating parameter-dependent

results that might be misleading if they were estimated incor-

rectly. When assessing safety, the fewer assumptions and the

fewer interactions between them, the better.

3.2.1. Executable systems
A computer generates a Monte Carlo process and that con-

trols the user interface. Hence to use a Monte Carlo method

an executable system is required. If we were the developers

of the systems we are analysing, this would be easy.

The approach is a black box approach, in that only a run-

ning (executable) version of the user interface is required,

perhaps through only an API. The exact implementation

(e.g. the program source code, which may contain intellectual
property) is not needed, though source code would be con-

venient for using the technique to help improve the user

interface.

In this paper, however, we carefully reverse engineer

commercially available designs to obtain executable pro-

grams, one for each design we consider. Reverse engineering

would not be necessary with collaboration from manufac-

turers or designers, but for number entry interfaces the task

is not difficult.

We note that some number entry user interfaces are defec-

tive in complex and subtle ways, and for them reverse

engineering serves to help expose their design problems [31].
3.2.2. Excluded issues
The Monte Carlo implementation used here assumes that the

operator can key an unlimited number of digits. Thus, in this

paper we do not consider possible length or value restrictions

on numbers, for example that (as happens on some real

systems) no more than three digits are permitted or values

no more than 999 are permitted.

Real designs typically do have limits, and the limits them-

selves may induce serious problems. Such limits will

typically induce more error. One example of the significance

is where a bank customer lost $100 000, reported in [32], and

there are many other examples in common devices [18,33].

An example, specifically affecting decimal points, is the

Baxter Colleague infusion pump: when the operator keys a

number larger than 99, the Colleague ignores the decimal

point key, hence is treated as

, 10 times larger than the operator intended [4].

On all devices tested here, the delete key fails to work cor-

rectly when too many digits have been entered by the

operator—and the user is not warned, so ironically correcting

a known error (too many digits) creates another error (delet-

ing other digits).

Many user interfaces that are used to enter short numbers

scroll digits, so the number entered is made up of the most

recent digits entered. This style of interface is often used for

PIN passwords (e.g. for burglar alarms), typically of four or

so digits—the approach allows the user to correct any error

by simply re-entering the four digits of their PIN (strictly,

an error in a four digit PIN can be corrected by at most

four digits: if the user intends but enters

, this error can be corrected by pressing

just once). This form of correction is not considered in

this paper.

Many user interfaces have additional ways of correcting

operator input. This paper only considers deletion and start-

ing again (cancel). Alternatives include the use of arrow

keys, insertion and overwrite modes, and more [34]. All of

these features could be evaluated using the methodology

introduced in this paper, but the number of design combi-

nations grows exponentially and would unfortunately be

unsuitable to present in a single paper. Note that as the

number of error-correcting features increases, the number of

strategies available to correct error also increases, and more

empirical evidence is needed to inform how the operator

selects between those strategies [31].

Many user interfaces have more keys than are necessary

for entering numbers, as occurs with QWERTY keyboards.

What should a user interface do when an operator presses

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150685

7
a key that is not numeric? If the interface ignores the key, then

what should the key do? If the number display is

formatted to be more readable—e.g. following ISO standards,

grouping digits in threes or following NHS guidelines

(groups of 3 and 4, which is non-standard) thus apparently

inserting spaces or commas—what should the user interface

do when the user keys the separators? Under NHS guidance

[35], it is mandatory to ignore the operator keying separators

and mandatory to display spaces between groups of digits, as

if the operator had entered them—which seems confusing,

because if an operator keys a space it is ‘ignored’ yet one

also appears in the display! The NHS standard fails to say

what happens when an operator presses space in the

middle of a group of digits: it is then unlikely to be wise to

ignore it when it ought to trigger a warning. For the purposes

of the present paper, all such design issues should be recog-

nized as raising serious questions that need addressing

empirically before designing dependable or safety critical

systems. As such, evaluation of these choices is, in the first

instance, beyond the scope of this paper.

Good practice is to provide key press feedback, such as a

click. On devices where there is no feedback, the operator has

no confirmation whether the key press was processed. On the

Baxter Colleague, pressing keys rapidly will lose keystrokes,

but there is no difference in key click feedback, because

there is none before or after keystrokes are lost. Worse,

when the infusion pump is not infusing, it beeps at intervals.

If entering numbers in this mode, these beeps can coincide

with a lost keystroke, thus misleadingly confirming the key

was processed when in fact it was not. Our Monte Carlo

models do not consider keystroke feedback.

This paper has only space to evaluate a few common

designs; there are many ways to implement number entry

features idiosyncratically, and it is impossible to compare

all of them in this paper. One example will be sufficient to

illustrate some of the types of issue that may be encountered.

On the Samsung Android (v. 2.3.3, 2014), pressing gets

displayed as , that is, the Samsung inserts a leading zero

the operator did not key. Hence (though Samsung could have

designed it differently) pressing does not result

in nothing, but in the digit zero. The difference between

these results can be exposed by the operator continuing

after the correction: becomes ,

but becomes , even though the operator

might consider the two key sequences to be exactly equivalent.

There are no problems, in principle, in using the

Monte Carlo method to evaluate such designs, it is just

impractical to cover so many design variants in a single

paper.

Finally, number entry is usually part of a larger task, such

as entering figures into a spreadsheet, in turn itself part of a

larger task such as performing statistical analysis of an exper-

iment, or calculating radiation therapy doses, or completing

financial returns for taxation. For all such tasks, there are gen-

erally additional methods (beyond the scope of the present

paper) for checking and correcting data, for instance by

using double entry, plotting graphs to identify outliers or

using numbers with special properties, such as check-digits.

How the operator validates data can have a huge impact on

the quality of results; for example, in data entry experiments

[36], visual checking resulted in 30 times more errors than

double entry.
3.2.3 Experiments comparing eight designs
We compare four common commercial designs (we abbrevi-

ate with the letters ABCN) with four new designs (DEFG).

It is important to emphasize that the functionalities of these

designs are equivalent—on all designs, users can enter and

correct numbers, and apart from infrequent cases (e.g. delet-

ing decimal points) the designs are indistinguishable. Few

operators would be able to tell the designs apart yet, as we

shall show, their induced error rates are different.

The designs explore various features, as below. See table 3

for a concise summary of the designs, and appendix C for a

formal description of the designs. (Short names are used in

figures and tables to save space.)

Design A Many designs always display exactly one dec-

imal point, even if the operator has typed none or several.

On such designs, the key only deletes digits,

probably because deleting decimals is problematic.

Design A short name: Broken delete & decimals.

Design B More sophisticated designs show a decimal

point only if the operator has in fact entered one, but they

will still only show at most one decimal point. The

key deletes digits and the decimal point, but

obviously keying will not have the

desired effect as the second decimal point was never

displayed.

Design B systems ignore a second or subsequent decimal

point, although it would also be possible to move the decimal

point to the far right of the number displayed. We do not

consider this design variation in this paper.

Design B short name: Fixed delete only.

Design C Correcting the design defects in designs A and

B but with no other features produces design C. Digits and

decimal points are treated equally, and the key

deletes them both. Multiple decimal points can be keyed,

which implies an operator’s input may be invalid and

rejected by the design, thus forcing the operator to correct it.

Design C short name: Fixed delete & decimals.

Design D We know that key bounce is a serious design

problem [37]. Design D forces all repetitions, even in

intended numbers like 100, to be entered twice. Design D

may cause occasional extra work for users, but it effectively

blocks errors from key bounce.

Design D short name: Debounced.

Design E Designs E and F enforce Institute of Safe Medi-

cation Practices (ISMP) recommendations [38].2 In both

designs E and F, when a number fails the ISMP test, the

user must start again. Note that (in contrast to design D

that rejects repeated keys) all numeric values can be expressed

as valid ISMP numbers.

In design E, when a number fails the ISMP test, the oper-

ator must re-enter it, possibly making further errors.

Design E short name: ISMP.

Design F Design F simulates optimal performance for

design E. In effect, after detecting a non-ISMP number,

design F cues the operator to employ higher level processes

to re-enter the number more carefully and hence correctly:

e.g. interrupting lower level cognitive processes so higher

level processes take thoughtful action [33].

Note how the Monte Carlo experiments need not explore

how a human operator would really interact: examples like

design F show that hypothetical user interaction can also be

evaluated. Put another way, design E is a real user interface

Table 3. Summary of designs. ABCN are common, commercial designs; DEFG are proposals. Some unusual defective designs [17] are not considered here. Table 4
illustrates the designs on example keystroke errors and recoveries. Appendix C provides specifications of the designs, sufficient for them to be implemented.

design brief description

A delete key ignores decimal points, and the design ignores multiple decimal points. Thus and

are both equivalent to ; is equivalent to ; and

is equivalent to . Design A occurs in many systems and devices such as the Casio HR-150TEC,

Hewlett Packard EasyCalc 100, etc.

B delete key works correctly, but the design ignores multiple decimal points. Thus is equivalent to (as in

design A), but is equivalent to (60 times higher than in design A). Design B occurs in many

devices, such as the Samsung Android, Apple iPhone, etc.

C correct design, exemplified by the Casio fx-85GT and many familiar keyboard-based applications on PCs, such as Microsoft Word

D correct design, which also intercepts key bounce. A number entered with a repetition is blocked, and the operator has to re-enter it

E correct design, which also checks ISMP recommendations. Invalid numbers are intercepted and the operator retypes them, possibly making

further errors

F correct design, which also enforces ISMP recommendations and ensures the number is correctly entered

G correct design, which also enforces value to be within a factor of 5 of the intended number

N no delete key. Noticed errors corrected by clearing and starting over

— we know of no design that implements delete incorrectly but which implements decimal point correctly

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150685

8

design, and design F provides the most optimistic behaviour

for that design for evaluation purposes.

Design F short name: Low bound ISMP.

Design G Design G enforces range checking, like a hard

limit on a dose error reduction system [39], requiring entered

numbers to be within an illustrative factor of 5 of intended

numbers.

Design G short name: Range check.

Design N Finally, it is interesting how well a design with

no delete key might perform. Hence, we consider design N,

which has a key but no key (or the oper-

ator is trained not to use any delete key). We know of no design

that implements defectively.

Design N short name: No delete (clear only).

We could of course continue generating design combi-

nations indefinitely, for instance combining design N with

ISMP checking. In our previous paper [5], we only evaluated

designs with neither delete nor clear. Once a Monte Carlo test

bed is set up, performing such experiments and comparing

design variations is easier than describing them.
3.2.4. Number of Monte Carlo tests
We performed 108 Monte Carlo experiments per design (i.e.

simulating keying in 108 numbers on each of the 8 user inter-

face designs) measuring risk with vulnerability set at 100

different values, v ¼ 0:001i, i [{0::100}:
4. Results and discussion
4.1. Results
As expected, our experiments show risk increases with

increasing vulnerability. The relation for all designs is

linear, though the intercepts for designs AB have non-zero
risk for zero vulnerability; this is strong evidence that these

common designs are defective.

All designs have linear regression coefficient of determi-

nation (correlations) R2 � 0.9906.

Figure 1 exhibits results graphically. Designs A and B are

worse, and have non-zero risk at zero vulnerability. Design

N, with no delete, performs better than devices with a defec-

tive delete; it performs marginally better than the correct

design C because at most one noticed error can occur per

number. When designs aid the operator detecting error

(DEFG) risk is further reduced.

See figure 2 caption for a discussion of risk ratio results

for the designs considered.
4.2. Discussion
The analysis showed that two designs, A and B, are clearly

not suitable for safety critical contexts. The analysis also

shows that improvements can be achieved by addressing

the faults A and B illustrate with the refinements of the

other designs.

In all cases, simple tests could be readily employed on

seeing a system that would provide a diagnostic test of

which design the device was. In particular, anyone procuring

interactive systems or devices could determine an A or B

design within seconds of the device being switched on

and tested. Hopefully, they would reject such designs

equally quickly. (Tables 3 and 4 give concrete examples,

and appendix C gives design rules that will help distinguish

one design from another.)

The best performing Monte Carlo models assume the

design provides feedback to the operator to influence their

behaviour to manage errors. This was an assumption

behind designs F and G. Error warning messages are often

transient in nature and can easily be missed by operators.

Our eye tracking experiments [2] show operators devote

0.02 0.04 0.06 0.08 0.10

vulnerability

0.001

0.002

0.003

0.004

0.005

ri
sk

A

B

C

D
E
F

G

N

A broken delete & decimals
B fixed delete only
C fixed delete & decimals
D debounced

E ISMP
F low bound ISMP
G range check
N no delete (clear only)

Figure 1. Risk against vulnerability for different designs (figure 2). Risk increasing with vulnerability is expected (lower lines/gradients are safer), but different
designs perform differently. Defective designs AB have potentially unacceptable risk even for ‘perfect’ (v ¼ 0) operation; the alternative designs prove such risk is
avoidable. The grey region covers designs that additionally cue the operator to manage error; all are safer than conventional designs.

0 0.02 0.04 0.06 0.08 0.10

vulnerability

0.05

0.10

0.15

0.20

0.25

ri
sk

 r
at

io

A

A

B

C, N

D, E

F

G

A broken delete & decimals
B fixed delete only
C fixed delete & decimals
D debounced

E ISMP
F low bound ISMP
G range check
N no delete (clear only)

B

C,N
D,E
F
G

Figure 2. Risk ratio, the ratio of risk divided by vulnerability; compare visualization with figure 1, which is the same data. The distinctively defective designs A and B
stand out. They counter-productively make risk ratio increasingly worse as the operator tries to reduce vulnerability: that is, however vigilant the operator (reducing
their vulnerability, even to zero) the design defects ensure there is still residual risk (so the risk ratio goes to infinity). Put another way, even a perfect operator
might be blamed for the problems these poor designs themselves are creating.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150685

9

more and longer eye fixations on the keyboard than on the

display, so therefore warnings in the display, particularly

transient information, are likely to be missed.

The Monte Carlo experiments show that error should be

detected, and if it is, further risk can be reduced. However, the

system detecting error and the operator realizing error has been
detected and taking action are different things. Errors have to

be clearly announced to the operator, and this typically means

latching the warning messages so that they are still visible

when the operator looks for a result following their actions. On

a calculator, the natural place is the number display, where calcu-

lators conventionally report answers. On other devices, other

Table 4. Delete key behaviour. Astonishingly, many numerical user interfaces always show a decimal point even if one has not been keyed (regardless of the
delete key). For clarity, the right-hand column only shows a decimal point if it has been keyed and not deleted. It matters: if the display always shows a
decimal point, if the next keystroke is a 0, it unpredictably leaves the number unchanged or multiplies it by 10. (This table was generated automatically by the
Monte Carlo simulation program: hence what it describes is what was evaluated.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150685

10
locations (or sounds or physical feedback, like vibration) may be

used. But if the operator does not know an uncorrected error has

occurred, they are induced to continue and the consequences of

the error will escalate rather than be mitigated.
4.2.1. Recommendations
Our results show that poor user interface designs perform

much worse for number entry than better-designed user

interfaces. Unfortunately, until performance figures are pub-

lished, it is very hard to know what is preferable when

choosing between manufacturers’ products.

(1) Monte Carlo methods are easy to use and reveal design

flaws in user interfaces very effectively. In number

entry user interfaces, evaluation can be easily quantified.

Monte Carlo methods can be used to rank user interface

designs for safety.

(2) The safest general-purpose number entry system is

design E, and other designs show that more context

(e.g. design G) can further increase safety. If the ISMP

number syntax is felt to be intrusive for the application

(although it imposes no numeric limitations) then

design C may be preferred.

(3) In the absence of evidence of correct design and

implementation, prefer systems (like design N) with no

delete key.

(4) Train operators to use (or equivalent) instead of

. Human factors specialists may be used to

help seek ways to help teams be more resilient when

using defective systems that are already in use.

(5) Use our specifications of the various designs (appendix C

and the examples in tables 3 and 4) to try to establish

which design is being considered. Our results may then

give an estimate of the relative performance of the

designs being considered. Our analysis and results

suggest that designs A and B are misleading and unsafe.
(6) The question may arise, ‘The new designs are better,

but are they better enough?’ An investment in evalua-

tion at the design stage, as suggested in this paper, can

provide improvements to user interfaces, which however

small, will benefit users indefinitely into the future.

Some of those benefits may include avoiding catastrophes,

which will amply repay the marginally increased effort

for the designers. See the note on technical debt in

appendix A.

4.2.2. Little need to measure vulnerability empirically
Since none of the best fit lines intersect, the best designs are

best regardless of vulnerability. For practical purposes, the

ranking of design quality is independent of vulnerability.

This result is important because the empirical evaluation

of user interfaces is very time-consuming, can only be per-

formed after a design has been created, and is very difficult

to design to cover enough errors to be statistically significant

(operator error rates are typically very low). Moreover, it is

unreliable to generalize laboratory experiments to provide

estimates for the real-world situations where the systems

will be used.

One might wish to estimate vulnerability to estimate the

improvement that can be achieved by replacing one design

by another. However, using Monte Carlo methods to develop

and evaluate design variations can help inform A/B tests,

which will be more reliable to perform than experiments to

measure vulnerability directly.

4.3. Conclusions
We have shown that number entry systems, and hence user

interfaces more generally, are a rich source of scientific inves-

tigation—we would argue comparable to biological species or

archæological artefacts, say. Unlike conventional objects of

science, however, number entry systems do not stand apart

from the observer, and indeed the nature of human error

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150685

11
makes studying number entry both problematic and fascinat-

ing, since it occurs in design, in use and in observation. While

the development of number notations has been refined over

centuries [40,41], the new field of ‘interactive numbers’ has

yet to be developed [42].

Errors cannot be avoided; to err is human. However, many

design errors can be eliminated, and operators should always

be warned (or pre-warned) appropriately if the nature of the

error cannot be correctly handled and repaired, for example,

if there is a limit (such as the maximum number of keystrokes)

the operator has exceeded.

It was an insight in the 1940s to argue that focusing on

operator error was inadequate [14]. The whole system fails

to appropriately manage errors: the operator is no more the

cause of any error than the design. Indeed, design error is

ubiquitous—it is astonishing that designs with non-zero

risk for zero vulnerability persist in the market. This paper

will help designers, system purchasers (whether procurers

or consumers) and users be more critical, particularly about

number entry tasks.

Design error is hard to notice because designers lose

situational awareness and because operators take designs

for granted, assuming technology is good and newer tech-

nology is better. In fact, there is considerable variation in

design quality, even for equally new designs. This paper

showed that identifying and fixing design error can have a

more strategic impact than training operators to be more

vigilant, whether in standard operating procedures or

human factors more generally. Given that normal error-

free operator behaviour cannot distinguish between the

designs, little training if any is required to take advantage

of the possible improvements.

Data accessibility. See the online version of this article (http://dx.doi.
org/10.1098/rsif.2015.0685) for the electronic supplementary
material, including a Mathematica 10 notebook (also available in
PDF) explaining and generating all models used in the paper. All
data are available, in CSV (simple text files of comma separated
values), Microsoft Excel and Mathematica formats.

Authors’ contributions. H.T. was the lead researcher, though the article is
jointly co-authored.

Competing interests. The authors declare that there are no competing
financial interests.

Funding. Funded by EPSRC, UK Engineering and Physical Sciences
Research Council [grant nos. EP/G059063, EP/L019272].

Acknowledgement. Ann Blandford made many helpful comments.
Endnotes
1If there is no key shown on the keypad, pressing will
change it to be displayed as . There is no key as
such, but deleting on the iPhone is achieved by swiping a finger
left or right across the number display (if it was a number the user
entered, rather than the result of a calculation).
2An ISMP number forbids ‘naked decimal points’ such as .1 (poten-
tially misread as 1) and does not allow trailing zeros after a decimal
point, as in 1.0 (potentially misread as 10). Additional criteria used
here that ISMP fail to state: the number must have at least one
digit, at most one decimal point, and must not start with 0 unless
the next character is a decimal point.
3Ethical problems arise with studying actual errors, so simulation
is often used. Error rates are very low, so stress and other experimen-
tal manipulations—subterfuges—are used to increase error rates.
Validity of laboratory experiments is hard to assure or generalize to
real life. Errors are often studied in psychological terms, not generat-
ing knowledge that can reliably applied to design (e.g. an MRI scan
reveals parts of the brain, not parts of the design) and so on.
Appendix A. Why do design problems persist?
Section 2.4 refers to this appendix.
(1) What this paper calls defects may be dimissed as trivial.

The word ‘trivial’ is equivocal (trivial ¼ easy to ignore;

trivial ¼ easy to fix).

(2) Users can be blamed—and blame themselves—for error.

Error-inducing design can create additional income.

Some common ATMs (cash machines) display

and as digits are keyed, the number scrolls in from the

right—so the first two digits, say , appear as a

fraction (in this case,) and to get an amount the

ATM can dispense, the operator must finish with two con-

secutive zeros. This unnecessary design complexity is ‘fail

safe’ in that an ATM cannot dispense coins, but if the user

wanted $500 they might only get $5, and perhaps pay a

fee to get it, and another fee to get the $495!

(3) Technical debt [43] describes the savings made by devel-

opers which users pay off in the future. The cost savings

at development time mean developers often discount

user interface design issues, especially ones thought ‘tri-

vial’ and which have little impact on short-term

business; the ATM example, above, is a concrete case of

actual debt affecting users effectively paying off the

consequences of saved effort during development.

(4) Many think ‘reading a number is program code anyone

can write; it is a few lines of code and will obviously

work’. Neither rigorous testing nor formal development

seems necessary for such a seemingly simple problem.

(5) Uncorrected errors in user interfaces occur because we

do not notice them. If we do not notice them, then it

is likely that related bugs in user interfaces are not

noticed either. This is a vicious circle: error handling

in user interfaces is very poor.

(6) Confirmation bias is the tendency of people to confirm

their beliefs, to prefer to check things they think are

right. We rarely notice our errors (if we noticed them,

we would not make errors), so we tend to notice our

successes and ignore our errors and the design errors

that create them.

(7) Error is very hard to research3 and has little presence in

the user interface design literature. For example, the classic

book on the science is Card, Moran and Newell [44] which

specifically excludes human error; it is concerned only

with skilled, error-free human performance. Norman

[45] is one of the very few papers mapping the psychology

of error into practical design advice.

(8) Most of the user interface design literature ignores the

programmer, and thus programmers build user inter-

faces but have negligible awareness of human factors.

Landauer [46] is a classic book promoting user-centred

design, yet its model of development is user-centred

design then ‘just’ tell the programmer what to do.

A notable exception to the trend is Thimbleby [7].

(9) Rigorously developed systems must be traceable back to

clear requirements. Number entry is typically a require-

ment in itself that is not decomposed into further

requirements; the details of individual key presses are

considered trivial and not formalized. A case in point,

the ISMP requirements for safe number formats has

critical oversights this paper identifies (see endnote 2).

http://dx.doi.org/10.1098/rsif.2015.0685
http://dx.doi.org/10.1098/rsif.2015.0685

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150685

12
(10) While there are many programmers, only a very low

proportion can program well. Appendix B exhibits a

publicly available proposed worldwide Web standard

for parsing numbers, and as the appendix points

out, it accepts (without reporting errors) invalid

numbers like 1.2.3 and 2E3.2 (presumably 2 � 103.2 but

actually parsed as 2 � 103, since the parser terminates

prematurely at the unexpected decimal point).

It is invidious to select examples, but we chose the

example exhibited in appendix B because the worldwide

Web has one of the largest user bases of any system, and

therefore the advantages of good requirements and speci-

fication are obvious (the number specification was also

made public, which was a necessary criterion for

review in this paper).

(11) Serious, high-profile problems, like the 22-year-old

ShellShock bug in bash (disclosed in 2014) share similar

problems: ShellShock exploits bash’s incorrect parsing

of trailing strings, a problem identical to one of the

number parser problems exhibited in appendix B. In

other words, bad programming is common; the design

defects reported in this paper share themes with other

widespread bugs.

(12) While poor security practices are taken seriously, poor-

quality user interfaces are dismissed. Thus, Fu [47]

reports on a security weakness caused by a buffer over-

flow problem—bad hackers may exploit this weakness,

so it needs fixing; yet the same buffer overflow problem

in a user interface [32] is ignored—why would good

operators want to exploit bugs [48]?!

(13) There is effectively no professional regulation control-

ling practice in the software industry. Anybody can

program anything.

(14) Nobody provides assuredly better systems. The state of

the art in computing (particularly consumer devices) is

driven by excitement, not by dependability.

(15) When errors do occur that cause harm, often the oper-

ator is blamed. Indeed, when devices have regulatory

approval, it is almost inevitable that operators are

blamed because (in some jurisdictions) regulatory

approval implies the design is fit for purpose, and there-

fore any faults in use must be due to the operator.

(16) Software warranties typically argue that the developers

are not responsible for any problems experienced in the

use of the system [49]. If nobody takes responsibility for

software quality and denies liability for defects, why

would manufacturers invest in unnecessary quality

that does not improve sales? Some warranties argue

‘by using this software the operator agrees. . .’ and

may also include caveats such as ‘the operator must

exercise their own judgement to interpret results’—

which begs the question why anybody would want to

use critical systems that cannot be relied upon!

(17) Procurement is generally driven by cost not safety, and

in any case, safety for many systems is not quantifiable.

(18) Because software quality is poor and it is not easy

to measure quality, regulators are in the impossible bind

that, on the one hand, the market does not demand

higher quality, and on the other that if higher quality was

a regulatory requirement many products the market finds

valuable would have to be phased out. An overwhelming

‘regulatory burden’ that appears to offer negligible benefit

to manufacturers is not going to be pursued.
(19) Until the present paper, there are no effective tools or

processes for finding and quantifying user interface

design problems, particularly problems that have been

overlooked in requirements.

Appendix B. W3C floating-point numbers
Appendices A and C refer to this appendix.

The following code was copied from the WorldWide Web

Consortium’s A vocabulary and associated APIs for HTML and
XHTML W3C Working Draft [50]. This code is notable because

it is presented by a leading organization with a worldwide

impact, but what is presented as a computer program is—

we argue—in fact a list of vague English instructions, with

misleading sophistication and pedantry.

It is hard to read and hard to reason about. It is notable

for not using assertions or other standard features for helping

assure quality, let alone giving the requirements it should

implement. It is not presented with unit tests. Clearer

approaches have been suggested elsewhere [51].

This W3C specification fails completely to define how an

operator interacts with numbers—and thus raises many

design issues it fails to discuss, such as what happens

when an operator keys a number that is ‘too long’ and per-

haps is truncated so displaying a misleading number.

Appendix C (based on the notation developed in [3]),

which defines the designs tested in this paper, illustrates

how simply interaction can be specified.

The original code is presented, followed by a non-

exhaustive but representative list of more specific criticisms

relevant to the concerns of this paper.

(1) Let input be the string being parsed.

(2) Let position be a pointer into input, initially pointing at

the start of the string.

(3) Let value have the value 1.

(4) Let divisor have the value 1.

(5) Let exponent have the value 1.

(6) Skip whitespace.

(7) If position is past the end of input, return an error.

(8) If the character indicated by position is a Uþ002D

HYPHEN-MINUS character (–):

(a) Change value and divisor to –1.

(b) Advance position to the next character.

(c) If position is past the end of input, return an error.

(9) If the character indicated by position is not one of

Uþ0030 DIGIT ZERO (0) to Uþ0039 DIGIT NINE (9),

then return an error.

(10) Collect a sequence of characters in the range Uþ0030

DIGIT ZERO (0) to Uþ0039 DIGIT NINE (9), and

interpret the resulting sequence as a base-10 integer.

Multiply value by that integer.

(11) If position is past the end of input, jump to the step

labelled conversion.

(12) If the character indicated by position is a Uþ002E FULL

STOP (.), run these substeps:

(a) Advance position to the next character.

(b) If position is past the end of input, or if the character

indicated by position is not one of Uþ0030 DIGIT

ZERO (0) to Uþ0039 DIGIT NINE (9), then jump

to the step labelled conversion.

(c) Fraction loop: multiply divisor by 10.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150685

13
(d) Add the value of the character indicated by position,

interpreted as a base-10 digit (0..9) and divided by

divisor, to value.

(e) Advance position to the next character.

(f) If position is past the end of input, then jump to the

step labelled conversion.

(g) If the character indicated by position is one of

Uþ0030 DIGIT ZERO (0) to Uþ0039 DIGIT NINE

(9), jump back to the step labelled fraction loop in

these substeps.

(13) If the character indicated by position is a Uþ0065

LATIN SMALL LETTER E character (e) or a Uþ0045

LATIN CAPITAL LETTER E character (E), run these

substeps:

(a) Advance position to the next character.

(b) If position is past the end of input, then jump to the

step labelled conversion.

(c) If the character indicated by position is a Uþ002D

HYPHEN-MINUS character (–):

(i) Change exponent to –1.

(ii) Advance position to the next character.

(iii) If position is past the end of input, then jump to

the step labelled conversion.

Otherwise, if the character indicated by position is a

Uþ002B PLUS SIGN character (þ):

(a) Advance position to the next character.

(b) If position is past the end of input, then jump to the

step labelled conversion.

(c) If the character indicated by position is not one of

Uþ0030 DIGIT ZERO (0) to Uþ0039 DIGIT NINE

(9), then jump to the step labelled conversion.

(d) Collect a sequence of characters in the range

Uþ0030 DIGIT ZERO (0) to Uþ0039 DIGIT NINE

(9), and interpret the resulting sequence as a base-10

integer. Multiply exponent by that integer.

(e) Multiply value by 10 raised to the exponentth [sic]

power.

(14) Conversion: Let S be the set of finite IEEE 754 single-

precision floating-point values except 20, but with

two special values added: 2128 and 22128.

(15) Let rounded-value be the number in S that is closest to

value, selecting the number with an even significand if

there are two equally close values. (The two special

values 2128 and 22128 are considered to have even

significands for this purpose.)

(16) If rounded-value is 2128 or 22128, return an error.

(17) Return rounded-value.

Comments on the W3C algorithm:

(1) The W3C algorithm permits number entries such as 2E3.2,

1.2.3 and so forth, without reporting an error. A key pro-

blem is that the step labelled ‘conversion’ does not check

that string parsing has been completed, and therefore unex-

pected characters beyond the ‘end’ of the number are

ignored. Numerous misleading examples can be imagined,

such as 1þ1, 2E–4 and so on, as well as culturally plausible

errors such as 1,2 (intending 1.2) which is read as 1.

(2) The conversion assumes IEEE 754 single-precision float-

ing-point binary format (binary32), which covers 22126

to 2127, and supposes that the arithmetic conversion is

exact, then rounds to the set S or the overflow values.
It is unfortunate that the ‘return an error’ does not dis-

tinguish between a syntax error and a well-formed

number that happens to have numeric overflow. Since

the binary format allows 7.22 decimal digits with an

exponent at most 38.23, reading a decimal number (as

here) would be better handled using the IEEE 754 deci-

mal floating-point standard (decimal32).

(3) The IEEE standard caters for returning NaN [26] as well as

+1, which may offer better ways of handling overflow

than by the W3C indiscriminate ‘error’. However, a

common problem in programming is detecting an error

in the ‘wrong’ place, and merely ignoring the error else-

where; ideally, the W3C standard should discuss error

handling, and the parsing of numbers should support or

be consistent with that approach.

(4) The W3C algorithm attempts to detect overflow, in the

sense of parsing a number outside of the IEEE single-

precision range, but the approach taken is flawed, as it

assumes the calculation itself does not overflow. The

algorithm permits any integer exponent without detect-

ing overflow; parsing the likes of 1E1000000 . . . can

overflow many implementations.

(5) The bound checking uses –2128 , n , 2128; yet these

bounds have little significance to users—the algorithm is

in base 10 not base 2! Had the valid range been +1038

(1038 is the largest power of 10 no more than 2128) the

code would have been much easier to implement correc-

tly, since the bound can be checked by simply counting

(decimal) digits.

(6) While the algorithm discusses overflow, it fails to detect

or manage display overflow—for example, if a user

keys more digits than fit in a display box, the result is a

misleading overflow, but is not detected by this code.

(7) In the context of this paper, it is interesting that this pro-

posed code does not specify any error correction (what

would a or key do?) as this is

left entirely to the browser (or the user’s operating

system), for which there are no standards.

Appendix C. Design specifications
Section 3.2.3 and appendix B refer to this appendix.

Numeric user interfaces can be considered implemented

with a string buffer, to which the user’s keystrokes are nor-

mally appended. Hence the ‘last’ digit or character in the

buffer is the rightmost character.

The delete key normally deletes the last key in the buffer.

We can specify the behaviour of the buffer by a precondition,

and a postcondition that applies if the precondition was

true. If no precondition is true, nothing happens. Note that

some actions (e.g. press delete) may have several rules,

depending on the contents of the buffer, and (as design D

shows when pressing a digit) multiple rules may all apply

in a single case. We use the declarative notation from [3]

but we use English to describe the conditions intuitively

without introducing further formalism.

Rules are written in the following form, numbered for

convenient reference:

rsif.royalsocietypu

14
When an action occurs and the precondition is fulfilled, the

postcondition is achieved (in some way by software that we do

not need to discuss here). The same action may need several

rules, so preconditions cover different eventualities. For example,
blishing.org

J.R.Soc.Interface

12:20150685
. . .is a pair of rules specifying that the delete key deletes the

last digit, but because the buffer (for this design) is not

allowed to have no digits, when the buffer only contains one

digit, it is not ‘deleted’ but made to be zero. As a special

case, if the buffer was zero, then it will still be zero after press-

ing delete. (These simple illustrative rules say nothing about

behaviour with decimals.)

Conditions may refer to ‘full buffer’, which means

the number of digits in the buffer is the maximum permitted by

the device, perhaps eight characters. In many designs showing

a decimal point does not affect the buffer limit, since each char-

acter in the buffer has an optional decimal point—which is a

design decision that of course makes it impractical to display

more than one adjacent decimal point. Our definitions below

ignore the user keying additional digits when the buffer is

full; arguably better designs would alert the user and ‘lock

up’ until is pressed to clear the display (this paper

did not evaluate the effect of buffer overflow).

We note that the two defective designs (A and B)

have longer descriptions than the other designs. This suggests

that designs A and B were not specified declaratively but, for

instance, as side-effects of running an imperative program, so

the special cases our notation makes explicit were probably

never considered by programmers. It is also noteworthy that

the specification of W3C number input in appendix B is

imperative in exactly this way—it is very hard to infer the

rules the program implements just by reading the program,

even when helped by the comments.

C.1. Design A: broken delete & decimals
Design A occurs in many systems and devices such as the

Casio HR-150TEC, Hewlett Packard EasyCalc 100, etc. The

display always shows exactly one decimal point.
Examples: delete key ignores decimal points, and the

design ignores multiple decimal points. Thus pressing

and are both

equivalent to is

equivalent to ; and pressing

is equivalent to .

C.2. Design B: fixed delete only
Design B occurs in many devices, such as the Samsung

Android, Apple iPhone, etc. Delete key works correctly, but

the design ignores multiple decimal points. The display can

show zero or one decimal points.
Examples: pressing is equivalent to

(as in design A), but pressing

is equivalent to (60 times

higher than in design A).

C.3. Design C: fixed delete & decimals
Nominally correct design, exemplified by the Casio fx-85GT

and many familiar keyboard-based applications on PCs,

such as Microsoft Word. The display can show zero, one or

multiple decimal points.
C.4. Design D: debounced
Correct design, which also intercepts key bounce. A number

entered with a repetition is blocked, and the operator has to

re-enter it.

rsif.royalsoci

15
Design D is design C, but with this rule added:
etypublishing.org
and this rule replacing C.2:
J.R.Soc.Inte
Since pressing enough keys is equivalent to

pressing , then ‘since last cleared display’ in the rules

above more precisely means ‘since the display was last ’.
rface
12:20150685
C.5. Design E: ISMP
Correct design, which also checks ISMP recommendations.

Invalid numbers are intercepted and the operator retypes

them, possibly making further errors.

Similar to design D, except the added rules are from

ISMP. Rather than rejecting repetition, ISMP rejects numbers

with a leading zero if the number greater than 1; no leading

zero if number less than 1; trailing zeros after a decimal;

decimal if no digits after it; a trailing zero after a decimal;

more than one decimal.

Since entering a valid number like 1.05 would briefly

break the ISMP rule (when keying the 0, which appears to

be a trailing zero), the ISMP rule is checked only when enter-

ing the number is completed.
C.6. Design F: low bound ISMP
Correct design, which, like design E, enforces ISMP recommen-

dations but ensures the number after an operator error is always

correctly entered. Design F therefore gives a lower bound on the

effectiveness of the ISMP intervention—it behaves as if number

entry is perfect (after detecting an operator error).
C.7. Design G: range check
Like design C, except that the condition is that a number

entered more than 5 � n or less that n/5 is barred the first

time it occurs.

Design G is a nominally correct design, which also enforces

value to be within a factor of 5 of the intended number.

Although 5 is an arbitrary choice, chosen for this paper, in a

typical dose error reduction system, a fixed range is set depend-

ing on the intended therapy—effectively, selecting the drug

sets the range, whereas in this paper the range is set as a

proportion of the intended number.

A dose error reduction system will also have ‘soft’ and

‘hard’ limits. Design G has ‘soft’ limits—a warning occurs,

and the user can then re-enter the number. A hard limit, in

contrast, cannot be over-ridden.
C.8. Design N: no delete (clear only)
Like design C, but without any delete key. When the operator

notices errors they must be corrected by clearing and starting

over. Like design C, and unlike designs DEFG, N does not

detect any errors.
References
1. Feynman RP. 2005 The pleasure of finding things
out: the best short works of Richard P. Feynman.
New York, NY: Basic Books.

2. Oladimeji P, Thimbleby H, Cox A. 2011
Number entry interfaces and their effects on error
detection. In Human-computer interaction—
INTERACT 2001 (eds P Campos et al.). Lecture Notes
in Computer Science, vol. 6949, pp. 178 – 185.
Berlin, Germany: Springer.

3. Thimbleby H. 2015 Safer user interfaces: a case
study in improving number entry. IEEE Trans.
Software Eng. 41, 711 – 729. (doi:10.1109/TSE.2014.
2383396)

4. Masci P, Zhang Y, Jones P, Curzon P, Thimbleby H.
2014 Formal verification of medical device user
interfaces using PVS. In Fundamental approaches to
software engineering (eds S Gnesi, A Rensink).
Lecture Notes in Computer Science, vol. 8411,
pp. 200 – 214. Berlin, Germany: Springer.

5. Cairns P, Thimbleby H. 2010 Reducing number entry
errors: solving a widespread, serious problem. J. R. Soc.
Interface 7, 1429 – 1439. (doi:10.1098/rsif.2010.0112)

6. Thimbleby H, Cairns P, Jones M. 2001 Usability analysis
with Markov models. ACM Trans. Comput. Hum. Interact.
8, 99 – 132. (doi:10.1145/376929.376941)

7. Thimbleby H. 2007 Press on: principles of interaction
programming. Cambridge, MA: MIT Press.
8. Hollnagel E. 2014 Safety-I and Safety-II. Aldershot,
UK: Ashgate.

9. Kachalia A, Kaufman SR, Boothman R, Anderson S,
Welch K, Saint S, Rogers MAM. 2010 Liability claims and
costs before and after implementation of a medical error
disclosure program. Ann. Intern. Med. 153, 213 – 221.
(doi:10.7326/0003-4819-153-4-201008170-00002)

10. Editorial. 2014 STAP retracted. Nature 511, 5 – 6.
(doi:10.1038/511005b)

11. Reason J. 2008 The human contribution. Aldershot,
UK: Ashgate.

12. Wu A. 2000 Medical error: the second victim. The doctor
who makes the mistake needs help too. Br. Med. J. 320,
726 – 727. (doi:10.1136/bmj.320.7237.726)

13. Hollnagel E. 2009 The ETTO principle: efficiency-
thoroughness trade-off. Aldershot, UK: Ashgate.

14. Dekker S. 2015 Safety differently, 2nd edn. Boca
Raton, FL: CRC Press.

15. Reason J. 2000 Human error: models and
management. Br. Med. J. 320, 768 – 770. (doi:10.
1136/bmj.320.7237.768)

16. Thimbleby H. 2000 Calculators are needlessly bad.
Int. J. Hum. Comp. Stud. 52, 1031 – 1069. (doi:10.
1006/ijhc.1999.0341)

17. Thimbleby H. 2006 Interaction walkthrough:
evaluation of safety critical interactive systems. In
Interactive systems: design, specification, and
verification (eds G Doherty, A Blandford). Lecture
Notes in Computer Science, vol. 4323, pp. 52 – 66.
Berlin, Germany: Springer.

18. Thimbleby H, Williams JG, Lewis A. 2015 Making
healthcare safer by understanding, designing and
buying better IT. Clin. Med. 15, 258 – 262. (doi:10.
7861/clinmedicine.15-3-258)

19. Thimbleby H, Witten IH. 1993 User modelling as
machine identification: new design methods for HCI.
In Advances in human computer interaction,
vol IV (eds RH Hartson, D Hix), pp. 58 – 86.
Norwood, NJ: Ablex.

20. Wren K. 2014 At FDA, speedier approval could add
uncertainty over risks. Science 345, 391. (doi:10.
1126/science.345.6195.391)

21. Simone LK. 2013 Software-related recalls: an
analysis of records. Biomed. Instrument. Technol. 47,
514 – 522. (doi:10.2345/0899-8205-47.6.514)

22. James JT. 2013 A new evidence-based estimate of
patient harms associated with hospital care.
J. Patient Safety 9, 112 – 128. (doi:10.1097/PTS.
0b013e3182948a69)

23. Vicente KJ, Kada-Bekhaled K, Hillel G, Cassano A,
Orser BA. 2003 Programming errors contribute to
death from patient-controlled analgesia: case report
and estimate of probability. Can. J. Anesth. 50,
328 – 332. (doi:10.1007/BF03021027)

http://dx.doi.org/10.1109/TSE.2014.2383396
http://dx.doi.org/10.1109/TSE.2014.2383396
http://dx.doi.org/10.1098/rsif.2010.0112
http://dx.doi.org/10.1145/376929.376941
http://dx.doi.org/10.7326/0003-4819-153-4-201008170-00002
http://dx.doi.org/10.1038/511005b
http://dx.doi.org/10.1136/bmj.320.7237.726
http://dx.doi.org/10.1136/bmj.320.7237.768
http://dx.doi.org/10.1136/bmj.320.7237.768
http://dx.doi.org/10.1006/ijhc.1999.0341
http://dx.doi.org/10.1006/ijhc.1999.0341
http://dx.doi.org/10.7861/clinmedicine.15-3-258
http://dx.doi.org/10.7861/clinmedicine.15-3-258
http://dx.doi.org/10.1126/science.345.6195.391
http://dx.doi.org/10.1126/science.345.6195.391
http://dx.doi.org/10.2345/0899-8205-47.6.514
http://dx.doi.org/10.1097/PTS.0b013e3182948a69
http://dx.doi.org/10.1097/PTS.0b013e3182948a69
http://dx.doi.org/10.1007/BF03021027

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150685

16
24. Daily Mail Reporter (anonymous). 2011 Mother-of-
four dies after blundering nurse administers TEN
times drug overdose. Daily Mail Online, 23 February
2011. (http://www.dailymail.co.uk/health/article-
1359778/Mother-diesnurse-administers-TEN-times-
prescribed-drug.html#ixzz3eoPUHrXF)

25. Logan GD, Crump MJC. 2010 Cognitive illusions of
authorship reveal hierarchical error detection in
skilled typists. Science 330, 683 – 686. (doi:10.1126/
science.1190483)

26. Gustafson JL. 2015 The end of error. Boca Raton, FL:
CRC Press.

27. Thimbleby H. 1995 A new calculator and why it is
necessary. Comput. J. 38, 418 – 433. (doi:10.1093/
comjnl/38.6.418)

28. Thimbleby W, Thimbleby H. 2005 A novel
gesture-based calculator and its design principles.
In Proc. 19th British Computer Society HCI
Conf., vol. 2 (eds L MacKinnon, O Bertelsen,
N Bryan-Kinns), pp. 27 – 32. Swindon, UK: British
Computer Society.

29. Thimbleby H. 2012 Heedless programming:
ignoring detectable error is a widespread hazard.
Software Practice Exp. 42, 1393 – 1407. (doi:10.1002/
spe.1141)

30. Miller BP, Fredriksen L, So B. 1990 An empirical
study of the reliability of UNIX utilities. Commun.
ACM 33, 32 – 44. (doi:10.1145/96267.96279)

31. Cauchi A, Curzon P, Gimblett A, Masci P, Thimbleby
H. 2012 Safer ‘5-key’ number entry user interfaces
using differential formal analysis. In Proc. 26th
Annual BCS Interaction Specialist Group Conf. on
People and Computers, pp. 29 – 38. Oxford, UK:
Oxford University Press.
32. Olsen KA. 2008 The $100,000 keying error.
IEEE Comput. 41, 1005 – 1008. (doi:10.1109/MC.
2008.135)

33. Thimbleby H. 2013 Improving safety in medical
devices and systems. In Proc. IEEE Int. Conf. on
Healthcare Informatics, Philadelphia, PA, 9 – 11
September 2013. (doi:10.1109/ICHI.2013.91)

34. Thimbleby H. 1983 Guidelines for ‘manipulative’
editing. Behav. Inform. Technol. 2, 127 – 161.
(doi:10.1080/01449298308914472)

35. NHS Common User Interface Programme Team.
2010 NHS Number Input and Display User Interface
Design Guidance. NHS, 5.0.0.0 edition.

36. Barchard KA, Pace LA. 2011 Preventing human
error: the impact of data entry methods on data
accuracy and statistical results. Comp. Hum. Behav.
27, 1834 – 1839. (doi:10.1016/j.chb.2011.04.004)

37. Institute for Safe Medication Practices. 2006 Double key
bounce and double keying errors. ISMP. (www.ismp.org/
newsletters/acutecare/articles/20060112.asp).

38. Institute for Safe Medication Practices. 2007 ISMP‘s
list of error-prone abbreviations, symbols, and dose
designations. ISMP. (www.ismp.org).

39. Trbovich PL, Pinkney S, Cafazzo JA, Easty AC. 2010
The impact of traditional and smart pump infusion
technology on nurse medication administration
performance in a simulated inpatient unit. Qual.
Safety Health Care 19, 430 – 434.

40. Chrisomalis S. 2010 Numerical notation. Cambridge,
UK: Cambridge University Press.

41. Flegg G. 1983 Numbers: their history and meaning.
New York, NY: Dover Publications.

42. Thimbleby H. 2011 Interactive numbers—a grand
challenge. In Proc. IADIS Int. Conf. on Interfaces and
Human Computer Interaction (ed. K Blashki), pp.
xxviii – xxxv.

43. Allman E. 2012 Managing technical debt. Commun.
ACM 55, 50 – 55. (doi:10.1145/2160718.2160733)

44. Card SK, Moran TP, Newell A. 1983 The psychology
of human-computer interaction. Hillsdale, NJ:
L. Erlbaum Associates Inc.

45. Norman DA. 1983 Design rules based on analyses of
human error. Commun. ACM 26, 254 – 258. (doi:10.
1145/2163.358092)

46. Landauer TK. 1995 The trouble with computers. Boston,
MA: MIT Press.

47. Hanna S, Rolles R, Molina-Markham A, Poosankam P, Fu
K, Song D. 2011 Take two software updates and see me
in the morning: the case for software security
evaluations of medical devices. In 2nd USENIX Workshop
on Health Security and Privacy, HealthSec’11 (eds B
Adida, U Shankar), pp. 1 – 5. Berkeley, CA: USENIX
Association.

48. Thimbleby H. 2014 Safety versus security in
healthcare IT. In Addressing Systems Safety
Challenges, Proc. 22nd Safety-Critical Systems Symp.
(eds C Dale, T Anderson), pp. 133 – 146.

49. Thimbleby H. 1990 You’re right about the cure:
don’t do that. Interact. Comput. 2, 8 – 25. (doi:10.
1016/0953-5438(90)90011-6)

50. W3C. 2013 A vocabulary and associated APIs for
HTML and XHTML W3C working draft, 2013. See
http://www.w3.org/TR/2011/WD-html5-20110525/
common-microsyntaxes.html#real-numbers.

51. Thimbleby H, Gimblett A. 2011 Dependable keyed
data entry for interactive systems. In FMIS 2011, 4th
Int. Workshop on Formal Methods for Interactive
Systems, vol. 45, pp. 1/16 – 16/16.

http://www.dailymail.co.uk/health/article-1359778/Mother-diesnurse-administers-TEN-times-prescribed-drug.html#ixzz3eoPUHrXF
http://www.dailymail.co.uk/health/article-1359778/Mother-diesnurse-administers-TEN-times-prescribed-drug.html#ixzz3eoPUHrXF
http://www.dailymail.co.uk/health/article-1359778/Mother-diesnurse-administers-TEN-times-prescribed-drug.html#ixzz3eoPUHrXF
http://www.dailymail.co.uk/health/article-1359778/Mother-diesnurse-administers-TEN-times-prescribed-drug.html#ixzz3eoPUHrXF
http://dx.doi.org/10.1126/science.1190483
http://dx.doi.org/10.1126/science.1190483
http://dx.doi.org/10.1093/comjnl/38.6.418
http://dx.doi.org/10.1093/comjnl/38.6.418
http://dx.doi.org/10.1002/spe.1141
http://dx.doi.org/10.1002/spe.1141
http://dx.doi.org/10.1145/96267.96279
http://dx.doi.org/10.1109/MC.2008.135
http://dx.doi.org/10.1109/MC.2008.135
http://dx.doi.org/10.1109/ICHI.2013.91
http://dx.doi.org/10.1080/01449298308914472
http://dx.doi.org/10.1016/j.chb.2011.04.004
http://www.ismp.org/newsletters/acutecare/articles/20060112.asp
http://www.ismp.org/newsletters/acutecare/articles/20060112.asp
http://www.ismp.org
http://dx.doi.org/10.1145/2160718.2160733
http://dx.doi.org/10.1145/2163.358092
http://dx.doi.org/10.1145/2163.358092
http://dx.doi.org/10.1016/0953-5438(90)90011-6
http://dx.doi.org/10.1016/0953-5438(90)90011-6
http://www.w3.org/TR/2011/WD-html5-20110525/common-microsyntaxes.html#real-numbers
http://www.w3.org/TR/2011/WD-html5-20110525/common-microsyntaxes.html#real-numbers
http://www.w3.org/TR/2011/WD-html5-20110525/common-microsyntaxes.html#real-numbers

	Unreliable numbers: error and harm induced by bad design can be reduced by better design
	Introduction
	Our previous work
	A new approach

	The cultural context
	Human error
	Motivating problems
	Repairing error, and problems of defective design
	Why do problems persist?

	Towards solutions
	Safety metrics
	Monte Carlo methods for numeric input
	Executable systems
	Excluded issues
	Experiments comparing eight designs
	Number of Monte Carlo tests

	Results and discussion
	Results
	Discussion
	Recommendations
	Little need to measure vulnerability empirically

	Conclusions
	Data accessibility
	Authors’ contributions
	Competing interests
	Funding

	Acknowledgement
	Appendix A. Why do design problems persist?
	Appendix B. W3C floating-point numbers
	Appendix C. Design specifications
	Design A: broken delete &’; decimals
	Design B: fixed delete only
	Design C: fixed delete &’; decimals
	Design D: debounced
	Design E: ISMP
	Design F: low bound ISMP
	Design G: range check
	Design N: no delete (clear only)
	References

